首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary For breeding early heading wheat cultivars with resistance to frost damage which are well adapted to dry areas of West Asia and North Africa, the relationships between winter hardiness, ear primordia development and heading traits, i.e. veernalization requirement, photoperiodic response and narrow-sense earliness, were assessed using a total of 30 genotypes of wheat (Triticum aestivum L.) grown in an experiment in Syria. The results of artificial freezing tests indicated that cultivars with good winter hardiness were to be found only in the winter wheat cultivars which required 50 or more days of vernalization treatment. These winter wheat cultivars did not initiate internode elongation without vernalization even at 95 days after planting. Thus their ear primordia were still underground and were protected from frost injury at this stage. Photoperiodic response and narrow-sense earliness were not associated with winter hardiness and earliness of internode elongation, but were related to the number of days to heading after planting. This indicated the possibility for breeding early heading cultivars with winter hardiness and tiller frost avoidance by combining high vernalization requirement, short narrow-sense earliness and neutral response to photoperiod.  相似文献   

2.
Multivariate analysis of traits determining adaptation in cultivated barley   总被引:6,自引:0,他引:6  
I. Karsai    K. Mészáros    L. Láng    P. M. Hayes  Z. Bedö   《Plant Breeding》2001,120(3):217-222
Thirty‐nine barley varieties of different origin, representing different growth types, were included in a series of experiments aimed at analysing the variability in vernalization response, photoperiod sensitivity and earliness per se and establishing the types of ecoclimatic adaptability using multivariate analysis. In the case of spring barley varieties there was no correlation between any of the three traits. For winter barleys, a negative correlation was found between photoperiod sensitivity and vernalization response and between photoperiod sensitivity and earliness per se. Vernalization response and earliness per se showed a positive correlation. Among the winter barley varieties large variations were apparent in photoperiod sensitivity, vernalization response and earliness per se, which resulted in a tremendous variation in flowering patterns and frost tolerance. Between the spring barley varieties only wider variations in photoperiod sensitivity were detected. Based on the cluster analysis, the 39 varieties could be separated into seven groups. The spring barley varieties were placed in two groups, and the winter barleys in five groups representing different adaptational types. Among these five groups two represented the two opposing extreme combinations of photoperiod sensitivity and vernalization response. The combination of large photoperiod sensitivity and no vernalization response resulted in better frost tolerance than did the combination of photoperiod insensitivity and large vernalization response.  相似文献   

3.
H. Kato    S. Taketa    T. Ban    N. Iriki  K. Murai 《Plant Breeding》2001,120(2):115-120
The adaptability of wheat cultivars to environmental conditions is known to be associated with a vernalization requirement, that is, spring/winter habit. To clarify the genetic effect of the spring habit gene, Vrn‐D1, on heading time in the field, recombinant inbred lines (RILs) with or without the Vrn‐D1 gene were produced from F2 plants of the cross between ‘Nanbukomugi’ and ‘Nishikazekomugi’, non‐carrier and carrier cultivars of this gene, respectively. Using growth chambers with a controlled temperature and photoperiod, three components of heading time, i.e. vernalization requirement, photoperiodic sensitivity and narrow‐sense earliness (earliness per se), were evaluated in each RIL. RILs with the Vrn‐D1 gene (E lines) showed greatly reduced vernalization requirements and slightly shorter narrow‐sense earliness than RILs without Vrn‐D1 (L lines), although no difference in photoperiodic sensitivity was observed between the two groups. RILs were planted at four different sites in Japan and examined for their heading time in the field. E lines headed significantly earlier than L lines at all locations, indicating that the earliness of E lines is stable in various environmental conditions. These results indicated that spring habit caused by Vrn‐D1 gene, as well as narrow‐sense earliness, was responsible for heading time in the field.  相似文献   

