首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
云南葡萄产区葡萄炭疽病病原鉴定及致病力分析   总被引:11,自引:6,他引:5  
为了明确引起云南葡萄产区炭疽病的病原种类,利用形态鉴定和特异性引物分子检测相结合的方法对从云南省主要葡萄产区采集的60株炭疽病菌菌株进行了鉴定。葡萄炭疽病菌菌株的菌落形态和生长速率与对照菌株尖孢炭疽菌Colletotrichum acutatum差异不明显,但其分生孢子大小显著小于尖孢炭疽菌,附着胞深褐色,球形或不规则形。胶孢炭疽菌Colletotrichum gloeosporioides特异性引物CgInt/ITS4从供试葡萄炭疽病菌菌株基因组DNA中扩增出1条约500 bp的特异性条带,而尖孢炭疽菌特异性引物CaInt2/ITS4对葡萄炭疽病菌无扩增条带。研究表明,引起云南葡萄主产区炭疽病的病原为胶孢炭疽菌;供试胶孢炭疽菌对红提葡萄均有致病力,但菌株致病力差异较大,对番茄和草莓存在交叉侵染的能力,且对多菌灵的敏感性较尖孢炭疽菌高。  相似文献   

2.
Strawberry, Fragaria × ananassa, and leatherleaf fern, Rumohra adiantiformis, are two important crops in Costa Rica. One of the most severe diseases affecting these crops is anthracnose, caused by members of the fungal genus, Colletotrichum (teleomorph; Glomerella). Eighty single-spore isolates from strawberry and leatherleaf fern were identified as Colletotrichum acutatum by species-specific PCR, and were further characterised by Universally Primed PCR (UP-PCR) fingerprinting analysis, and sequence analysis of the ribosomal internal transcribed spacer (ITS) region. Morphological differences, genotypic variation revealed by UP-PCR fingerprinting analysis, and a single sequence polymorphism within the ITS2 region were found between the isolates from strawberry and leatherleaf fern, respectively. The UPGMA cluster analysis of the fingerprints clearly separated the isolates derived from strawberry and leatherleaf fern into two different clusters. Pathogenicity assays on detached strawberry fruits confirmed the apparent difference between the two groups of isolates. It is therefore suggested that the pathogens responsible for strawberry anthracnose fruit rot and leatherleaf fern anthracnose in Costa Rica, belong to two distinct subpopulations of C. acutatum.  相似文献   

3.
In the strawberry crop area of Tucumán (north-west Argentina) the three species of Colletotrichum causing anthracnose disease (C. acutatum, C. fragariae and C. gloeosporioides) were detected. Among all isolates characterized, one of them identified as C. acutatum (M11) and another as C. fragariae (F7) were selected due to their conspicuous interaction with the strawberry cultivar Pájaro. Whereas isolate M11 produced a strong compatible interaction in cv. Pájaro with clear disease symptoms (DSR = 5.0), the isolate F7 brought about a typical incompatible interaction (DSR = 1.0). When plants of cv. Pájaro were inoculated with F7 prior to the inoculation with M11, the former avirulent strain prevented the growth of the latter virulent pathogen. Experimental evidence indicated that the time elapsed between the first inoculation with the avirulent pathogen and the second inoculation with the virulent one was crucial to inhibit the growth of the latter. The growth of F7 on the plant without provoking damage and the fact that there was no in vitro antagonistic effect between the pathogens, suggests that the avirulent strain triggers a plant defensive response against M11. The defense response was further confirmed by the detection of an early oxidative burst occurring within 4 h after the first inoculation and by the observation of anatomical changes associated with defense mechanisms that lasted 50 days after the inoculation with F7. Results obtained support the hypothesis that the plant resistance against the virulent strain M11 is elicited by one or more diffusible(s) compound(s) produced by the avirulent strain F7.  相似文献   

