首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
AIM: To compare the effects of B50, a mono-carbonyl analogue of curcumin, on the proliferation and apoptosis between homologous nasopharyngeal carcinoma cells CNE-2R and CNE-2 with different radioresistance.METHODS: The effects of B50 on cell viability and cell growth were detected by MTT assay and colony-forming experiment, respectively. The changes of cell cycle, apoptosis and mitochondrial membrane potential (MMP) were determined by flow cytometry.RESULTS: B50 inhibited the cell viability of CNE-2R cells in a time-and dose-dependent manner with the IC50 of (8.06±0.14) μmol/L (24 h), (2.49±0.02)μmol/L (48 h) and (1.42±0.02) μmol/L (72 h), which was more effective than that in CNE-2 cells . The inhibitory effect of B50 on CNE-2R cell growth was more effective than that on CNE-2 cells . After treated with B50 for 48 h, the proportion of CNE-2R cells in G2/M stage was increased from 7.1% to 34.9%, which was better than that of CNE-2 cells (from 12.4% to 35.7%). After treated with B50 for 24 h, the early apoptotic rate in CNE-2R cells was increased from 3.7% to 19.5%, which was better than that in CNE-2 cells (from 4.4% to 14.8%), and the MMP in CNE-2R cells was decreased by (43.17±3.11)%, which was better than that in CNE-2 cells .CONCLUSION: B50 is more effective on inhibiting the cell viability and cell growth, blocking the cell cycle at G2/M stage, inducing apoptosis and decreasing MMP in CNE-2R cells than those in CNE-2 cells, indicating that B50 may enhance the radio-sensitivity of CNE-2R cells by blocking the cell cycle and inducing apoptosis through mitochondrial pathway.  相似文献   

2.
AIM: To explore the effect of fucoxanthin (Fu) on the growth and apoptosis of HSC-T6 cells. METHODS: HSC-T6 cells were divided into blank control group, negative control group and drug groups (treated with different concentrations of Fu). The cell viability was detected by CCK-8 assay at 24 h, 48 h and 72 h after Fu treatment. The cell cycle distribution and apoptotic rate were analyzed by flow cytometry. The protein expression of Bcl-2 and Bax were detected by Western blot. RESULTS: Compared with blank control group, the viability of HSC-T6 cells was inhibited by Fu at concentrations of 15~75 μmol/L in a dose- and time-dependent manner (P < 0.01). The cell ratio of G1 phase was significantly decreased (P < 0.01) and the cell ratio of S phase and G2 phase was significantly increased (P < 0.01) in 60 μmol/L Fu group after 24 h. The cell ratio of G1 phase was significantly decreased (P < 0.05) and the cell ratio of S phase and G2 phase was significantly increased (P < 0.05) in 15 μmol/L and 30 μmol/L Fu groups in a dose-dependent manner after 48 h. The early cell apoptotic rates and total cell apoptotic rates were significantly increased in the Fu treatment groups in a dose-dependent manner (P < 0.05). The protein expression of Bax was significantly increased in the Fu treatment groups and the protein expression of Bcl-2 was significantly decreased in 30 μmol/L and 60 μmol/L Fu groups (P < 0.05).CONCLUSION: Fu inhibits the growth of HSC-T6 cells possiblely via arresting the cell cycle at S phase and G2 phase. The apoptosis of HSC-T6 cells induced by Fu might be via down-regulating the protein expression of Bcl-2 and up-regulating the protein expression of Bax.  相似文献   

3.
AIM: To investigate the effect and mechanism of sodium selenite (Na2SeO3) on the proliferation of endometrial cancer cells. METHODS: Endometrial cancer Ishikawa cells and HEC-1A cells were treated with Na2SeO3. The effect of Na2SeO3 on cell proliferation was determined by MTT assay. The effects of Na2SeO3 on cell cycle distribution and apoptosis were tested by flow cytometric analysis. The expression of cyclin A was detected by Western blotting. RESULTS: Na2SeO3 inhibited the proliferation of Ishikawa cells and HEC-1A cells. For Ishikawa cells, IC50 was 3.26 μmol/L, and for HEC-1A cells, IC50 was 4.77 μmol/L. After treated with Na2SeO3, the cells in G0/G1 phase were reduced and the cells in S phase and G2/M phase were increased. Na2SeO3 also increased the percentage of apoptosis cells. The result of Western blotting showed that the expression of cyclin A was increased. CONCLUSION: Na2SeO3 inhibits the proliferation of endometrial cancer Ishikawa cells and HEC-1A cells via up-regulating the expression of cyclin A, arresting cell cycle and inducing apoptosis.  相似文献   