4.
Summary Development in wheat is strongly controlled by sensitivity to vernalization and photoperiod, and to a lesser degree by non-vernalizing temperature and intrinsic earliness. A method to measure effect of vernalization in wheats with winter habit is described. Twenty seven wheats with winter habit and eight with spring/facultative habit were studied, comprising breeding lines and cultivars with maturities suited to south-central New South Wales. Effect of vernalization on the development of these wheats was quantified by integrating responses to vernalizing treatments of differing duration. Intrinsic earliness was measured as time for vernalized seedlings to grow to ear emergece in an 18h photoperiod with day/night temperature of 21/16°C, and response to photoperiod as the difference in time to ear emergence between 9 and 18h daylengths. Integrated response to vernalization is sensitive to both cumulative and thresh-hold responses and is applicable to wheats of all habit type. Integrated response to vernalization and intrinsic earliness were positively associated within wheats with winter habit. Wheats were largely of restricted origin, so that there were few allelic differences at Vrn loci to disrupt this association, which suggests intrinsic earliness may modify response to vernalization. Though integrated response to vernalization was measured with artificial treatments, it was strongly associated with ear emergence for wheats with winter habit when grown at a site in New South Wales.  相似文献   

5.
J. Hoogendoorn 《Euphytica》1985,34(2):559-571
Summary Differences in response to photoperiod and vernalization and genetic variation independent of photoperiod and vernalization (earliness per se), affecting time of ear emergence of wheat, were identified in controlled environment experiments with 33 varieties of diverse geographical origin. The results were compared with an analysis of time of ear emergence of 10409 T. aestivum accessions from the USDA Small Grain Collection grown from autumn sowings in Pendleton, Oregon, and spring sowings in Fargo, North Dakota. The effect of differences in photoperiod and vernalization sensitivity on time of ear emergence was similar to the effect of earliness per se, both under controlled environment conditions and in the field. Most of the accessions from low latitude regions reached ear emergence rapidly owing to their insensitivity to photoperiod and vernalization and earliness per se factors accelerating ear emergence. Lateness was common among accessions from Northern Europe, Afghanistan and Turkey, which was due to sensitivity to photoperiod and vernalization, and to earliness per se factors delaying ear emergence. The physiological basis of earliness per se is discussed.  相似文献   

6.
Summary In order to obtain high levels of environmental adaptability in wheat varieties it is essential they flower at times appropriate to particular environmental conditions. The influence of three distinct genetic systems that together determine time of flowering is reviewed here.Vernalization genes are seen to be particularly important to winter wheats for their direct or indirect effects on winter hardiness. Vernalization genes play a minor role in determining flowering time in autumn sown winter wheats but insensitivity is essential if spring sown wheats are to flower.Day length sensitive photoperiod genes play a major role in determining flowering time and adaptability of autumn sown wheats. Insensitivity can promote yield advantages of over 35% in Southern European environments. 15% in Central Europe and offers benefits even in the UK. At present only a single allele of Ppd1 appears to have been introduced into commercial European wheat varieties. The merits of alternative Ppd1 alleles or different loci are discussed.The influence of earliness per se genes that determine flowering time independently of environmental stimuli is less well documented than the effect of photoperiod and vernalization genes. It is likely that genes on chromosomes belonging to groups 2, 3, 4, 6 and 7 may act to modify flowering time independently of environmental stimuli probably by determining numbers of vegetative and floral primordia being initiated or the rate of initiation of the primordia. Earliness per se genes appear to be widespread in European wheats and play a significant role in determining the exact time plants flower.  相似文献   

7.
An understanding of the changes in phenology resulting from durum wheat breeding in Italy can inform breeding objectives for durum wheat improvement in Mediterranean environments. The phenology of a set of 20 durum wheat cultivars, grouped according to their period of release into ‘old’, ‘intermediate’ and ‘modern’, was compared in two sowings (September and May) with or without artificial vernalization. The vernalization treatment and the 6 h range in daylength and wide variation in temperature were responsible for the variation in anthesis date from 817 to 2105 °Cd (base 0 °C) from sowing. Old cultivars had the greatest photoperiod sensitivity and cold requirement, intermediate ones the greatest earliness per se and modern ones the least photoperiod sensitivity and greatest earliness per se. The first substantive effect of breeding in Italy on phenology was achieved with introgression from syriacum germplasm, which increased earliness both by an increase in earliness per se and a reduction in photoperiod sensitivity. The next step, characterized by the introduction of the semi-dwarfing gene Rht1, had a specific effect of reducing photoperiod sensitivity, although the modern group of varieties has a relatively low level of earliness per se, which is fundamental for preserving and increasing the length of the TS-anthesis period. Some quantitative cold requirement still persists in Italian germplasm, although all the cultivars tested are classified as spring types. The main phenological events affected by the changes in anthesis date resulting from breeding depend on the mechanism involved. Variability among cultivars within each group is also described.  相似文献   

