首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Development of accurate surface assessment technology is of vital interest to modern wood industries. In this experiment we investigated new and fast noncontacting sensors to determine their usefulness for wood surface evaluation and to verify their accuracy. Two types of laser displacement sensors [equipped with a position sensitive detector (PSD) and a charge coupled device (CCD) detector] are compared with a conventional stylus and with theoretical profiles. Hornbeam workpieces with triangular profiles of differing slope and height were used for the evaluation. The results show that resolution of both sensors decreases as the height of the profile decreases. The error ratio of the laser-scanned profiles changes as a function of profile height, in the range 5%–33%. The CCD method is superior for accurate surface roughness evaluation, although the PSD approach can still be used for monitoring the error of form in most applications.Parts of this work were presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, April 2000 and at the 51st Annual Meeting of the Japan Wood Research Society, Tokyo, April 2001  相似文献   

2.
Conclusions With treatment at 2500°C, wood cell walls partially transform into a turbostratic carbon structure, which has an X-ray diffraction peak corresponding to a layer plane spacing of 0.343 nm. Despite this change, there was no apparent change within the cell wall seen by SEM.Cone-shaped carbon material was formed inside the cell lumen after treatment at 2500°C. This is not a feature originating from any wood cell organism and seems to result from vaporized carbon or pyrolysis gases that originate within the cell wall.Part of this work was presented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, April 2002  相似文献   

3.
Wood charcoal carbonized at various temperatures was analyzed by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to investigate the changes of chemical structures during the carbonization process. From the infrared spectra, the carbon double bonds and aromatic rings were seen to form at a carbonization temperature of about 600°C. From the XPS spectra, the ratio of aromatic carbons increased in the temperature range 800–1000°C and over 1800°C. The condensation of aromatic rings proceeded as carbonization progressed. The drastic reduction of electrical resistivity of charcoals was observed in almost the same temperature range. It was found that the condensation of aromatic rings had some relation to the decline in electrical resistivity. Wood charcoal carbonized at 1800°C was partly graphitized, a finding supported by the results of X-ray diffraction and XPS. The functional groups containing oxygen diminished with the increase in carbonization temperature.This paper was presented at the 45th Annual Meeting of the Japan Wood Research Society in Tokyo, April 1995 and at the 47th Annual Meeting of the Japan Wood Research Society in Kochi, April 1997  相似文献   

4.
Reaction of Japanese beech (Fagus crenata) in an ionic liquid, 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]), which can dissolve cellulose, was investigated. Although both lignin and polysaccharides such as cellulose and hemicelluloses can be liquefied at a treatment temperature of around 100°C, the liquefaction of polysaccharides mainly occurs at the beginning of the treatment with [C2mim][Cl]. Cellulose crystallinity in the wood was gradually broken down as the treatment continued. The solubilized polymers were depolymerized to low molecular weight compounds. The results indicate that [C2mim][Cl] is an effective solvent and reagent for the liquefaction of wood components and subsequent depolymerization of them. Part of this report was presented at the 58th Annual Meeting of the Japan Wood Research Society, Tsukuba, April 2008  相似文献   

5.
Methanol extractives from the red heartwood of Bengal catechu (Acacia catechu) contained (+)-catechin as a major component making up 0.3% of the wood. A new polyphenolic compound with a (+)-homo-iso-catechin structure and having catechol and phloroglucinol moieties constituted 0.005% of the wood, and probably its epimeric compound in trace amounts, were also found.This report was presented at the 49th Annual Meeting of the Japan Wood Research Society, Tokyo, April 1999 and the 44th Lignin Symposium, Gifu, October 1999  相似文献   

6.
The optimum environmental temperature for a biodegrading machine using wood particles as a matrix was investigated using a small-scale degradation reactor and model waste. The biodegradation rate was evaluated by weight loss of waste and CO2 evolution. The degradation reaction was restricted only by adjusting the environmental temperature while sufficient oxygen and substrates were supplied. Results suggested that the optimum temperature for degradation was 30°–40°C for exploiting biological activity effectively with the lowest use of energy. Bacteria from the environment propagated in the reactor with no inoculum added. The microbial flora changed during the operation time but had no effect on the biodegradation rate.Part of this report was presented at the 48th Annual Meeting of the Japan Wood Research Society, Tokyo, April 1998  相似文献   

