首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Context

Wind erosion is a widespread environmental problem in the world’s arid landscapes, which threatens the sustainability of ecosystem services in these regions.

Objectives

We investigated how wind erosion and key ecosystem services changed concurrently and what major biophysical and socioeconomic factors were responsible for these changes in a dryland area of China.

Methods

Based on remote sensing data, field measurements, and modeling, we quantified the spatiotemporal patterns of both wind erosion and four key ecosystem services (soil conservation, crop production, meat production, and carbon storage) in the Mu Us Sandy Land in northern China during 2000–2013. Linear regression was used to explore possible relationships between wind erosion and ecosystem services.

Results

From 2000 to 2013, wind erosion decreased by as much as 60% and the four ecosystem services all increased substantially. These trends were attributable to vegetation recovery due mainly to government-aided ecological restoration projects and, to a lesser degree, slightly increasing precipitation and decreasing wind speed during the second half of the study period. The maximum soil loss dropped an order of magnitude when vegetation cover increased from 10% to 30%, halved again when vegetation increased from 30 to 40%, and showed little change when vegetation increased beyond 60%.

Conclusions

Our study indicates that vegetation cover has nonlinear and threshold effects on wind erosion through constraining the maximum soil loss, which further affects dryland ecosystem services. These findings have important implications for ecological restoration and ecosystem management in dryland landscapes in China and beyond.
  相似文献   

3.

Context

The local intensity of farming practices is considered as an important driver of biodiversity in agricultural landscapes and its effect on biodiversity has been shown to interact with landscape complexity. But the influence of landscape-wide intensity of farming practices on biodiversity and its combined effect with landscape complexity have been little explored.

Objective

In this study, we tested the interactive effect of the landscape-wide intensity of farming practices and landscape complexity on the local species richness and abundance of farmland wild bee communities.

Methods

We captured wild bees in 96 crop fields and explored the effect of landscape-wide intensity of various farming practices along a gradient of landscape complexity (proportion of semi-natural habitats).

Results

We found that species richness and abundance of wild bees were more positively influenced by landscape complexity in highly insecticide-sprayed landscapes than in less intensively managed landscapes. In contrast, we found that the positive effect of landscape complexity on bee species richness only occurred in landscapes with low nitrogen inputs.

Conclusions

Our study demonstrates the interactive effects of landscape-wide farming intensity and landscape complexity in shaping the diversity of farmland wild bee communities. We conclude that the management of farming intensity at the landscape-scale could mitigate the effects of habitat loss on wild bee decline and would help to maintain pollination services in agricultural landscapes.
  相似文献   

4.

Context

Annual grass invasions often increase the frequency and extent of wildfire. Climate variability and fire history may have modifying effects on invasion success and its link to changing fire regimes.

Objective

Characterize the role of climate variability and fire history in vegetation shifts of an invaded desert landscape.

Method

Pre- and post-fire landscape vegetation greenness were assessed on multiple, independent wildfires in Mojave Desert shrublands using a 34 year record of normalized difference vegetation index (NDVI) derived from 1685 Landsat images and matched with a record of precipitation using linear regression.

Results

Annual maximum NDVI, and its annual variance of monthly maximum values, were significantly higher on post-fire than pre-fire landscapes. Additionally, post-fire landscapes showed greater sensitivity to antecedent precipitation received the previous 4 months than pre-fire and unburned landscapes. Ground surveys of vegetation indicate that post-fire landscapes show little indication of recovery of native shrub cover and density but instead are dominated by the exotic grass red brome (Bromus rubens L.). Increased NDVI sensitivity to precipitation is likely related to the growth of red brome, which dominates burned landscapes. Record precipitation in the fall of 2004 contributed to the record NDVI values in 2005 likely driven by high density of red brome.

Conclusions

The heightened response of post-fire vegetation to extreme and more variable precipitation events appears to be contributing to the emergence of an invasive grass-fire cycle that constrains the re-establishment of fire sensitive native shrubs while reinforcing the dominance of exotic grasses.
  相似文献   

5.

Context

Complex structural connectivity patterns can influence the distribution of animals in coastal landscapes, particularly those with relatively large home ranges, such as birds. To understand the nuanced nature of coastal forest avifauna, where there may be considerable overlap in assemblages of adjacent forest types, the concerted influence of regional landscape context and vegetative structural connectivity at multiple spatial scales warrants investigation.