4.
AIM: The roles of Cl-channels in regulatory volume decrease (RVD), cell proliferation and cell cycle progression in nasopharyngeal carcinoma cells (CNE-2Z) were investigated. METHODS: Image analysis of living cells was used to detect the volume changes following exposure to hypotonic solutions. Cell viability was determined by the trypan blue assay. MTT method was applied to detected cell proliferation. The effect of the blocker on the cell cycle distribution was monitored by the flow cytometry. RESULTS: 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) inhibited RVD and cell proliferation in a dose-dependent manner. NPPB at the concentration of 100 μmol/L arrested cells in G1 phase (G1 population increased from 54% to 71% at 48 h after treatments), but did not significantly alter cell viability. CONCLUSION: Block of chloride channels suppressed cell proliferation by arresting cells in G1 phase. The results suggest that activation of Cl-channels and RVD is necessary for facilitating cells to proceed to the S phase from G1 phase and maintaining cell proliferation.  相似文献   

5.
AIM: To investigate the effect of decitabine (DAC) on the resistance of human chronic myeloid leukemia cell line K562/A02 to adriamycin (ADR), and to explore the possible mechanism. METHODS: The K562/A02 cell line and its parental cell line K562 were treated with different concentrations of ADR or DAC alone, or in combination. The cytotoxic effects of these 2 agents were determined by CCK-8 assay. The degree of DNA methylation was evaluated by Sequenom MassARRAY system and colorimetric method. The cell cycle distribution and the apoptotic rate were determined by flow cytometry. RESULTS: K562/A02 cells were more significantly resistant to ADR than K562 cells.The half maximal inhibitory concentration of ADR for 24 h of the K562/A02 cells was about 50 times higher than that of the K562 cells. To DAC, in the concentration range of 0.5~8 μmol/L, K562/A02 cells were more sensitive than K562 cells. As compared with the same concentrations (4.31 μmol/L and 17.24 μmol/L) of ADR alone, the combination with 1 μmol/L DAC significantly improved the sensitivity of K562/A02 cells to ADR. Both DAC and ADR affected the cell cycle progression and apoptotic rate of K562/A02 cells. DAC (1 μmol/L) treatment mainly showed S phase arrest and increased early apoptotic rate for 24 h, and G2/M phase arrest and increased late apoptosis and necrosis for 48 h in a time-related manner. ADR treatment showed G2/M phase arrest and increased late apoptosis and necrosis in a concentration-dependent manner. In combination with 1 μmol/L DAC, the effect of ADR on the cell cycle distribution was further enhanced, showing more obvious G2/M phase arrest, but no significant difference of the apoptotic rate was observed. The degree of methylation in the genome had no significant difference between the 2 cells, and it before and after DAC treatment had no significant change. CONCLUSION: DAC enhances the sensitivity of K562/A02 cells to ADR, showing drug resistance-reversing potential. The mechanism may be related to regulating cell cycle progression and promoting apoptosis and necrosis of K562/A02 cells.  相似文献   

6.
AIM: To investigate the effects of celecoxib on viability, apoptosis and autophagy in acute myeloid leukemia (AML) cell lines HL-60 and HL-60A. METHODS: The HL-60 cells and HL-60A cells were cultured with various concentrations (0, 20, 40, 60, 80 and 100 μmol/L) of celecoxib. The inhibitory effect of celecoxib on the cell viability was evaluated by MTT assay. Apoptosis was analyzed by Annexin-V/PI staining. Apoptosis-related and autophagy-related proteins were determined by Western blot. RESULTS: IC50 of celecoxib were 49.4 μmol/L, 32.0 μmol/L and 25.1 μmol/L for HL-60 cells treated with celecoxib for 24 h, 48 h and 72 h, respectively. For HL-60A cells, the corresponding IC50 were 69.1 μmol/L, 42.5 μmol/L and 29.6 μmol/L, respectively. The results of flow cytometry analysis showed the proportions of Annexin-Ⅴ+ PI-, Annexin-Ⅴ+ PI+ and Annexin-Ⅴ-PI+ cells were increased in the HL-60 cells, and those of Annexin-Ⅴ+PI- and Annexin-Ⅴ+ PI+ cells were increased in the HL-60A cells treated with celecoxib for 24 h. After treated with celecoxib, the induction of apoptosis was observed, the apoptosis-related proteins cleaved caspase-3 and cleaved PARP were upregulated, the autophagy-related proteins LC3 II and P62 were both increased, and mTOR, p-mTOR, 4-EBP and p-4-EBP were not changed, indicating that celecoxib inhibited autophagy in the AML cells without the mTOR pathway involvement. CONCLUSION: Celecoxib inhibits the viability of HL-60 cells and HL-60A cells in a time-and dose-dependent manner by its effects of inducing apoptosis and necrosis. Celecoxib inhibits mTOR-independent autophagy in AML cells, indicating a possible way of using celecoxib for enhancing the antitumor activity of therapeutic agents to induce cytoprotective autophagy in the AML cells.  相似文献   