4.
为了解橡胶树2种炭疽病菌的侵染结构发育分化过程,采用平板菌落生长速率法测定了3株胶孢炭疽菌Colletotrichum gloeosporioides和3株尖孢炭疽菌C.acutatum的菌丝生长速率,测量其分生孢子大小,显微观察2种炭疽菌在疏水表面诱导下侵染结构的发育分化过程。结果表明,胶孢炭疽菌菌丝生长速率为0.96~1.36 cm/d,显著高于尖孢炭疽菌的菌丝生长速率0.72~0.89 cm/d,但二者分生孢子大小无显著差异。在疏水表面诱导下,2种炭疽菌分生孢子在接种2~6 h后开始萌发,12 h孢子萌发率为71.70%~88.05%,13~16 h开始分化附着胞,24 h附着胞形成率为48.99%~70.74%,36 h菌丝诱发形成大量附着枝,48 h后分生孢子产生的次生菌丝也可诱发形成附着枝,附着枝呈圆形、姜瓣形、梨形或不规则形。分生孢子极易产生,可在菌丝顶端成簇或菌丝侧面排列产生,也可由分生孢子形成的芽管产生,或在芽管分化附着胞过程分枝形成分生孢子;附着胞多着生于芽管顶端,少数附着胞顶端可继续萌发类似短芽管结构,再次分化形成可黑色化的次级附着胞。表明橡胶树2种炭疽菌不同菌株间分生孢子萌发时间、孢子萌发率、附着胞形成时间和形成率有一定差异,但种间无明显差异;橡胶树炭疽菌分生孢子极易形成,在疏水表面容易分化形成附着胞和附着枝,说明具有极强的适生性。  相似文献   

5.
Colletotrichum isolates (457) were collected from strawberry plant tissues with and without typical anthracnose symptoms and from symptomless weeds in 19 Belgian strawberry fields. The isolates were characterized based on genetic, morphological and pathological features. Isolates were classified according to rDNA‐ITS sequencing: 97% of 211 representative isolates were C. acutatum, 2%C. gloeosporioides and 1%C. coccodes. The C. acutatum isolates belonged to the intraspecific groups A2 (33%), A3 (5%), A4 (50%), A5 (3%) and A7 (6%). Differences in spore morphology, growth rate and colony colour of a selection of 146 isolates confirmed the genetic grouping. Multiple Colletotrichum genotypes were detected in the same field. There was no association between the most common genotypes and geographic origin, presence or absence of symptoms, nor plant species or plant part. Representative Belgian Colletotrichum isolates were used in pathogenicity tests, together with European and American reference isolates. The C. acutatum A2 and the Belgian C. gloeosporioides isolates were the most aggressive on fruits, followed by C. acutatum A3, A4, A5, A7 and C. coccodes isolates. When inoculated into crowns, C. acutatum A2, A5 and American C. gloeosporioides isolates were the most aggressive, followed by C. acutatum A3 isolates. The A4 and A7 isolates and all European C. gloeosporioides isolates were non‐pathogenic on crowns. These data indicate that an unusually diverse Colletotrichum population is present in Belgium. The traditional differentiation between C. acutatum and C. gloeosporioides as causal agents of fruit and crown rot, respectively, proved not to be valid in Belgian strawberry fields.  相似文献   

6.
In October 2001, anthracnose caused by Colletotrichum acutatum Simmonds ex Simmonds was found on three-leaf akebia (Akebia trifoliata) in Saitama, Japan. This is the first report of anthracnose on three-leaf akebia caused by C. acutatum.  相似文献   

7.
In recent years, anthracnose has become a significant disease affecting avocado fruit in the state of Michoacan, Mexico, where it significantly reduces fruit quality and commercial yield. Anthracnose has been assumed to involve Colletotrichum gloeosporioides and C. acutatum as causal agents. However, because of the increasing incidence of anthracnose, a more precise identification of the Colletotrichum spp. involved in this disease has become desirable. During the years 2004–2007, avocado fruits of different sizes exhibiting brown‐black and reddish spots on the pericarp and soft rot in the mesocarp, were gathered from orchards in nine counties. Fungal isolates were cultured on potato dextrose agar, and among these, 31 were selected for molecular, morphological and pathogenicity analyses. The molecular approaches used sequence typing of the internal transcribed spacer region and the partial nuclear large ribosomal subunit, allowing the unequivocal identification of C. gloeosporioides (71%), C. acutatum (16%) and C. boninense (13%). This last species has not been previously reported as being associated with anthracnose symptoms in avocado fruits anywhere in the world. Various morphological characteristics such as the size and shape of conidia were determined, as well as the conidial mass colour. Pathogenicity tests performed with all three species were conducted by inoculating healthy fruits. In each case, identical symptoms developed within 3 days of inoculation. Knowledge of the Colletotrichum populations in the Michoacan state, including the newly encountered avocado pathogen C. boninense, will facilitate further studies addressing the relationships between these Colletotrichum spp. and their avocado host.  相似文献   