8.
To identify homoeologous group-3 chromosomes that carry genes for vernalization, day-length responses, and earliness per se, a series of aneuploid lines (mono-somics and tetrasomics) and chromosome-substitution lines in ‘Chinese Spring’ (CS) were surveyed under different vernalization and day-length regimes in controlled environments. The results indicated that genes on all three chromosomes of group 3 can have striking effects on ear-emergence time. The replacement of CS 3B by its homologues in ‘Lutescens 62’ and ‘Cheyenne’ produced an increased insensitivity to vernalization, while 3B homologues from ‘Ceska Presivka’ gave CS a remarkable sensitivity to vernalization. This provided evidence for multiple allelism at a new Vrn locus on chromosome 3B. A negative association between gene dosage and day-length response was found in CS 3D which was thought to carry a gene for promoting insensitivity to day-length. The behaviour of CS monosomic 3A and CS (Timstein 3A), in reducing numbers of days to heading independently of environmental stimuli, suggested the presence of earliness per se genes on this chromosome.  相似文献   

9.
Summary The inheritance of flowering time and its component processes, vernalization and photoperiod response, were studied in two crosses of subterranean clover (Trifolium subterraneum L.) using a field sowing and four controlled environment sowings with different combinations of vernalization and photoperiod. Time to flowering was under polygenic control and was highly heritable. For both vernalization and photoperiod response, there was dominance for a low response, or earliness. A simple genetic control was indicated for photoperiod response. The results for vernalization response were not clear cut, although the character appeared to be under polygenic control. An interaction between vernalization and photoperiod response was evident in three of the four cultivars studied. This made it impossible to separate the effect of these two component processes and complicated the study of their inheritance. Node of first flower on the main stem was closely related to flowering time and its use led to similar conclusions in the inheritance studies.  相似文献   

10.
M. Lateur  C. Populer 《Euphytica》1994,77(1-2):147-153
Summary The wide diversity of old fruit-tree cultivars originating or introduced into Belgium during the 18 th and 19 th centuries was collected as far as feasible over the last fifteen years at the State Plant Pathology Station in Gembloux. Out of the 2400 accessions now collected, one quarter was recovered from old public collections, and three quarters came from farms or gardens. The initial intention was to screen the material for disease resistance and other characters of agronomic interest with a view to using the best cultivars as breeding parents. However, as the collection developed, genetic resources conservation also became an objectiveper se. The collection presently contains 1150 apple, 850 pear and 300 plum accessions, and smaller numbers of other fruit species. Each accession is evaluated in an experimental orchard for at least ten years. In view of the growing public interest in old fruit-tree cultivars, the Plant Pathology Station has for several years been releasing to the nursery trade the better cultivars emerging from the evaluation, namely nine apple and four plum cultivars, and one peach cultivar. The principal features of the apple cultivars are presented in this paper. Since 1988, old apple and plum cultivars have been being used at the Station as parents in a breeding programme, with both controlled and open pollination. In some instances, old apple cultivars have also been crossed with a modern parent carrying the Vf gene for scab resistance. The preliminary observations on some of these seedlings are presented.  相似文献   