7.
The purpose of this paper is to offer a new method for detecting stress in wood due to moisture along the lines of a theory reported previously. According to the theory, the stress in wood could be estimated from the moisture content of the wood and the power voltage of a microwave moisture meter (i.e., attenuation of the projected microwave). This seems to suggest a possibility of utilizing microwaves in the field of stress detection. To develop such an idea, the stress formulas were initially modified to the form of an uni-variable function of power voltage, and the application method of the formulas to detection was tried. Finally, these results were applied to the data of sugi (Cryptomeria japonica) lumber in the previous experiment. The estimated strains showed fairly good agreement with those observed. It could be concluded from this study that the proposed method might be available for detecting stress in wood due to moisture.Part of this report was presented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, April 2002  相似文献   

8.
The effect of visual stimulation from wood on the body was examined in a comparative study using full-sized hinoki wall panels and a white steel wall panel. Continuous blood pressure measurements were used as the physiological indicator. Sensory evaluation by the semantic differential (SD) method and the profile of mood states (POMS) test were performed to determine changes in psychological impression. Results showed that visual stimulation from hinoki wall panels had an emotional and natural impression upon humans. Blood pressure decreased significantly in subjects who liked them, and there was no significant increase in blood pressure in subjects who disliked them. Visual stimulation from the white steel wall panel made an unhealthy and closed impression and increased the sense of depression. In addition, there was stress and a significant increase in blood pressure in subjects who disliked them. Consequently, visual stimulation from hinoki and white steel wall panels had different physiological and psychological effects. Results also showed that the same visual stimulation induced different physiological responses depending on the values of the individuals.Part of this paper was presented at the 48th Annual Meeting of the Japan Wood Research Society in Shizuoka, April 1998  相似文献   

9.
Vibrational properties of Sitka spruce heat-treated in nitrogen gas   总被引:6,自引:0,他引:6  
Sitka spruce (Picea sitchensis Carr.) wood was heated for 0.5–16.Oh at temperatures of 120°–200°C in nitrogen gas or air. The values for Young's modulus, shear modulus, and loss tangent were measured by free-free flexural vibration tests. X-ray diffractometry was carried out to estimate the crystallinity index and crystallite width. The results obtained are as follows: (1) Density decreased at higher temperatures and longer heating times. The specific Young's modulus, specific shear modulus, crystallinity index, and crystallite width increased during the initial stage and were constant after this stage at 120°C and 160°C, whereas they increased during the initial stage and decreased later when the temperature was high. Loss tangent in the longitudinal direction increased under all conditions, whereas that in the radial direction increased at 120°C and decreased at 160°C and 200°C. (2) From the relation between Young's modulus and moisture content, it can be safely said that Young's modulus is increased by the crystallization and the decrement in equilibrium moisture content, and that crystallization (rather than degradation) is predominant at the initial stage of the heat treatment, whereas the latter is predominant as the heating time increases. (3) It is implied that the specific Young's modulus, specific shear modulus, crystallinity index, and crystallite width decreased more in air than in nitrogen gas because of oxidation in air.This study was presented in part at the 43th Annual Meeting of Japan Wood Research Society at Morioka, August 1993, the 44th Annual Meeting of Japan Wood Research Society at Nara, April 1994, and the 45th Annual Meeting of Japan Wood Research Society at Tokyo, April 1995  相似文献   

10.
Cone-shaped carbon particles were produced inside the cell lumen of sugi (Japanese cedar) charcoal treated at 2500°C. We succeeded in clarifying the structural and morphological features by separating the cone-shaped carbon from the carbonized cell wall by heating to 800°C in air. Cone-shaped carbon is less susceptible to oxidation than the carbonized cell wall. The isolated cone-shaped carbon and carbonized cell wall fracture were observed separately by transmission electron microscopy and selected area electron diffraction. Results revealed that the cone-shaped carbon has a very highly ordered cone structure with regularly stacked hexagonal carbon sheets, whereas the carbonized cell wall has a disordered structure of mosaic-like turbostratic carbon.Part of this work was presented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, April 2002  相似文献   

11.
The catalytic effect of aluminum on graphitization of wood charcoal was examined. Wood charcoal impregnated with aluminum triisopropoxide to various levels was subjected to direct electric pulse heating. Electric conductivity and heat conductivity of the products showed strong, systematic dependence on the amount of aluminum added. X-ray diffractometry indicated that these effects result from a larger degree of graphitization. Because the amount of aluminum in the final product was negligible, aluminum, before being lost by vaporization, apparently catalyzed graphitization at a lower temperature than is used for conventional treatments.Part of this report was presented at the 17th Annual Meeting of the Association of Wood Processing and Technology, November 1999; the 11th MRS-J Annual Meeting, Kawasaki, December 1999; and the 50th Annual Meeting of the Japan Wood Research Association, April 2000  相似文献   