8.
为明确引起四川省红叶石楠炭疽病的病原菌及其潜在侵染源,采集疑似感染炭疽病的典型病叶进行分离获得纯化病原菌菌株,从中随机选取菌株HYSN3制成分生孢子悬浮液和菌饼,以无伤、刺伤、剪伤3种方式进行接种,筛选出效果最好的接种方式进行致病性测定,结合形态学特征与多基因序列分析将病原菌鉴定到种,并采用筛选出的接种方式将分离自其它19种寄主的23株炭疽菌接种到红叶石楠上,明确其潜在侵染源。结果表明,从红叶石楠病叶中共纯化得到14株菌株,基于形态特征和显微初步鉴定结果,从中选择8株代表菌株进行进一步鉴定。3种接种方式中,以刺伤后接种菌株HYSN3菌饼的效果最好,可用于致病性测定。基于形态学特征、致病性测定和多基因序列分析结果,将病原菌鉴定为胶孢炭疽菌Colletotrichum gloeosporioides(5株)、喀斯特炭疽菌C.karstii(1株)和暹罗炭疽菌C. siamense(2株),表明四川省红叶石楠炭疽病是由多种病原菌复合侵染引起的。来自其它寄主的23株炭疽菌菌株都能侵染红叶石楠,但致病力强弱不同,附近受炭疽菌侵染的植物都有可能成为红叶石楠炭疽病的潜在侵染源,园林植物养护过程中需予以一定的重视。  相似文献   

9.
The aim of the present study was to analyse the genetic and pathogenic variability of Colletotrichum spp. isolates from various organs and cultivars of mango with anthracnose symptoms, collected from different municipalities of São Paulo State, Brazil. Colletotrichum gloeosporioides isolates from symptomless citrus leaves and C. acutatum isolates from citrus flowers with post‐bloom fruit drop symptoms were included as controls. Sequencing of the ITS region allowed the identification of 183 C. gloeosporioides isolates from mango; only one isolate was identified as C. acutatum. amova analysis of ITS sequences showed larger genetic variability among isolates from the same municipality than among those from different populations. fAFLP markers indicated high levels of genetic variability among the C. gloeosporioides isolates from mango and no correlation between genetic variability and isolate source. Only one C. gloeosporioides mango isolate had the same genotype as the C. gloeosporioides isolates from citrus leaves, as determined by ITS sequencing and fAFLP analysis. Pathogenicity tests revealed that C. gloeosporioides and C. acutatum isolates from either mango or citrus can cause anthracnose symptoms on leaves of mango cvs Palmer and Tommy Atkins and blossom blight symptoms in citrus flowers. These outcomes indicate a lack of host specificity of the Colletotrichum species and suggest the possibility of host migration.  相似文献   

10.
Colletotrichum acutatum is a major plant pathogen which infects a broad range of host plants. Extensive research has been carried out on C. acutatum populations affecting various hosts in different geographical locations, showing a considerable genotypic and phenotypic diversity. Anthracnose, caused by Colletotrichum spp., is the major disease of cultivated strawberry, Fragaria x ananassa. In the present study, the phylogenetic relationships within a worldwide sample of fifty-two C. acutatum isolates collected from different strawberry cultivars have been established, by using ITS sequence analyses. Twenty-nine isolates clustered in the molecular group A2, in which seventeen out of eighteen Spanish isolates were included; this may indicate that the group A2 is the key group in Spain. The molecular polymorphism among C. acutatum isolates was determined by southern-blot hybridisation using a telomeric DNA probe. Results indicated that the minimum number of estimated chromosomes ranges between six and nine. The molecular characterisation of C. acutatum isolates was completed using the Pulsed-Field Gel Electrophoresis (PFGE) technique that resolved from six to nine chromosomal bands, this number being coincident with the number of chromosomes obtained by telomeric fingerprinting. The minimum total genome size was estimated to range from 29 to 36 Mb. Comparison of karyotypes patterns and southern-blot analysis demonstrated a high level of molecular polymorphism among C. acutatum isolates from different origins.  相似文献   

11.
Tracing Latent Infection of Colletotrichum acutatum on Strawberry by PCR   总被引:1,自引:0,他引:1  
Colletotrichum acutatum, a quarantine organism on strawberries in the EU, was found in Finland for the first time in 2000. Concern about rapid, unnoticeable spread of this pathogen has necessitated studies to find methods with which the quiescent fungus infection can be detected in imported, cold-stored strawberry plant material. Successful detection of C. acutatum in strawberry tissues by polymerase chain reaction (PCR) is dependent on the method of DNA extraction used. Good-quality nucleic acid, free of PCR inhibitors, was successfully prepared by slightly modifying the DNA extraction method of a commercially available kit. Species-specific primers, previously described in the literature, were successfully used in the PCR reaction. C. acutatum was detected by PCR both on symptomatic and asymptomatic plant parts and in artificially and naturally infected strawberry tissues. Positive PCR results were obtained from ripe and unripe berries, runners, petioles and different parts of crowns. The data demonstrate that the PCR technique can be used to detect C. acutatum in strawberry tissue even in plant parts that do not show visible symptoms.  相似文献   