Objectives

This study determined whether species compositions of coastal forest bird assemblages differ with regional landscape context or with forest type, and if this is influenced by structural connectivity patterns measured at multiple spatial scales.

Methods

Three replicate bird surveys were conducted in four coastal forest types at ten survey locations across two regional landscape contexts in northeast Australia. Structural connectivity patterns of 11 vegetation types were quantified at 3, 6, and 12 km spatial scales surrounding each survey location, and differences in bird species composition were evaluated using multivariate ordination analysis.

Results

Bird assemblages differed between regional landscape contexts and most coastal forest types, although Melaleuca woodland bird assemblages were similar to those of eucalypt woodlands and rainforests. Structural connectivity was primarily correlated with differences in bird species composition between regional landscape contexts, and correlation depended on vegetation type and spatial scale.

Conclusions

Spatial scale, landscape context, and structural connectivity have a combined influence on bird species composition. This suggests that effective management of coastal landscapes requires a holistic strategy that considers the size, shape, and configuration of all vegetative components at multiple spatial scales.
  相似文献   

6.

Context

Landscape-scale studies of ecosystem services (ES) have increased, but few consider land-use history. Historical land use may be especially important in cultural landscapes, producing legacies that influence ecosystem structure, function, and biota that in turn affect ES supply.

Objectives

Our goal was to generate a conceptual framework for understanding when land-use legacies matter for ES supply in well-studied agricultural, urban, and exurban US landscapes.

Methods

We synthesized illustrative examples from published literature in which landscape legacies were demonstrated or are likely to influence ES.

Results

We suggest three related conditions in which land-use legacies are important for understanding current ES supply. (1) Intrinsically slow ecological processes govern ES supply, illustrated for soil-based and hydrologic services impaired by slowly processed pollutants. (2) Time lags between land-use change and ecosystem responses delay effects on ES supply, illustrated for biodiversity-based services that may experience an ES debt. (3) Threshold relationships exist, such that changes in ES are difficult to reverse, and legacy lock-in disconnects contemporary landscapes from ES supply, illustrated by hydrologic services. Mismatches between contemporary landscape patterns and mechanisms underpinning ES supply yield unexpected patterns of ES.

Conclusions

Today’s land-use decisions will generate tomorrow’s legacies, and ES will be affected if processes underpinning ES are affected by land-use legacies. Research priorities include understanding effects of urban abandonment, new contaminants, and interactions of land-use legacies and climate change. Improved understanding of historical effects will improve management of contemporary ES, and aid in decision-making as new challenges to sustaining cultural landscapes arise.
  相似文献   

7.

Context

Human and natural systems interact at multiple scales which are context specific in relation to ecosystem service supply. Scenic beauty is recognised as a cultural ecosystem service whose aesthetic value is perceived at a holistic landscape level.

Objectives

In this study we provide methodological advancements for assessing the relationship between landscape visual character and scenic beauty based on crowdsourced geographic information. The final aim is to demonstrate, through a case study application, an empirical method for mapping the scenic beauty of complex mountain landscapes from the perspective of observers which are realistically exposed to the environment being evaluated.

Methods

We propose a viewshed based approach which relies on visual indicators and the location of visitors retrieved by public image storage analysis. A cluster analysis was used to integrate visual characters of the landscape and visiting users’ preferences.

Results

Four different typologies of landscapes were finally characterized by distinct values of visual indicators. The spatial distribution of the landscape typologies presented a clustered pattern, allowing a regionalization of the landscape characters. The analysis of the visiting users’ provenance revealed that visual scale, naturalness and ephemera attract mainly foreign users, while imageability, complexity and historicity attract mostly domestic and local users.

Conclusions

The combination of crowdsourced images with visual indicators allows a systematic analysis of landscape scenic beauty properties. In all, by understanding how specific landscape characters contributes to aesthetic service provision we provide a tool for facilitating the visualization and interpretation of complex landscape characters.
  相似文献   

8.

Context

Cultural ecosystem services, many of which depend on biodiversity, are recognized as important but seldom quantified biophysically across landscapes. Furthermore, many ecosystem service models are static, and the supply of cultural ecosystem services may be misrepresented if seasonal shifts in biotic communities are ignored.