12.
This study examined the effects of contact with wood on the living human body using a physiological index and subjective evaluation. Consecutive blood pressure measurements were used as the physiological index, and sensory evaluation using the semantic differential (SD) method was used for subjective evaluation. Consideration was also given to cases in which materials were cooled and heated as well as kept at room temperature, to eliminate the effects of heat flux due to differences in thermal conductivity between wood and other materials. It was found that contact with wood produced coarse/natural sensations, with no associated increase in systolic blood pressure. Contact with cold wood created subjectively dangerous/uncomfortable but still coarse/natural sensations, also with no associated increase in blood pressure; therefore, there was no correspondence between subjective evaluation and physiological responses. Contact with aluminum kept at room temperature and cold acrylic plastic created flat/artificial and dangerous/uncomfortable sensations, with an associated significant increase in blood pressure; thus, there was a close correlation between subjective evaluation and physiological responses. It was therefore concluded that contact with wood, unlike artificial materials such as aluminum, induces no physiological stress even when kept at room temperature or cooled. Part of this report was presented at the 48th Annual Meeting of the Japan Wood Research Society in Shizuoka, April 1998  相似文献   

13.
The abrasion characteristics of various combinations of wood and counterface materials in three-body abrasive wear were investigated. Various wood samples were examined in combination with wood, plastic, and metal counterface materials. The wear coefficient in the wood samples was calculated as the wear volume of the friction surface divided by the sliding distance and the applied load. The results showed that the wear coefficient was smaller in cases where the wood samples had greater yield stress. The wear coefficient increased as the yield stress of the various counterface materials increased, reaching a maximum value and then decreased as the yield stress increased. This result indicated that a peak value existed for the wear coefficient in combination with the counterface material.Part of this report was presented at the 51st Annual Meeting of the Japan Wood Research Society, Tokyo, April 2001  相似文献   

14.
Residual wood meal after extraction of milled wood lignin (WMEM) ofEucalyptus globulus was extracted with alkali and LiCl/N,N-Dimethylacetamide (DMAc). These agents dissolve mainly hemicellulose and cellulose, respectively. The extractability of WMEM in alkali solutions was influenced by the degree of swelling of the cellulose. Under good swelling conditions, considerable amounts of cellulose and lignin were extracted with the hemicellulose. Maximum extractability was about 60% of the WMEM under optimum conditions (3 M or 5 M LiOH or 3M NaOH solution). Some portion of cellulose was extracted with LiCl/DMAc at room temperature. Thus, lignin inE. globulus WMEM was divided into three fractions: hemicellulose-lignin fraction, cellulose-lignin fraction, and insoluble-lignin fraction.Part of this work was presented at the 49th annual meeting of the Japan Wood Research Society, Tokyo, April 1999; and at the 50th annual meeting of the Japan Wood Research Society, Kyoto, April 2000  相似文献   

15.
The transverse shrinkage behavior of early wood and late wood tracheids of radiata pine (Pinus radiata D. Don) was investigated by the power spectrum analysis. The representative cell model shapes before and after shrinkage constructed by the analysis revealed that the early wood tracheid showed anisotropic shrinkage, although the late wood tracheid showed almost isotropic shrinkage. To link the macroscopic shrinkage of coniferous wood with the results obtained by the power spectrum analysis, a two-layer model composed of early wood and late wood was adopted, and the relation between shrinkage anisotropy and late wood fraction was predicted. The results suggested that the shrinkage anisotropy depended significantly on the mechanical interaction between early and late wood.Part of this report was presented at the 46th Annual Meeting of the Japan Wood Research Society at Kumamoto, April 1996  相似文献   

16.
Five wood species were acetylated with acetic anhydride (AA) solution of glucose pentaacetate (GPA) at 120°C for 8h, and the effect of GPA on the dimensional stability of the acetylated wood was investigated. Some GPA was introduced into the wood cell wall during acetylation. The GPA remaining in the cell lumen penetrated the cell wall effectively after heating to more than 140°C for 10min. The bulking effects of GPA resulted in a 10%–30% increase in the anti-swelling efficiency of the acetylated wood with 20% GPA/AA solution in place of AA. Hydrophobic GPA did not deliquesce under highly humid conditions and it remained in the cell wall after boiling in water.Part of this paper was presented at the 51st Annual Meeting of the Japan Wood Research Society, Tokyo, April 1988  相似文献   