11.
Ear emergence time and response to vernalization were investigated in 12 alien substitution lines in which a pair of chromosomes 5A of recipient spring wheat cultivars was replaced by a pair of chromosomes 5R of Siberian spring rye ‘Onokhoiskaya’. The recipients were 12 spring cultivars of common wheat, each carrying different Vrn genes. Spring rye ‘Onokhoiskaya’ had the Sp1 (now called Vrn-R1) gene for spring growth habit located on chromosome 5R, but its expression was weaker. The Vrn-R1 gene had no effect on growth habit, ear emergence time and response to vernalization in wheat-rye substitution lines. Ears emerged significantly later in the 5R(5A) alien substitution lines than in the recipient wheat cultivars with the Vrn-A1/Vrn-B1/vrn-D1 or Vrn-A1/vrn-B1/Vrn-D1 genotypes. No difference in ear emergence time was found between most of the 5R(5A) alien substitution lines and the cultivars carrying the recessive vrn-A1 gene. The presence of the Vrn2a and Vrn2b alleles at the Vrn2 (now called Vrn-B1) locus located on wheat chromosome 5B was confirmed.The replacement of chromosome 5A by chromosome 5R in wheat cultivars ‘Rang’ and ‘Mironovskaya Krupnozernaya’, which carries the single dominant gene Vrn-A1, converted them to winter growth habit. In field studies near Novosibirsk the winter hardiness of 5R(5A) wheat–rye substitution lines of ‘Rang’ and ‘Mironovskaya Krupnozernaya’ was increased by 20–47% and 27–34%, respectively, over the recurrent parents.  相似文献   

12.
Due to the short growing season in the high northern latitudes, the development of early maturing spring wheat (Triticum aestivum L.) cultivars is important to avoid frost damage which can lower production and quality. We investigated earliness of flowering and maturity, and some associated agronomic traits, using a set of randomly selected high northern latitude adapted spring wheat cultivars (differing in maturity) and their F1 and F2 crosses made in a one-way diallel mating design. The parents, and their F1 and F2 crosses were evaluated under field conditions over 2 years. Anthesis and maturity times were controlled by both vernalization response and earliness per se genes, mainly acting additively. Non-additive genetic effects were more important in controlling grain fill duration, grain yield and plant height. Additive × additive epistatic effects were detected for all traits studied except time to anthesis. Segregation analyses of the F2 populations for time to anthesis indicated the presence of different vernalization response genes. Molecular genetic analyses revealed the presence of Vrn-A1 and Vrn-B1 genes in the parental cultivars. Narrow-sense heritability was medium to high (60–86%) for anthesis and maturity times but low to medium (13–55%) for grain fill duration, plant height and grain yield. Selection for early flowering/maturity in early segregating generations would be expected to result in genetic improvement towards earliness in high latitude spring wheats. Incorporation of the vernalization responsive gene Vrn-B1 in combination with vernalization non-responsive gene Vrn-A1 into spring wheats would aid in the development of early maturing cultivars with high grain yield potential for the high latitude wheat growing regions of the northern hemisphere.  相似文献   

13.
In wheat, a shorter pre-anthesis phase is often associated with increased grain protein content (GPC) but decreased grain yield. Cultivar differences in pre-anthesis development are mainly determined by vernalization requirement, photoperiod sensitivity and earliness per se. This research examines whether cultivar differences in these traits affect GPC, especially whether the three traits can partially explain genotype × environment interactions for GPC. Twenty-four winter wheat and five spring wheat cultivars selected from International Winter Wheat Performance Nursery (IWWPN) trials and 12 winter wheats tested over 2 years in Germany were characterized using the CSM-Cropsim-CERES-Wheat model. The model parameter P1V specifies the cultivar vernalization requirement, P1D the photoperiod response, and P123 earliness per se. Covariance analyses of the IWWPN dataset indicated that about 7% of variation in GPC was explained by cultivar, with another 7% attributable to interactions of cultivar with region, site and year. P1V, P1D and P123 all influenced GPC, but their effects varied with region, site and year. For example, for two regions, the effect of P1V on GPC decreased with latitude. Path analyses using the data from Germany confirmed that GPC increased with earlier anthesis, which was influenced by P1D and P123. Lack of an effect of P1V at this location presumably was due to all cultivars being completely vernalized. The results indicate that efforts to improve GPC could target the three traits to specific populations of environments, which should reduce the large influence of environment on GPC.  相似文献   

14.
The stem elongation phase in wheat [Triticum aestivum (L.)] is considered critical for yield determination. A longer duration of this phase could hypothetically increase grain set and therefore yield. Genetic variation in the relative duration of the stem elongation phase having been reported, the aim was to pinpoint whether this variability was associated with sensitivity to photoperiod, vernalizing temperatures or to differences in intrinsic earliness. Pairs of cultivars identified as having different duration of the stem elongation phase (from the appearance of the first visible node to anthesis) were grown under natural (short) or extended photoperiod, with or without vernalization. Variability in the duration of this phase, in the cultivars analysed, was related to different sensitivity to photoperiod, while differences in the previous phases were related to sensitivity to both photoperiod (though different to the sensitivity of the following phase) and vernalization.  相似文献   

