首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 421 毫秒
1.
【目的】丝裂原活化蛋白质激酶激酶激酶(Mitogen-activated protein kinase kinase kinase,MAPKKK)家族在植物的胁迫反应和发育过程中起重要调控作用。本研究旨在筛选雷蒙德氏棉MAPKKK基因并分析其功能。【方法】以已鉴定的拟南芥MAPKKK蛋白序列为种子序列,在已发表的雷蒙德氏棉全基因组数据库中,通过本地BLAST以及Pfam和SMART鉴定雷蒙德氏棉MAPKKK基因家族成员;采用MEGA5、GSDS在线工具以及Mapchart进行进化树、基因结构及染色体定位分析;利用已有的陆地棉芯片数据进行响应逆境胁迫和纤维不同发育时期的表达谱分析。【结果】系统鉴定了114个雷蒙德氏棉MAPKKK家族基因,根据基因结构及进化树分析分为Raf、ZIK和MEKK三个亚家族。染色体定位表明,该基因家族广泛分布于13条染色体上,并存在基因复制。与最近公布的78个雷蒙德氏棉MAPKKK家族基因相比对,获得序列完全相同的基因47个。【结论】上述研究结果有助于了解雷蒙德氏棉MAPKKK基因家族的进化与功能,为后续研究棉花乃至棉属MAPKKK基因的功能奠定基础。  相似文献   

2.
多药和有毒化合物排出(MATE)蛋白家族是1个次级转运蛋白家族。为了更好地了解亚洲棉和雷蒙德氏棉中MATE蛋白的种类和数量,利用2种二倍体棉花基因组的氨基酸和c DNA数据库对MATE基因家族进行筛选,并分析亚洲棉和雷蒙德氏棉全基因组中MATE基因的种类和进化关系。结果显示,在亚洲棉基因组中初步鉴定了34个MATE基因,而在雷蒙德氏棉中筛选出42个MATE基因。基因结构和系统进化的比较分析表明,进化关系近的MATE基因在结构上基本是一致的。同时对陆地棉中克隆的Gh TT12及与其同一族的部分MATE基因进行荧光定量分析,推测其所在同一族的MATE基因功能可能与转运原花青素有关。这些结果为进一步深入分析棉花MATE基因的功能以及在原花青素转运中的作用提供了理论基础。  相似文献   

3.
李燕  姚金波  陈伟  张永山 《棉花学报》2016,28(5):434-442
TCP基因家族是植物中特有的一类转录因子家族,涉及了植物的多种生长途径以及各种生理生化反应的信号传导。为了更好地了解TCP基因家族在雷蒙德氏棉和亚洲棉基因组中的数量和分布情况等,通过生物信息学方法,在雷蒙德氏棉(D5)和亚洲棉(A2)全基因组中分别鉴定出37个TCP基因家族成员,并对TCP家族成员进行基因结构、染色体定位、保守域、进化关系等分析。结果表明,雷蒙德氏棉和亚洲棉全基因组分别编码37个TCP转录因子成员。雷蒙德氏棉30个成员基因分布在10条染色体上,亚洲棉37个成员基因分布在13条染色体上;内含子/外显子结构分析表明,TCP基因结构较为简单,大部分不含内含子;功能结构域分析,发现所有TCP转录因子具有高度保守的TCP结构域;根据结构域差异和系统发育分析的结果,将TCP基因家族分成2个亚族,进一步划分为PCF、CIN、CYC/TB1三个亚类。以上结果为进一步研究棉花TCP基因家族各成员的功能奠定一定的理论基础。  相似文献   

4.
【目的】重金属胁迫对植物的生长发育有不良影响,植物络合素合酶(Phytochelatin synthase,PCS)在植物主动防御金属毒害过程中起关键作用。本文旨在对陆地棉PCS基因的数量、结构、分布和特性进行研究。【方法】根据棉属陆地棉(Gossypium hirsutum,(AD)_1),以及供体种雷蒙德氏棉(G.raimondii,D_5)和亚洲棉(G.arboreum,A_2)全基因组序列信息,结合双子叶模式植物拟南芥PCS蛋白特征域结构,对陆地棉PCS基因家族成员进行全基因组鉴定,并对其进行蛋白特征鉴定、同源类别分析、基因结构预测、酶作用位点比对以及半胱氨酸(Cys,Cysteine)分布分析。[结果]陆地棉中鉴定出4个PCS基因,而在其供体种雷蒙德氏棉和亚洲棉各鉴定出2个PCS基因。3个棉属8个PCS蛋白家族成员均含有2个特有的结构域,与催化中心相关的氨基酸位点完全保守。PCS蛋白家族在进化上分属2个不同亚组,亚组Ⅰ与亚组Ⅱ在亲缘关系上分别更接近双子叶植物和线虫,2个亚组内PCS家族在基因结构、Cys分布上存在差异,其中亚组Ⅰ较亚组Ⅱ整体内含子更长,N端Cys总数和成对Cys数量更多。雷蒙德氏棉中的2个旁系同源基因外显子完整性不及亚洲棉和陆地棉。【结论】相较于亚组Ⅱ,亚组Ⅰ的棉花PCS蛋白可能具有更强的植物络合酶活性,且陆地棉及其供体种亚洲棉对重金属的耐性强于雷蒙德氏棉。本研究为进一步研究棉花PCS的功能,以及棉花耐重金属胁迫品种改良提供理论依据。  相似文献   

