首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
How cyclooxygenase-2 (COX-2) and its proinflammatory metabolite prostaglandin E2 (PGE2) enhance colon cancer progression remains poorly understood. We show that PGE2 stimulates colon cancer cell growth through its heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor, EP2, by a signaling route that involves the activation of phosphoinositide 3-kinase and the protein kinase Akt by free G protein betagamma subunits and the direct association of the G protein alphas subunit with the regulator of G protein signaling (RGS) domain of axin. This leads to the inactivation and release of glycogen synthase kinase 3beta from its complex with axin, thereby relieving the inhibitory phosphorylation of beta-catenin and activating its signaling pathway. These findings may provide a molecular framework for the future evaluation of chemopreventive strategies for colorectal cancer.  相似文献   

4.
Convergence of Wnt, beta-catenin, and cadherin pathways   总被引:1,自引:0,他引:1  
Nelson WJ  Nusse R 《Science (New York, N.Y.)》2004,303(5663):1483-1487
The specification and proper arrangements of new cell types during tissue differentiation require the coordinated regulation of gene expression and precise interactions between neighboring cells. Of the many growth factors involved in these events, Wnts are particularly interesting regulators, because a key component of their signaling pathway, beta-catenin, also functions as a component of the cadherin complex, which controls cell-cell adhesion and influences cell migration. Here, we assemble evidence of possible interrelations between Wnt and other growth factor signaling, beta-catenin functions, and cadherin-mediated adhesion.  相似文献   

5.
6.
Glycogen synthase kinase 3beta (GSK3beta) is involved in metabolism, neurodegeneration, and cancer. Inhibition of GSK3beta activity is the primary mechanism that regulates this widely expressed active kinase. Although the protein kinase Akt inhibits GSK3beta by phosphorylation at the N terminus, preventing Akt-mediated phosphorylation does not affect the cell-survival pathway activated through the GSK3beta substrate beta-catenin. Here, we show that p38 mitogen-activated protein kinase (MAPK) also inactivates GSK3beta by direct phosphorylation at its C terminus, and this inactivation can lead to an accumulation of beta-catenin. p38 MAPK-mediated phosphorylation of GSK3beta occurs primarily in the brain and thymocytes. Activation of beta-catenin-mediated signaling through GSK3beta inhibition provides a potential mechanism for p38 MAPK-mediated survival in specific tissues.  相似文献   

7.
8.
Cytokine signaling is thought to require assembly of multicomponent signaling complexes at cytoplasmic segments of membrane-embedded receptors, in which receptor-proximal protein kinases are activated. Indeed, CD40, a tumor necrosis factor receptor (TNFR) family member, forms a complex containing adaptor molecules TRAF2 and TRAF3, ubiquitin-conjugating enzyme Ubc13, cellular inhibitor of apoptosis proteins 1 and 2 (c-IAP1/2), IkappaB kinase regulatory subunit IKKgamma (also called NEMO), and mitogen-activated protein kinase (MAPK) kinase kinase MEKK1 upon ligation. TRAF2, Ubc13, and IKKgamma were required for complex assembly and activation of MEKK1 and MAPK cascades. However, these kinases were not activated unless the multicomponent signaling complex translocated from CD40 to the cytosol upon c-IAP1/2-induced degradation of TRAF3. This two-stage signaling mechanism may apply to other innate immune receptors, accounting for spatial and temporal separation of MAPK and IKK signaling.  相似文献   