15.
Understanding the genetic factors governing developmental patterns and flowering time in breeding materials is required for the development of new wheat varieties for a specific environment. Iran is among the largest wheat producers in the arid and semi-arid regions of the Middle East and North Africa. The wheat germplasm grown in Iran is either developed nationally or is introduced from the CIMMYT global wheat program. For decades, the wheat breeding program in Iran focused on generating new varieties better able to grow in the predominant Iranian climatic conditions such as humidity at the reproductive stage, high temperature during reproductive stages (terminal heat stress), moderate temperature during the cropping season, and high probability of frost damage during early stages of growth. There have also been sub-programs aimed at developing drought and salinity-tolerant wheat cultivars in Iran. Knowledge of cultivars’ growth habits in Iran is currently limited to flowering in spring-sown nurseries. We identified allelic diversity in loci involved in vernalization response (Vrn) and photoperiod sensitivity (Ppd) in 60 bread wheat cultivars developed in Iran, CIMMYT, or ICARDA. This study revealed that the spring growth habit observed in most of the cultivars is conferred by a combination of recessive vrn-A1 and dominant Vrn-D1, Vrn-B1, and/or Vrn-B3 loci. This implies that most of the cultivars have minimal vernalization requirements for overwintering. Perhaps cold winters, even in the southern regions of Iran, provide sufficient vernalization conditions for cultivars possessing the recessive vrn-A1 allele. The germplasm investigated in this study revealed no evidence indicating selection for or against any specific Vrn and Ppd allele in our wheat breeding program.  相似文献   

16.
Heading time in cereals is a composite character determined by vernalization requirement, photoperiodic sensitivity and narrow-sense earliness. To study the effects of added barley chromosomes on the heading characters in wheat, two sets of wheat-barley chromosome addition lines, i.e., ‘Betzes’ barley chromosomes 2H to 7H added to ’Chinese Spring‘ wheat (CS-Be2H to CS-Be7H) and ‘New Golden’ barley chromosomes 5H and 6H added to ‘Shinchunaga’ wheat (Shi-NG5H, Shi-NG6H), were examined for their heading characters. All barley chromosomes except Be6H affected vernalization requirement and/or narrow-sense earliness in CS or Shi. Be5H chromosome also slightly increased the photoperiodic sensitivity of CS. Shi-NG5H addition line showed significantly decreased vernalization requirement in comparison with Shi, whereas CS-Be5H did not show any difference from CS. The F1 hybrid of the cross, Shi-NG5H × CS-Be5H, exhibited the same level of vernalization insensitivity as the Shi-NG5H addition line, and plants with and without a vernalization requirement segregated in a 1 : 3 ratio in the F2 generation. These observations, together with previous reports, suggest that the decreased vernalization requirement in the Shi-NG5H addition line was caused by the presence of a major dominant gene for spring habit, Sh2, located on the NG5H barley chromosome. Furthermore, this study revealed that the Sh2 gene in barley has a similar but weaker effect than the wheat vernalization insensitive gene, Vrn1, on the vernalization response in wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Merja Veteläinen 《Euphytica》1994,79(1-2):127-136
Summary Utilization of exotic germplasm offers an approach to broaden genetic variability in breeding populations. This study was conducted in order to 1) compare germplasm of exotic origin with adapted Swedish barleys with respect to genetic differences and 2) to evaluate how exotic material affected agronomic performance in complex crosses. Allozyme studies showed the following Nei's gene diversities among parents: 0.13 (adapted parents), 0.16 (landraces) and 0.25 (H. spontaneum). Cluster analysis indicated that parental groups were genetically divergent. Earliness, straw length, number of ears per plant and thousand kernel weight (TKW) were studied. Variation in agronomic traits showed the following pattern: landraces > H. spontaneum > adapted lines. The best sources for earliness were adapted parents and landraces. Mean straw length was greatest in H. spontaneum lines. Number of ears per plant was quite similar in all groups. The highest TKW was among landraces and adapted parents. Hybrids from the complex crossing programme exceeded parents in earliness and TKW. An index composed from the four traits showed the most favorable frequency distributions for adapted parents and hybrids. Both genetic and agronomic studies indicate that new valuable variation from exotic germplasm may be introduced into barley breeding material.  相似文献   