Objectives

We modeled landscape dynamics of wildflower blooms in a temperate montane landscape to determine (1) how floral resources (wildflower species richness, abundance, timing, and presence of charismatic species) changed over the growing season, (2) how projected wildflower viewing hotspots varied over space and time, and (3) how spatial shifts in floral resources affected potential public access to wildflower viewing.

Methods

Data were collected at 63 sites across a rural-to-urban gradient in the Southern Appalachian Mountains (USA). Generalized linear models were used to identify factors affecting floral resources at two temporal scales. Floral resources were projected across the landscape and hotspots of wildflower viewing were quantified using overlay analysis.

Results

Floral resources were affected by topoedaphic conditions, climate, and surrounding building density and changed seasonally. Seasonal models revealed locational shifts in ecosystem service hotspots, which changed the proportion of hotspots accessible to the public and identified wildflower-viewing opportunities unnoticed by static models.

Conclusion

Relationships between landscape gradients, biodiversity, and ecosystem service supply varied seasonally, and our models identified cultural ecosystem service hotspots otherwise obscured by simple proxies. Landscape models of biodiversity-based cultural ecosystem services should include seasonal dynamics of biotic communities to avoid under- or over-emphasizing the importance of particular locations in ecosystem service assessments.
  相似文献   

9.

Context

Deforestation is a major driver of biodiversity loss, mainly due to agriculture. As rice is among the world’s most important crops, determining how agricultural communities are shaped is imperative. However, few studies have addressed the factors that alter community assembly in human-modified landscapes. We aim to quantify taxonomic, functional, trait and phylogenetic diversity of an anuran community from rice crops on a biodiversity hotspot.

Objectives

Identify local and landscape characteristics responsible for variations in multiple dimensions of anuran diversity in rice crops.

Methods

This study was performed in Tocantins, Brazil. We chose 36 lentic waterbodies on rice fields for anuran sampling. We quantified taxonomic diversity (TD), functional diversity (FD) and phylogenetic diversity (PD) for each waterbody. We also estimated the mean functional differences among species for each trait separately. To evaluate how local and landscape scale features affect anurans, we performed generalized linear mixed models in 500, 1000 and 1500 m buffers around each waterbody.

Results

We found increased PD and FD in waterbodies closer to many other waterbodies and large forest patches. Anuran biomass decreased with increasing distance to the closest waterbody. Trait diversity varied with waterbody abundance and closeness, percentage of bare ground and marginal vegetation.

Conclusions

Our study emphasizes the importance of waterbody and forest patch networks for maintaining high anuran FD and PD in agricultural landscapes. As both metrics are known to be related to ecosystem resilience, understanding these patterns is pivotal for biodiversity management, especially in the tropics, where agricultural expansion is unrelenting and biodiversity is especially unique.
  相似文献   

10.

Context

The provision of multiple ecosystem services (ES) within a landscape is commonly referred to as landscape multifunctionality. Modifying landscapes to increase multifunctionality and reduce trade-offs with concurrent services bears the potential to enhance sustainability in human-dominated landscapes. Assessing landscape multifunctionality is thus crucial for land management and planning, but lack of a clear definition and operationalization of multifunctionality impedes comparisons of different study results.

Objectives

We want to address how elements of the study design affect results of multifunctionality assessments. Furthermore, we want to quantify future multifunctionality in the European Union (EU) and indicate the role of land use change and land use diversity on multifunctionality.

Methods

We analyzed diverging scenarios depicting land use change in the EU between 2000 and 2040 for their effects on landscape multifunctionality. We tested different multifunctionality indicators at various spatial scales based on the modelling of 12 ES and biodiversity indicators.

Results

Particularly the analysis scale determines the interpretation of landscape multifunctionality. Coldspots identified by different indicators are in higher agreement than hotspots. We could not confirm links between land use diversity and landscape multifunctionality. While, at EU scale, multifunctionality slightly increases in future scenarios, agricultural intensification and (peri-)urban growth pose large threats to multifunctional landscapes.

Conclusions

The choice of indicator and analysis scale strongly determine possible interpretations of the results. Rather than focusing on the impacts of land use change on multifunctionality, it is recommended to base land use policy on the impacts of location-specific change on ES supply and demands.
  相似文献   

11.