17.
The tension wood (TW) properties of a 70-year-old specimen of Acer sieboldianum Miq. were analyzed by using the G-fiber model that was proposed in our previous report. The roles of the G-layer on the origins of (1) a high tensile growth stress, (2) a large longitudinal Young’s modulus, and (3) a high longitudinal drying shrinkage in the TW xylem are discussed on the basis of the simulations using the G-fiber model. The results suggest that the G-layer generates a high tensile stress in the longitudinal direction during xylem maturation; the longitudinal Young’s modulus of the green G-layer becomes significantly higher than that of the lignified layer; furthermore, the G-layer tends to shrink extraordinarily more than that of the lignified layer during moisture desorption.This report follows the previous report “Role of the gelatinous layer on the origin of the physical properties of the tension wood.” J Wood Sci (2004) 50:197–208. Part of this paper was presented at the 49th Annual Meeting of the Japan Wood Research Society, Tokyo, April 1999, and at the 2nd International Conference of the European Society for Wood Mechanics, Stockholm, May 2003This revised version was published online in July 2005. On pages 228–230 the character was replaced by a vertical line.  相似文献   

18.
In order to develop a fireproof wooden material, the synergic effect of fire-retardant chemicals and wood coatings was studied. The fire performance was evaluated by cone calorimeter. Impregnation of fire retardants including polyphosphatic carbamate, and ceramic coatings including alkoxy metal salt improved the fire performance of wooden materials. This treatment made it possible to meet the guidelines for fire performance of noncombustible materials in Japan. In addition to the vacuum-pressure impregnation treatment, hot-and-cold-bath impregnation treatment is an effective way to develop fire-retardant wood by impregnating fire retardant and ceramic coating. The weatherability of the developed material was also investigated. The ceramic coating was resistant to light and moisture. Part of this report was presented at 54th Annual Meeting (Sapporo, August 2004) and the 55th Annual Meeting (Kyoto, March 2005) of the Japan Wood Research Society  相似文献   

19.
The effects of physical properties of wood, including specific gravity, porosity, and water retention, on the water activity (a w) of wood meal media for the cultivation of edible mushrooms were examined. Five species of wood, selected from an initial set of 11 species, and six species of fungi popularly cultivated in Japan were used. The water activity of each fungal species was measured using liquid media in which a w had been reduced by adding NaCl, KCl, sucrose, or ethylene glycol. From the water activities of the media and fungi, we estimated the most suitable wood species for the cultivation of each edible mushroom in wood meal media. Suitable wood species for the wood meal cultivation of shiitake, nameko, and maitake, which had relatively high a w, was limited to hardwoods like arakashi, konara, and irohakaede because of their higher water activities. Edible mushrooms with lower levels of a w, like hiratake, enokitake, and bunashimeji, could be cultivated in all kinds of wood species used in this experiment, but especially in sugi.Parts of this report were presented at the 49th, 50th, 51st, and 52nd Annual Meetings of the Japan Wood Research Society, in Kyoto (April 2000), Tokyo (April 2001), Gifu (April 2002), and Fukuoka (March 2003), Japan  相似文献   

20.
Two-body and three-body abrasive wear tests of katsura wood were carried out using abrasive paper and moving abrasive grains, respectively. The two-body and three-body abrasive wear properties were investigated and compared. The wear rate of two-body abrasive wear was two orders of magnitude larger than that of three-body abrasive wear. Moreover, two-body abrasive wear of katsura wood increased with higher applied surface pressure, whereas three-body abrasive wear did not always depend on the applied surface pressure. Based on these results and observation of the wear surface profiles, it is suggested that two-body abrasive wear is more affected by yield stress and surface microstructure, and three-body abrasive wear is more affected by the cutting action of moving abrasive grains. Furthermore, during wear tests with different abrasive grain sizes, critical grain size effects of two-body abrasive wear were observed at low applied surface pressures but not at high applied surface pressures. The critical grain size effects of three-body abrasive wear were observed at both low and high applied surface pressures.Part of this report was presented at the 49th Annual Meeting of the Japan Wood Research Society, Tokyo, April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号