5.
棉花GR基因家族的全基因组鉴定及分析   总被引:1,自引:1,他引:0  
【目的】谷胱甘肽还原酶基因(Glutathione reductase gene,GR)家族参与植物生长发育和非生物胁迫响应等生物进程,但其在棉花中的特性及功能尚不清楚。本研究通过在异源四倍体陆地棉(Gossypium hirsutum)、海岛棉(G. barbadense)及其可能的二倍体祖先种亚洲棉(G. arboreum)和雷蒙德氏棉(G. raimondii)中对GR基因家族全基因组鉴定与特性分析,分析棉种分化及异源四倍体棉花形成过程中GR基因的进化历程,探讨其在非生物胁迫响应中的作用,为后续相关研究提供理论基础。【方法】利用生物信息学方法鉴定陆地棉、海岛棉、雷蒙德氏棉、亚洲棉的GR基因家族成员;解析GR基因家族成员的理化性质、序列特征、染色体位置、系统发育及表达模式。【结果】共鉴定到18个GR基因家族成员,陆地棉、海岛棉、雷蒙德氏棉和亚洲棉中GR基因数目分别为6、6、3和3个。系统发育分析发现GR基因分为2个亚组,同一亚组基因具有相似的外显子数目和基因结构。对同源基因的非同义突变率(Ka)及同义突变率(Ks)分析发现Ka/Ks值均小于1,表明在进化过程中GR基因经历了较强的纯化选择作用。陆地棉GR基因的表达模式分析表明,所有的GR基因均积极响应胁迫环境,但在不同的非生物胁迫下,基因的表达模式有明显差别。【结论】本研究探讨了GR基因家族在亚洲棉、雷蒙德氏棉、海岛棉和陆地棉基因组中的进化及功能,可为棉花GR基因后续研究提供理论基础。  相似文献   

6.
Alfin-like PHD finger是植物中特有的一类转录调控因子,在调控植物生长发育、非生物胁迫响应及抗病反应等过程中起重要作用。为全面了解Alfin-like PHD finger基因家族在雷蒙德氏棉和亚洲棉基因组中的数目、分布情况及家族各成员间的关系,进而研究和揭示Alfin-like PHD finger在棉花抵抗逆境胁迫中的作用。运用生物信息学的方法在雷蒙德氏棉(D5)和亚洲棉(A2)全基因组中分别鉴定出12个和10个Alfin-like PHD finger基因家族成员,并对家族成员的基因结构、染色体定位、保守结构域及进化关系等方面进行分析。结果表明,雷蒙德氏棉和亚洲棉中Alfin-like PHD finger转录因子具有高度保守的DUF3594结构域和PHD结构域,两个二倍体棉花中该家族基因成员之间为一对一关系;雷蒙德氏棉中的12个成员基因分布在5条染色体上,亚洲棉中的10个成员基因也分布在5条染色体上;亚细胞定位预测发现,该家族的基因分别定位于细胞核、叶绿体基质、过氧化物酶体和细胞质基质;根据结构域差异和系统发育分析结果,将Alfin-like PHD finger转录因子家族分为3个进化分支。上述结果为分离鉴定棉花中新的逆境胁迫响应基因提供参考。  相似文献   