Context

Interactions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs.

Objectives

We used the mechanistic ecosystem-fire process model FireBGCv2 to model interactions of wildland fire, mountain pine beetle (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola) under current and future climates, across three diverse study areas.

Methods

We assessed changes in tree basal area as a measure of landscape response over a 300-year simulation period for the Crown of the Continent in north-central Montana, East Fork of the Bitterroot River in western Montana, and Yellowstone Central Plateau in western Wyoming, USA.

Results

Interacting disturbances reduced overall basal area via increased tree mortality of host species. Wildfire decreased basal area more than beetles or rust, and disturbance interactions modeled under future climate significantly altered landscape basal area as compared with no-disturbance and current climate scenarios. Responses varied among landscapes depending on species composition, sensitivity to fire, and pathogen and beetle suitability and susceptibility.

Conclusions

Understanding disturbance interactions is critical for managing landscapes because forest responses to wildfires, pathogens, and beetle attacks may offset or exacerbate climate influences, with consequences for wildlife, carbon, and biodiversity.
  相似文献   

12.

Context

Ungulate browsers often alter plant composition and reduce diversity in forests worldwide, yet our ability to predict browse impact on vegetation remains equivocal. Theory suggests, however, that ungulate distribution and foraging impacts are shaped by scale-dependent decisions based on variation in habitat composition and structure encountered within their home range.

Objective

Examine how variation in habitat composition at landscape (259 ha) scales modulates browse impact on vegetation at local scales.

Methods

We measured vegetation richness and abundance in plots with and without white-tailed deer (Odocoileus virginianus) at 23 northern hardwood forest sites distributed across a 6500 km2 area in Pennsylvania, USA. Experimental sites were embedded within landscapes with varying levels of habitat composition and deer densities.

Results

Browsing reduced vegetation richness and cover by as much as 53 and 70%, respectively; however, we found browse impact was modulated by variation in the relative abundance of managed habitats that alter forage availability. Specifically, relative to fenced areas, browse impact weakened and ultimately disappeared as the proportion of forage-rich habitats (e.g., recent harvests) increased to ≥20%. Conversely, vegetation grew increasingly depauperate as landscapes contained greater proportions of forage-poor habitats (i.e., older harvests), particularly when browsed.

Conclusions

Our results underscore how management actions that alter forage availability to ungulates throughout the landscape (i.e. the foodscape) can shape forest-ungulate interactions and suggest a new paradigm whereby managers evaluate and undertake actions at the appropriate spatio-temporal scales to proactively limit the deleterious impact of browsing on plant biodiversity.
  相似文献   

13.

Context

Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management.

Objectives

We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient.

Methods

We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics.

Results

Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats.

Conclusions

Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat.
  相似文献   

14.

Context

North American grassland songbird populations have declined significantly due to habitat loss and fragmentation. Understanding the influence of the surrounding landscape on prairie fragment occupancy is vital for predicting the fate of grassland birds in these heavily altered landscapes.

Objectives

We examined the relative importance of local and landscape variables on grassland bird occupancy of prairie fragments using a focal-patch study. We also investigated the spatial scale at which landscape variables were most influential.

Methods

We surveyed birds on 29 unplowed prairie fragments in western Minnesota and eastern North and South Dakota. We quantified local habitat on the fragment using vegetation surveys and aerial photographs and the landscape surrounding the fragment out to 4 km using aerial photographs. We analyzed occupancy using multi-model approaches applied to multiple logistic regression.

Results

Of 38 species encountered, nine were neither too rare nor too abundant to be analyzed. Predictors of patch occupancy were unique for each bird species, yet general patterns emerged. For eight species, landscape variables were more important than local variables. Mostly, those landscape variables measured configuration (e.g., edge density) and not composition (e.g., percent cover of a particular matrix element). Landscape effects were mostly from variables measured at the greatest extents from the prairie fragment.

Conclusions

Using a focal-patch study design we demonstrated the importance of the surrounding landscape, often out to 4 km from the fragment edge, on prairie occupancy by grassland birds. Effective management of grassland songbirds will require attention to the landscape context of prairie fragments.
  相似文献   

15.

Purpose

Wildlife conservation requires understanding how landscape context influences habitat selection at spatial scales broader than the territory or habitat patch.