9.
WNT7A and β-catenin localisations and roles in regulating periimplantation ovine conceptus development under natural estrous conditions have been elaborated.However,their locations and expression patterns have not been reported under induction of oestrus.The localisation,expression and function of WNT7A and β-catenin in the uterine tissues of the early pregnant and non-pregnant sheep on days 10,12,14,16 and 18 following artificial induction of oestrus were investigated by means of in situ hybridisation,real-time RT-PCR,immuno-histochemistry and western blotting methods.WNT7A and β-catenin mRNA and protein were both restricted to the apical surfaces of the uterine luminal epithelium (LE) and glandular epithelium (GE).In pregnant sheep,protein localisation of WNT7A and β-catenin was observed both in the endometrial LE and GE.Their staining presented on day 10,increased between day 12 and day 16,and decreased on day 18.WNT7A and β-catenin mRNA and protein expression increased initially and then decreased from day 10 to day 18,peaking on day 16,and β-catenin reaching a peak on day 18 in the uterine tissues of pregnant sheep (p0.05).By contrast,no significant changes in WNT7A and β-catenin mRNA and protein expression levels were observed from day 10 to day 18 of the oestrus cycle in the uterine tissues of non-pregnant sheep (p0.05).Additionally,WNT7A and β-catenin mRNA and protein expression levels in the uterine tissues of the early pregnant sheep were significantly higher than those of non-pregnant sheep (p0.05).Treatment of endometrial epithelial cells with WNT7A increased the mRNA expressions of β-catenin,c-myc and Cyclin D1.These results provided an underlying mechanism of periimplantation ovine conceptus development under induction of oestrus.  相似文献   

10.
The mitogen-activated protein (MAP) kinase cascade is inactivated at the level of MAP kinase by members of the MAP kinase phosphatase (MKP) family, including MKP-1. MKP-1 was a labile protein in CCL39 hamster fibroblasts; its degradation was attenuated by inhibitors of the ubiquitin-directed proteasome complex. MKP-1 was a target in vivo and in vitro for p42(MAPK) or p44(MAPK), which phosphorylates MKP-1 on two carboxyl-terminal serine residues, Serine 359 and Serine 364. This phosphorylation did not modify MKP-1's intrinsic ability to dephosphorylate p44(MAPK) but led to stabilization of the protein. These results illustrate the importance of regulated protein degradation in the control of mitogenic signaling.  相似文献   

11.
Multiple signaling pathways, including Wnt signaling, participate in animal development, stem cell biology, and human cancer. Although many components of the Wnt pathway have been identified, unresolved questions remain as to the mechanism by which Wnt binding to its receptors Frizzled and Low-density lipoprotein receptor-related protein 6 (LRP6) triggers downstream signaling events. With live imaging of vertebrate cells, we show that Wnt treatment quickly induces plasma membrane-associated LRP6 aggregates. LRP6 aggregates are phosphorylated and can be detergent-solubilized as ribosome-sized multiprotein complexes. Phospho-LRP6 aggregates contain Wnt-pathway components but no common vesicular traffic markers except caveolin. The scaffold protein Dishevelled (Dvl) is required for LRP6 phosphorylation and aggregation. We propose that Wnts induce coclustering of receptors and Dvl in LRP6-signalosomes, which in turn triggers LRP6 phosphorylation to promote Axin recruitment and beta-catenin stabilization.  相似文献   

12.
生物体内的蛋白质降解方式有两种,一种不需要能量,一种需要能量。而泛素/26S蛋白酶体途径便是目前已知的依赖ATP、高效、有高度选择性的蛋白降解途径。它介导了真核生物中80%~85%的蛋白质降解,几乎参与到植物生长发育的各个环节,是植物体内蛋白高效专一降解最重要、最精细的调控机制之一。概述了泛素蛋白酶体途径,重点阐述了泛素结合酶E2和泛素连接酶E3的蛋白结构及其在水稻生长发育、激素信号传导、生物和非生物胁迫响应中的生物学功能及机制,并对进一步研究进行了展望,将有助于揭示泛素/26S蛋白酶体途径在水稻生长发育中的精细调控过程,并为水稻抗逆育种提供了指导和借鉴。  相似文献   

13.
Mathematical reaction-diffusion models have been suggested to describe formation of animal pigmentation patterns and distribution of epidermal appendages. However, the crucial signals and in vivo mechanisms are still elusive. Here we identify WNT and its inhibitor DKK as primary determinants of murine hair follicle spacing, using a combined experimental and computational modeling approach. Transgenic DKK overexpression reduces overall appendage density. Moderate suppression of endogenous WNT signaling forces follicles to form clusters during an otherwise normal morphogenetic program. These results confirm predictions of a WNT/DKK-specific mathematical model and provide in vivo corroboration of the reaction-diffusion mechanism for epidermal appendage formation.  相似文献   