7.
8.
磷脂酰乙醇胺结合蛋白(phosphatidyl ethanolamine-binding proteins,PEBP)基因家族广泛存在于真核生物中,在被子植物中主要起着促进或抑制开花和控制株型的作用。利用亚洲棉(Gossypium arboreum,A2)和雷蒙德氏棉(Gossypium raimondii,D5)的基因组数据库,分别搜索到8个棉花PEBP同源基因,都包含4个外显子和3个内含子,编码的蛋白都存在PEBP家族的保守基序和关键氨基酸位点,表明二倍体棉花中至少存在8个PEBP家族基因。进化分析表明,8个PEBP基因分属于3个亚家族,含FLOWERING LOCUS T(FT)-like亚家族1个、TERMINAL FLOWER 1(TFL1)-like亚家族5个(包括3个TFL1和2个BFT)、MOTHER OF FT AND TFL1(MFT)-like亚家族2个。实时荧光定量PCR分析陆地棉(Gossypium hirsutum)8个PEBP基因在根、茎、叶、幼苗顶端分生组织、花、胚珠和25 d的纤维组织中的表达,表明FT1在叶片中表达量最高,其次在纤维、胚珠和花中;MFT1在各组织中均表达,但在纤维中表达量最高,其次是花和叶片中,而MFT2以在叶片中表达为主;TFL1a、TFL1b和TFL1c均在根中表达量最高,但TFL1c在叶片、花和胚珠中也有相对较高的表达;BFT1和BFT2在叶片中表达量最高,但除幼苗顶端分生组织外,BFT1在其他各组织中的表达明显高于BFT2。这些结果表明,PEBP家族基因在棉花的生长发育中可能具有不同的功能。  相似文献   

9.
本研究依据已公布的雷蒙德氏棉基因组测序结果,采用同源克隆的方法,以陆地棉TM-1幼苗为材料,利用RT-PCR技术克隆得到陆地棉光敏色素B基因(Gh PHYB)的c DNA序列。结果显示:该基因ORF全长3 582 bp,编码1 194个氨基酸;通过与已知的拟南芥光敏色素B氨基酸序列比对及蛋白结构预测,发现该基因包含植物光敏色素完整的结构,与烟草、拟南芥、水稻、小麦和玉米的氨基酸序列相似性分别为87.2%、77.9%、74.5%、74.5%和54.6%。同时,本研究还构建了Gh PHYB基因的RNAi干涉载体用于转化棉花,并通过构建棉花PHYB RNAi突变体了解陆地棉PHYB基因对棉花株型、开花期、产量、棉纤维品质、抗逆性等方面的调控作用。研究结果可为该基因今后应用于棉花生产奠定基础。  相似文献   

10.
棉花BZR基因家族的全基因组鉴定及表达分析   总被引:2,自引:1,他引:1  
  相似文献   

11.
[Objective] Heavy metal stress rise advertise effects on growth and development in plant, from which phytochelatin synthase (PCS) plays key roles to protect plant cells. This article will present studies on the gene amount, structure, distribution and features. [Method] PCS gene family in cotton are analyzed based on completely global genome sequence cotton species including Gossypium hirsutum ((AD)1), G. raimondii (D5) and G. arboreum (A2), for further understanding of those genes and protein family features. In this study, we conducted the analysis involving in identification on PCS family members, special protein domain comparison, polygenetic analysis, gene structure prediction and Cysteine survey. [Result] 2, 2 and 4 PCS genes were identified out in G. raimondii (D5), G. arboreum (A2) and G. hirsutum ((AD)1), respectively. All these 8 PCS genes had phytochelatin and phytochelatin_C domains and strictly conserved amino acid residues related to catalytic activity. Cotton PCS protein family members could be divided into 2 sub-group, and these members belongs to sub-group I or sub-group II are close todicotyledon or nematode, respectively. What’s more, there are some difference in both gene structure and Cys distribution between those 2 sub-groups. Less integrity of exons in PCS genes in G. raimondii, comparing to G. hirsutum and G. arboreum. [Conclusion] Comparing to sub-group II, the PCS genes from sub-group I should be higher catalytic activity. G. hirsutum and its donor G. arboreum probably are more heavy metal tolerant than G. raimondii. Based on the results, this research will provide some insights on further functional study.  相似文献   