Objectives

We assessed how landscape composition, fragmentation, and disturbance affected occurrence and within-season site-fidelity of a declining grassland songbird species (Henslow’s Sparrow, Ammodramus henslowii).

Methods

Our study area encompassed eastern Kansas (USA) and North America’s largest remaining tracts of tallgrass prairie. We conducted 10,292 breeding-season point-count surveys over 2 years, and related occurrence and within-season site-occupancy dynamics of sparrows to landscape attributes within 400-, 800-, and 1600-m radii.

Results

Sparrows inhabited < 1% of sites, appearing and disappearing locally within and between breeding seasons. Early in spring, sparrows responded to landscape attributes most strongly within 400-m radii, settling in areas containing > 50% unburned prairie. Later in summer, sparrows responded to landscape attributes most strongly within 800-m radii, settling in areas containing > 50% unfragmented prairie, including sites burned earlier the same year. Sparrows avoided landscapes containing woody vegetation, disappeared from hayfields after mowing, and were most likely to inhabit landscapes containing Conservation Reserve Program (CRP) fields embedded within rangeland.

Conclusions

Landscape context influenced habitat selection at spatial scales broader than both the territory and habitat patch. Protecting contiguous prairies from agricultural conversion and woody encroachment, promoting CRP enrollment, and maintaining portions of undisturbed prairie in working rangelands each year are critical to reversing the conservation crisis in North America’s remaining grasslands. As landscape change alters natural areas worldwide, effective conservation requires suitable conditions for threatened species at multiple spatial scales.
  相似文献   

16.

Context

Cultural landscapes provide essential ecosystem services to local communities, especially in poor rural settings. However, potentially negative impacts of ecosystems—or disservices—remain inadequately understood. Similarly, how benefit–cost outcomes differ within communities is unclear, but potentially important for cultural landscape management.

Objectives

Here we investigated whether distinct forest ecosystem service–disservice outcomes emerge within local communities. We aimed to characterize groups of community members according to service–disservice outcomes, and assessed their attitudes towards the forest.

Methods

We interviewed 150 rural households in southwestern Ethiopia about locally relevant ecosystem services (provisioning services) and disservices (wildlife impacts). Households were grouped based on their ecosystem service–disservice profiles through hierarchical clustering. We used linear models to assess differences between groups in geographic and socioeconomic characteristics, as well as attitudes toward the forest.

Results

We identified three groups with distinct ecosystem service–disservice profiles. Half of the households fell into a “lose–lose” profile (low benefits, high costs), while fewer had “lose–escape” (low benefits, low costs) and “win–lose” (high benefits, high costs) profiles. Location relative to forest and altitude explained differences between the “lose–escape” profile and other households. Socioeconomic factors were also important. “Win–lose” households appeared to be wealthier and had better forest use rights compared to “lose–lose” households. Attitudes towards the forest did not differ between profiles.

Conclusions

Our study demonstrates the importance of disaggregating both ecosystem services and disservices, instead of assuming that communities receive benefits and costs homogenously. To manage cultural landscapes sustainably, such heterogeneity must be acknowledged and better understood.
  相似文献   

17.

Context

Many aquatic communities are linked by the aerial dispersal of multiple, interacting species and are thus structured by processes occurring in both the aquatic and terrestrial compartments of the ecosystem.

Objectives

To evaluate the environmental factors shaping the aquatic macroinvertebrate communities associated with tank bromeliads in an urban landscape.

Methods

Thirty-two bromeliads were georeferenced to assess the spatial distribution of the aquatic meta-habitat in one city. The relative influence of the aquatic and terrestrial habitats on the structure of macroinvertebrate communities was analyzed at four spatial scales (radius = 10, 30, 50, and 70 m) using redundancy analyses.

Results

We sorted 18,352 aquatic macroinvertebrates into 29 taxa. Water volume and the amount of organic matter explained a significant part of the taxa variance, regardless of spatial scale. The remaining variance was explained by the meta-habitat size (i.e., the water volume for all of the bromeliads within a given surface area), the distance to the nearest building at small scales, and the surface area of buildings plus ground cover at larger scales. At small scales, the meta-habitat size influenced the two most frequent mosquito species in opposite ways, suggesting spatial competition and coexistence. Greater vegetation cover favored the presence of a top predator.