14.
Wilms tumor is a pediatric kidney cancer associated with inactivation of the WT1 tumor-suppressor gene in 5 to 10% of cases. Using a high-resolution screen for DNA copy-number alterations in Wilms tumor, we identified somatic deletions targeting a previously uncharacterized gene on the X chromosome. This gene, which we call WTX, is inactivated in approximately one-third of Wilms tumors (15 of 51 tumors). Tumors with mutations in WTX lack WT1 mutations, and both genes share a restricted temporal and spatial expression pattern in normal renal precursors. In contrast to biallelic inactivation of autosomal tumor-suppressor genes, WTX is inactivated by a monoallelic "single-hit" event targeting the single X chromosome in tumors from males and the active X chromosome in tumors from females.  相似文献   

15.
Wnt-Frizzled (Fz) signaling pathways play recurring important roles during the development and homeostasis of vertebrates and invertebrates. Fz receptors can signal through beta-catenin-dependent and -independent pathways. In Drosophila, Fz and Fz2 are redundant receptors for Wg. In addition, Fz conveys signals through a distinct pathway to organize planar polarization of epithelial structures. We demonstrate that the cytoplasmic sequences of Fz2 and Fz preferentially activate the beta-catenin and planar polarity cascade, respectively. Both receptors activate either pathway, but with different efficiencies. Intrinsic differences in signaling efficiency in closely related receptors might be a general mechanism for generating signaling specificity in vivo.  相似文献   

16.
17.
The phosphorylation of heptahelical receptors by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor kinases (GRKs) is a universal regulatory mechanism that leads to desensitization of G protein signaling and to the activation of alternative signaling pathways. We determined the crystallographic structure of bovine GRK2 in complex with G protein beta1gamma2 subunits. Our results show how the three domains of GRK2-the RGS (regulator of G protein signaling) homology, protein kinase, and pleckstrin homology domains-integrate their respective activities and recruit the enzyme to the cell membrane in an orientation that not only facilitates receptor phosphorylation, but also allows for the simultaneous inhibition of signaling by Galpha and Gbetagamma subunits.  相似文献   

18.
Wnt signaling has recently emerged as a key factor in controlling stem cell expansion. In contrast, we show here that Wnt/beta-catenin signal activation in emigrating neural crest stem cells (NCSCs) has little effect on the population size and instead regulates fate decisions. Sustained beta-catenin activity in neural crest cells promotes the formation of sensory neural cells in vivo at the expense of virtually all other neural crest derivatives. Moreover, Wnt1 is able to instruct early NCSCs (eNCSCs) to adopt a sensory neuronal fate in a beta-catenin-dependent manner. Thus, the role of Wnt/beta-catenin in stem cells is cell-type dependent.  相似文献   

19.
干旱、高盐、极端温度等逆境因子是限制作物产量和品质提高的重要因素.挖掘和利用逆境应答基因资源是改良其抗逆性的前提和基础,对于研究植物抗逆机制具有重要意义.蔗糖非发酵相关蛋白激酶家族2(Sucrose non-fermenting-1-related protein kinase 2,SnRK2)是广泛存在于植物中的一类Ser/Thr蛋白激酶,参与植物体内多种信号途径的转导,在植物的抗逆境生理过程中扮演了重要角色.为了促进小麦SnRK2基因家族的研究,该文对SnRK2基因的结构、抗逆功能、互作蛋白,以及小麦SnRK2基因家族的研究现状进行了阐述.  相似文献   

20.
2C类蛋白磷酸酶(PP2C)是一类丝氨酸/苏氨酸残基蛋白磷酸酶,以单体酶的形式广泛存在于生物体中,参与多种信号途径。大量研究表明,植物PP2C负调控ABA信号转导途径及多种逆境胁迫转导途径。本文对高等植物PP2C的分类及其对多种逆境信号转导途径的调控功能研究进行了综述与展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号