12.
Simple diagnosis by ethanol immersion (SDEI) to detect Glomerella cingulata was used to detect three other fungi that also cause latent infection of strawberry plants. Signs on strawberry leaves with asymptomatic latent infection by Colletotrichum acutatum became visible using SDEI. Salmon-pink conidial masses were produced in the acervuli on the treated leaves 5 days after incubation at 28°C. In the case of Dendrophoma obscurans, pycnidia with amber conidial masses formed 5 days after incubation at 28°C. The pycnidia were observed mainly on the ribs, and conidial masses exuded from the ostiole. These macroscopic conidial masses were similar to those of G. cingulata and C. acutatum. When water was dripped onto a lesion caused by D. obscurans, the pycnidia exuded white filamentous conidial masses, making the distinction of D. obscurans from G. cingulata or C. acutatum. On petioles with latent infection by Fusarium oxysporum f. sp. fragariae, white aerial hyphae grew out from the vascular tissues on the cut surface 3 days after incubation at 28°C and were easily observed by eye or with a loupe. Thus, SDEI was also useful for diagnosing latent infection of strawberry plants by C. acutatum, D. obscurans, and F. oxysporum f. sp. fragariae.  相似文献   

13.
Six inoculation techniques were compared for their ability to evaluate resistance toColletotrichum acutatum of five strawberry cultivars. Inoculation by dipping the whole cold stored plants in a suspension of conidia adjusted to 2.106 conidia ml–1 made it possible to screen cultivars resistant to crown rot at 28 days after inoculation. Using the dipping technique, 44 strawberry cultivars were evaluated for their resistance to one strain ofC. acutatum, 1267b. Twelve of them did not show wilt symptoms and could be classified as resistant. When another strain ofC. acutatum, 494a, was inoculated to seven cultivars, all of them including Dover, resistant to 1267b, showed wilt symptoms. This result showed the importance of investigations on genotype × isolate interactions to conduct an efficient breeding programme for screening resistance toC. acutatum.  相似文献   

14.
Trichoderma isolates are known for their ability to control plant pathogens. It has been shown that various isolates of Trichoderma, including T. harzianum isolate T-39 from the commercial biological control product TRICHODEX, were effective in controlling anthracnose (Colletotrichum acutatum) and grey mould (Botrytis cinerea) in strawberry, under controlled and greenhouse conditions. Three selected Trichoderma strains, namely T-39, T-161 and T-166, were evaluated in large-scale experiments using different timing application and dosage rates for reduction of strawberry anthracnose and grey mould. All possible combinations of single, double or triple mixtures of Trichoderma strains, applied at 0.4% and 0.8% concentrations, and at 7 or 10 day intervals, resulted in reduction of anthracnose severity; the higher concentration (0.8%) was superior in control whether used with single isolates or as a result of combined application of two isolates, each at 0.4%. Only a few treatments resulted in significant control of grey mould. Isolates T-39 applied at 0.4% at 2 day intervals, T-166 at 0.4%, or T-161 combined with T-39 at 0.4% were as effective as the chemical fungicide fenhexamide. The survival dynamics of populations of the Trichoderma isolates (T-39, T-105, T-161 and T-166) applied separately was determined by dilution plating and isolates in the mixtures calculated according to the polymerase chain reaction (PCR) using repeat motif primers. The biocontrol isolates were identified to the respective species T. harzianum (T-39), T. hamatum (T-105), T. atroviride (T-161) and T. longibrachiatum (T-166), according to internal transcribed spacer sequence analysis.  相似文献   

15.
The 5.8S ribosomal gene and the flanking internal transcribed spacers (ITS) 1 and 2 from Colletotrichum graminicola isolates causing anthracnose disease of Agrostis palustris and Poa species were sequenced. Although bootstrap support was not high, two major groups were observed with both UPGMA and parsimony algorithms, one containing isolates from A. palustris and another with isolates from Poa spp. The ITS sequences were also compared with those of isolates of C. graminicola and C. sublineolum from Sorghum spp., Zea mays and Rottboellia cochinchinesis as well as other Colletotrichum species. Except for one isolate from P. annua in Texas, the ITS1 and ITS2 sequences of turfgrass isolates always grouped separately from C. graminicola or C. sublineolum from non-turfgrass hosts with high bootstrap support. ITS sequences of the turfgrass isolates were more similar to those of other species of Colletotrichum, such as C. coccodes and C. dematium, than they were to C. graminicola isolates from other hosts. Turfgrass isolates have ITS sequences which are not identical to those of isolates from Zea mays and Sorghum species demonstrating diversity among fungi conventionally classified as C. graminicola.  相似文献   