12.
[Objective] The MAPKKK gene family plays an important regulating role in response to multiple abiotic stresses and the development of plant. This study aims to identify MAPKKK genes of Gossypium raimondii and analyze their functions. [Method] In this study, based on G. raimondii genome database and bioinformatics method, G. raimondii MAPKKK family genes were identified and analyzed. Using the MEGA5, GSDS and Mapchart program, the phylogenetic tree, gene structure and chromosomes location analyses were accomplished. Based on the existing microarray data in cotton and comparative profiles of these MAPKKK genes, different expression of them in multiple abiotic stresses and the expression at different cotton fiber developmental stages were analyzed. [Result] A sum of 114 MAPKKK genes were identified systematically in G. raimondii and classified into 3 subfamilies (Raf, ZIK and MEKK) according to the gene stucture and phylogenetic tree analyses. They were distributed on all the 13 chromosomes of G. raimondii, and segmental duplication and tandem duplication events may have occurred. Compared with the recently released 78 genes of G. raimondii MAPKKK family genes, 47 sequences are exactly the same ones. [Conclusion] The results are helpful to understand the evolution and function of MAPKKK gene family. Our results provide a foundation for future functional characterizations of MAPKKK genes in cotton and probably other Gossypium plants.  相似文献   

13.
雷蒙德氏棉和亚洲棉SSR重复序列类型和丰度差异比较   总被引:2,自引:0,他引:2  
董薇  杜雄明  赖童飞 《棉花学报》2008,20(6):418-424
 利用生物信息学相关方法对NCBI数据库中39277条亚洲棉(Gossypium arboretum L.)及63588条雷蒙德氏棉(Gossypium raimondii L.)的EST序列共计64.08 Mb(约相当于基因组的6.02%)分别进行拼接,比较分析了两棉种简单重复序列的重复类型及丰度差异。结果表明:拼接后的一致性序列中,亚洲棉比雷蒙德氏棉存在较高比例的单条序列簇;亚洲棉一至六碱基6种重复类型的SSR间隔距离分别比雷蒙德氏棉的大;亚洲棉中二到六碱基等5种重复类型的比例高于雷蒙德氏棉,但单碱基重复类型比例低于雷蒙德氏棉;两棉种的单碱基、四碱基和六碱基重复类型的优势重复基序和丰度也不同。因此,认为利用四、五、六碱基三种重复类型设计的SSR引物可以有效地鉴定亚洲棉和雷蒙德氏棉的基因组差异。对四倍体棉种的A、D亚组供体棉种中SSR的差异分析,为SSR标记开发、棉种起源和进化的深入研究提供更多有用的信息。  相似文献   

14.
棉花RAV基因家族的全基因组分析   总被引:1,自引:1,他引:0  
在二倍体棉花D5基因组(Gossypium raimondii Ulb.)数据库中鉴定出10个RAV基因,分布于4、5、8、9、13号染色体;在二倍体棉花A2基因组(Gossypium arboreum L.)数据库中鉴定出10个RAV基因,与棉花D5基因组的R AV成员的数量和序列具有一一对应的同源关系,推测棉花A、D组的祖先种中可能存在10个RAV基因。对植物R AV蛋白序列做系统发育分析,将R AV成员分为4个组;发现棉花R AV基因可能参与了棉属所特有的基因组多倍化事件的证据。对N CBI中陆地棉(Gssypium hirsutum L.)EST、Unigene数据库做比对统计,得到陆地棉不同组织中R AV基因表达情况;对陆地棉受黄萎病菌胁迫后的荧光定量检测,发现棉花RAV基因与棉花响应黄萎病菌的胁迫相关。  相似文献   

15.
[Objective] Glutathione reductase (GR) gene family is involved in biological processes such as plant growth and abiotic stress response, but its characteristics and functions in cotton have not been known yet. This study aims to explore the role of GR genes in cotton genome evolution and abiotic stress response through the whole genome identification and characterization of GR genes, thus providing a theoretical basis for future studies on the roles of the GR genes in enhancing abiotic stress tolerance in cotton. [Method] The GR genes in Gossypium hirsutum, G. barbadense, G. raimondii and G. arboreum were all identified using bioinformatics software. The physicochemical properties, sequence characteristics, chromosomal location, phylogeny and expression patterns were analyzed. [Result] A total of 18 GR genes were identified. The number of GR genes in G. hirsutum, G. barbadense, G. raimondii and G. arboreum was 6, 6, 3 and 3, respectively. Phylogenetic analysis revealed that GR genes were divided into two sub-groups. The genes in the same subgroup exhibited similar gene structure in relation to exon-intron ratios. The ratios of the non-synonymous mutations (Ka) and homologous mutations (Ks) were all less than 1, indicating that the GR genes underwent strong purification selection during their evolution process. The analysis of the expression patterns of GR genes in upland cotton indicated that all the GR genes responded actively to the stress environment; but under different abiotic stresses, the gene expression patterns were significantly different. [Conclusion] The study explored the evolution and function of the GR gene family in the four cotton genomes, providing a theoretical basis for future studies of cotton GR genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号