18.
Summary This study sought to identify factors that influence wheat development in the transitional wheat growing zone of northern Syria. Three development factors were studied, intrinsic earliness, and responses to vernalization and to photoperiod. Two sets of wheat were studied, each composed of lines with differing combinations of development factors. Set 1 comprised 20 parental and breeding lines utilized by the CIMMYT/ICARDA facultative and winter wheat breeding program based at Tel Hadya. Set 2 comprised 19 parental and breeding lines utilized by an Australian winter wheat breeding program based at Temora. Field development was recorded in greatest detail at one site. Tel Hadya, using the state of differentiation of the apex of the main tiller of sampled plants. To extend findings, development was also recorded as the time from sowing to ear emergence for later sowings of wheat at Tel Hadya, and in sowings at four other regional sites.The significance of each development factor was tested in multiple regressions that predicted either stage of apical development at Tel Hadya, or time to ear emergence in all trials. It was found that intrinsic earliness was the major factor associated with development, in both sets of wheat. Response to photoperiod had a much smaller and less consistent effect. Response to vernalization had least effect on development, possibly because low temperature in winter delayed development for a longer period than was required to fully vernalize winter wheats. Our results suggested it may not be directly relevant whether spring or winter wheats are grown in the transitional zone of northern Syria. The desired phenotype for the region, of slow development prior to double ridge, then fast development to ear emergence, cannot be simply achieved from combinations of the three development factors. Selection for improved adaptation to the region must continue to rely on direct field observations.  相似文献   

19.
Summary Some 238 landraces from Algeria and Tunisia representative of the mediterraneum typicum durum wheat type and 265 landraces from Syria and Jordan representing the syriacum type were grown in a semi-arid Mediterranean environment of Northern Syria characterized by moderate drought stress. The germplasm types were compared for mean value, level of variation and relationships with grain yield of various morpho-physiological traits possibly usable for indirect selection of best yielding materials. The syriacum germplasm showed higher yield mainly due to greater earliness of cycle, slightly longer grain filling period, shorter stature, lower early growth vigour and higher drought tolerance expressed by a visual score recorded in another, more stressful environment in the region. It also showed lower variation for all morpho-physiological characters except plant glaucousness, for which it was more variable. The wheat types differed not only for architecture but also for optima of individual morpho-physiological traits required to maximize the yield response in the given environment. Higher yield of syriacum materials was attained at same heading and three to four days delayed maturity with respect to average phenology of three well-adapted control cultivars, and it was favoured by increasing number of kernels per spike, early vigour and drought tolerance. Higher yield of mediterraneum typicum landraces was related to heading and maturity dates approaching those of the control cultivars and to increasing kernel weight, early vigour and drought tolerance. Plant stature hardly affected the yield. Both absent and strong glaucousness could confer a yield advantage in syriacum materials.  相似文献   

20.
K. Kato    H. Miura  S. Sawada 《Plant Breeding》1999,118(5):391-394
A homoeologous quantitative trait locus to that of eps5L on barley chromosome 5H was identified in a syntenic region of wheat chromosome 5A. Wheat single chromosome recombinant lines (SCRs) were developed from a cross between ‘Chinese Spring’(‘Cappelle-Desprez’ 5A) and ‘Chinese Spring’(Triticum spelta 5A), these were grown together with the parental controls under different vernalization and photoperiod regimes. The variation for ear emergence time accelerated heading induced by the T. spelta segment indicated an effect associated with the Xcdo412-Xbcd9 interval. Since no differences between the SCRs and controls in responses to vernalization and photoperiod treatments were detected, this effect was identified as an earliness per se gene, Q Eetocs-5 A.2, which may be homoeologous to the eps5L quantitative trait locus of barley. Xbcd926 has been found to be closely linked to the rice flowering time quantitative trait loci, QHd9a or FLTQ2, on chromosome 9, suggesting possible relationships among the quantitative trait loci across wheat, barley and rice genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号