16.
Chili anthracnose is caused by Colletotrichum species mostly associated with the acutatum, truncatum and gloeosporioides complexes. Since 2009 the Colletotrichum taxonomy has been extensively revised based on multigene phylogenetics, which has had a large impact on the number of species known to cause anthracnose disease of chili. This review discusses (i) the taxonomy of Colletotrichum spp. infecting chili, and (ii) the impact of Colletotrichum pathotypes on breeding for resistance to anthracnose. To date, 24 Colletotrichum species have been identified as pathogens of chili anthracnose, with the three main pathogens being C. scovillei, C. truncatum and C. siamense. Identification of several pathotypes within these three Colletotrichum species, particularly pathotypes that can overcome resistance in the related Capsicum species, Ca. chinense and Ca. baccatum, will be of major concern to plant breeders as they develop resistant chili genotypes from the transfer of resistance genes from these Capsicum species into Ca. annuum. Accurate identification of the Colletotrichum species causing anthracnose and improved understanding of the biology of the Colletotrichum species and their interaction with the host will enable the application of improved integrated disease management techniques.  相似文献   

17.
Leaf spots were found on Christmas rose (Helleborus niger) in Yamagata Prefecture, Japan, in October 2006. The morphology of the causal fungus was very close to that of Colletotrichum truncatum. Classifying the species from the sequences of the internal transcribed spacer regions of ribosomal DNA was inconclusive, and the isolates were identified only as Colletotrichum sp. Artificial inoculation confirmed the pathogenicity of isolates to the host plant and some legumes. We propose the name anthracnose of Christmas rose for this disease by Colletotrichum sp.  相似文献   

18.
A Colletotrichum sp. was isolated from water-soaked lesions on sansevieria (Sansevieria trifasciata Prain cv. Laurentii) in Japan. Classifying the species only from the morphology of the fungus was difficult; therefore, host range was tested and the ribosomal DNA ITS2 region was phylogenetically analyzed. The fungus was pathogenic only on sansevieria among 20 test plants belonging to 11 families. In a phylogenetic analysis with the neighbor-joining method, the two isolates used formed a single-isolate clade. The fungus is thus proposed to be a new species, Colletotrichum sansevieriae. This report is the first of anthracnose on sansevieria.  相似文献   

19.
Twenty-three isolates of Colletotrichum gloeosporioides, five isolates of C. acutatum, two isolates of C. capsici and six isolates of C. boninense associated with anthracnose disease on coffee (Coffea spp.) in Vietnam were identified based on morphology and DNA analysis. Phylogenetic analysis of DNA sequences from the internal transcribed spacer region of nuclear rDNA and a portion of mitochondrial small subunit rRNA were concordant and allowed good separation of the taxa. We found several Colletotrichum isolates of unknown species and their taxonomic position remains unresolved. The majority of Vietnamese isolates belonged to C. gloeosporioides and they grouped together with the coffee berry disease (CBD) fungus, C. kahawae. However, C. kahawae could be distinguished from the Vietnamese C. gloeosporioides isolates based on ammonium tartrate utilization, growth rate and pathogenicity. C. gloeosporioides isolates were more pathogenic on detached green berries than isolates of the other species, i.e. C. acutatum, C capsici and C. boninense. Some of the C. gloeosporioides isolates produced slightly sunken lesions on green berries resembling CBD symptoms but it did not destroy the bean. We did not find any evidence of the presence of C. kahawae in Vietnam.  相似文献   

20.
Rumple is a serious peel collapse of Primofiori lemons in the southeast of Spain with an unresolved aetiology. Symptoms typically occur on fruits at ripening under wet conditions as dark sunken lesions producing premature fruit drop and damaged fruits unacceptable for fresh commercialization. A total of 16 Colletotrichum spp. isolates established from rumple-affected lemons collected during the autumn of 2007 from two different orchards were characterized by molecular and phenotypic assays and compared with reference isolates. Species-specific PCR reactions using β-tubulin 2 nucleotide sequences showed Colletotrichum gloeosporioides to predominate (81.5%) with limited occurrence of C. acutatum (18.75%). Among the C. gloeosporioides isolates, five (38.5%) showed benomyl resistance and eight (61.5%) were highly sensitive to the fungicide. The limited occurrence of C. acutatum could be related to factors such as the presence of both species on the same fruit, unfavourable meteorological conditions and low disease incidence. This work reveals an association of C. gloeosporioides and C. acutatum isolates with rumple disease of lemons and expands the range of C. acutatum on citrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号