Conclusions

The size of the meta-habitat and urban landscape characteristics influence the structure of aquatic communities in tank bromeliads, including mosquito larval abundance. Modifications to this landscape will affect both the terrestrial and aquatic compartments of the urban ecosystem, offering prospects for mosquito management during urban planning.
  相似文献   

18.

Context

The ability to detect ecological networks in landscapes is of utmost importance for managing biodiversity and planning corridors.

Objectives

The objective of this study was to evaluate the information provided by a synthetic aperture radar (SAR) image for landscape connectivity modeling compared to aerial photographs (APs).

Methods

We present a novel method that integrates habitat suitability derived from remote sensing imagery into a connectivity model to explain species abundance. More precisely, we compared how two resistance maps constructed using landscape and/or local metrics derived from AP or SAR imagery yield different connectivity values (based on graph theory), considering hedgerow networks and forest carabid beetle species as a model.

Results

We found that resistance maps using landscape and local metrics derived from SAR imagery improve landscape connectivity measures. The SAR model is the most informative, explaining 58% of the variance in forest carabid beetle abundance. This model calculates resistance values associated with homogeneous patches within hedgerows according to their suitability (canopy cover density and landscape grain) for the model species.

Conclusions

Our approach combines two important methods in landscape ecology: the construction of resistance maps and the use of buffers around sampling points to determine the importance of landscape factors. This study was carried out through an interdisciplinary approach involving remote sensing scientists and landscape ecologists. This study is a step forward in developing landscape metrics from satellites to monitor biodiversity.
  相似文献   

19.

Context

Encroachment of woody vegetation represents a significant global threat to biodiversity in grasslands, but practices used to reverse encroachment are rarely evaluated comprehensively. Several factors may drive encroachment, such as land use history, alteration of disturbance regimes, and local environment, but their relative importance is poorly understood. Another complicating factor is that encroachment may proceed via positive feedbacks that result in thresholds, beyond which its reversal is difficult.

Objectives

We ask what impact reintroducing frequent fire has on encroachment relative to the influences of landscape context and historical vegetation. We investigate whether woody cover frequency distributions suggest that feedbacks reinforce encroachment after a threshold of woody cover is surpassed.

Methods

We analyze aerial photos in glade grasslands in Missouri, USA, to assess encroachment patterns over a 75-year period. Fire was excluded from this landscape for the first 45 years, and then reintroduced at varying frequencies in the last 30 years.

Results

Woody vegetation cover increased sevenfold from 1939 to 2014 overall. After the reintroduction of prescribed fire, woody cover stayed approximately constant in burned glades, but continued increasing in unburned glades. Woody cover followed bimodal frequency distributions in burned areas. Fire-tolerant vegetation tended to encroach near historically wooded areas, while fire-sensitive vegetation responded more to fire history.

Conclusions

Altered disturbance regimes, in addition to numerous recognized drivers, can cause ecosystem state changes associated with losses to biodiversity. Conducting management early in the encroachment process and restoring grasslands at broad landscape scales may help counteract local feedbacks that promote encroachment.
  相似文献   

20.

Context

Landscape graphs are widely used to model connectivity and to support decision-making in conservation planning. Compartmentalization methods applied to such graphs aim to define clusters of highly interconnected patches. Recent studies show that compartmentalization based on modularity is suitable, but it applies to non-weighted graphs whereas most landscape graphs involve weighted nodes and links.

Objectives

We propose to adapt modularity computation to weighted landscape graphs and to validate the relevance of the resulting compartments using demographic or genetic data about the patches.

Methods

A weighted adjacency matrix was designed to express potential fluxes, associating patch capacities and inter-patch distances. Eight weighting scenarios were compared. The statistical evaluation of each compartmentalization was based on Wilks’ Lambda. These methods were performed on a grassland network where patches are documented by annual densities of water voles in the Jura massif (France).

Results

The scenarios in which patch capacity is assigned a small weight led to the more relevant results, giving high modularity values and low Wilks’ Lambda values. When considering a fixed number of compartments, we found a significant negative correlation between these two criteria. Comparison showed that compartments are ecologically more valid than graph components.

Conclusions

The method proposed is suitable for designing ecologically functional areas from weighted landscape graphs. Maximum modularity values can serve as a guide for setting the parameters of the adjacency matrix.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号