7.
AIM:To compare the effect of T83 (a 4-arylidene curcumin analogue) on the apoptosis of homologous nasopharyngeal carcinoma cells with different radioresistance. METHODS:The effects of T83 on the viability, apoptosis, mitochondrial membrane potential (MMP), expression of procaspase-3/procaspase-9/Cyt-C proteins and relative PTEN/Akt/p27 mRNA expression in CNE-2R cells and CNE-2 cells were detected and compared by the methods of MTT assay, Hoechst staining, flow cytometry, Western blotting and qRT-PCR. RESULTS:T83 inhibited the viability of CNE-2R cells with the IC50 of 0.9,0.4 and 0.2 μmol/L for 24 h, 48 h and 72 h,respectively, which was more effective than that inhibiting the viability of CNE-2 cells with the IC50 of 1.8,0.5 and 0.4 μmol/L, respectively. After treated with T83 for 48 h, chromatin condensation, margination and splitting into a massive structure were observed in CNE-2R cells and CNE-2 cells,and the late apoptotic rate of CNE-2R cells was increased from 1.57% to 27.26%, which was higher than that of CNE-2 cells (1.74% to 8.15%). After treated with T83 for 36 h, the MMP in CNE-2R cells decreased by 87.71% and that decreased by 50.47% in CNE-2 cells. After treated with T83 for 48 h, the protein levels of procaspase-3 and procaspase-9 were decreased, and the protein level of Cyt-C was increased, which were more susceptible in CNE-2R cells than those in CNE-2 cells. After treated with T83 for 24 h, the relative mRNA expression of PTEN and p27 was significantly up-regulated, and the mRNA expression of Akt was down-regulated, which were more susceptible in CNE-2R cells than those in CNE-2 cells. CONCLUSION:Compared with CNE-2 cells, the inhibitory effect of T83 on the viability of CNE-2R cells is more specific by starting the mitochondrial apoptotic pathway, which is due to the inhibition of PTEN/Akt/p27 signaling pathway.  相似文献   

8.
AIM:To investigate the effect of diosgenin (Dio) on the proliferation, apoptosis and expression of peroxisome proliferator-activated receptor γ (PPARγ) in human glioblastoma U87MG cells and its possible mechanism. METHODS:Human astrocytes (HA) and U87MG cells were cultured in vitro and treated with Dio (0, 10, 20, 30, 40 and 50 μmol/L) and GW9662 (5 μmol/L) for 48 h, and then the cell viability was detected by CCK-8 assay. Cell colony formation assay was used to assess the proliferation potential. Flow cytometry was used to analyze the cell cycle distribution and apoptosis. The mRNA expression level of PPARγ was measured by RT-PCR. Western blot was used to determine the protein levels of PPARγ, cyclin D1, cyclin E1, Bcl-2 and Bax. RESULTS:Dio had no significant influence on the viabi-lity of HA (P>0.05). However, Dio remarkably reduced the viability of U87MG cells in a dose-dependent manner (P<0.05) with IC50 of 24.31 μmol/L. Meanwhile, Dio remarkably diminished colony formation ability (P<0.05), induced G0/G1 phase arrest of the cell cycle and apoptosis (P<0.05), up-regulated the expression of PPARγ at mRNA and protein levels, increased the protein level of Bax (P<0.05), and down-regulated the protein levels of cyclin D1, cyclin E1 and Bcl-2 (P<0.05) in a dose-dependent manner. However, these effects induced by Dio were inhibited by GW9662 (P<0.05), a specific inhibitor of PPARγ. CONCLUSION:Dio may inhibit proliferation and induce apoptosis in human glioblastoma U87MG cells most likely via up-regulating the expression of PPARγ, and then down-regulating the protein levels of cyclin D1, cyclin E1 and Bcl-2, and up-regulating the protein level of Bax.  相似文献   

9.
AIM: To investigate the method of inducing G1 phase synchronization in human endometrial cancer JEC Cells by lovastatin and the cell cycle progress of JEC cells after desynchronization. METHODS: The doubling time of JEC cells was detected by Cell Counting Kit-8 (CCK-8) assay. To determine the best lovastatin concentrations for G1 synchronization, JEC cells were treated with lovastatin at concentrations of 10, 20, 30 and 40 μmol/L for 1× doubling time, and the cell cycle was detected using flow cytometry (FCM). To determine the best period of lovastatin treatment to achieve G1 synchronization, JEC cells were treated with lovastatin at the best concentration for 0.5× to 2× doubling time, and the cell cycle was detected every 4 h using FCM. Furthermore, the cell cycle progress of JEC cells after desynchronization was also observed. RESULTS: The doubling time of JEC cells was almost 24 h. Treatment with lovastatin at the concentration of 20 μmol/L for 24 h achieved maximum G1 arrest in JEC cells. Minimum G1 phase and maximum S phase were observed after desynchronization for 16 h. CONCLUSION: Maximum G1 synchronization of JEC cells is induced by lovastatin at the concentration of 20 μmol/L for 24 h. The JEC cells show minimum G1 phase and maximum S phase after desynchronization for 16 h.  相似文献   

10.
AIM:To examine the effects of recombinant human hepatocyte growth factor(rhHGF) and native calf HGF(cHGF) on SMMC-7721 human hepatocellular carcinoma(HCC) cell line. METHODS:Human HCC cell line culture, photometric assay, and flow cytometric assay were used in this study .RESULTS:A similar type of dose-dependent cell growth inhibition effect on SMMC-7721 human HCC cells by rhHGF(5-20 μg/L) as well as by cHGF(25-100 mg/L) had been found, with the maximal effect at the highest concentration used. Approximately over 50% of the cells treated with rhHGF(5 μg/L, 10 μg/L, 20 μg/L) accumulated in the quiescent G0/G1 phase of the cell cycle over incubation periods for 3 d. CONCLUSION:The growth of SMMC-7721 human HCC cells was strongly inhibited by both rhHGF and cHGF. This might be because the cells exposed to HGF became arrested in the G0/G1 phase.  相似文献   

11.
CHEN Long-yun  LIU Ye 《园艺学报》2018,34(11):1976-1980
AIM: To investigate whether quercitrin induces apoptosis of gastric cancer cell line SGC7901 by inhibition of PI3K/AKT signaling pathway. METHODS: The human gastric cancer SGC7901 cells were selected as the research object. The cytotoxicity of quercitrin was detected by MTT assay, and IC50 value of quercitrin was calculated. The SGC7901 cells were divided into control group, quercitrin group (incubated with 200 μmol/L quercitrin), insulin-like growth factor-1 (IGF-1) group (incubated with 100 μg/L IGF-1) and quercitrin+IGF-1 group (incubated with 200 μmol/L quercitrin and 100 μg/L IGF-1). After 48 h, the apoptosis of SGC7901 cells was analyzed by flow cytometry, and the protein levels of cleaved caspase-3, p-AKT (Ser473), AKT, p-PI3K (Tyr508) and PI3K were determined by Western blot. RESULTS: The viability of SGC7901 cells was significantly decreased as the concentration of quercitrin increased, starting at 100 μmol/L (P<0.05). The IC50 value of quercitrin for 48 h was 275.40 μmol/L. After treatment with 200 μmol/L quercitrin for 48 h, the apoptosis rate and the protein level of cleaved caspase-3 in quercitrin group were significantly increased (P<0.05), and the phosphorylated levels of AKT and PI3K were significantly decreased compared with control group (P<0.05). Treatment with quercitrin and IGF-1 inhibited the effect of quercitrin on SGC7901 cells compared with quercitrin group. CONCLUSION: Quercitrin may induce apoptosis of gastric cancer cell line SGC7901 by inhibiting the activation of PI3K/AKT signaling pathway.  相似文献   

12.
SHEN Yuan  LU Lin  WANG Xiao-yu 《园艺学报》2015,31(9):1568-1571
AIM: To investigate the role of Herceptin in the apoptosis and drug sensitivity of endometrial cancer Ishikawa cells.METHODS: The IC50 values of Herceptin, adriamycin(ADR), cisplatin(DDP) and paclitaxel(PTX) for Ishikawa cells were detected by MTT method. Ishikawa cells were treated with single drug and combined chemotherapy for 24 h, the cell cycle and the apoptosis ratio were determined by flow cytometry.RESULTS: The IC50 values of Herceptin, ADR, DDP and PTX were 57.12 mg/L, 0.572 μmol/L, 67.4 μmol/L and 719.5 nmol/L, respectively. Herceptin significantly enhanced the cytotoxicity of the chemotherapeutic drugs, and increased apoptosis ratio statistically.CONCLUSION: Herceptin enhances the apoptosis-inducing ability of the chemotherapeutic drugs and improves the chemotherapeutic sensitivity in Ishikawa cells.  相似文献   

13.
AIM: To reverse multidrug resistance (MDR) of A549/DDP cells with short hairpin RNA (shRNA) expression vectors. METHODS: Two multidrug resistance-associated protein 1( MRP1 ) gene-specific shRNA expression plasmids pSilencer 2.1-U6 neo-MRP1 were constructed and introduced into A549/DDP cells. MRP1 mRNA was assayed by real-time fluorescent quantitative PCR. The MRP1 function was determined by rhodamine 123(Rho123) retention and the protein expression of MRP1 was detected by immunofluorescent staining. The viability of A549/DDP cells was evaluated by MTT method. RESULTS: MRP1 shRNA expression plasmids were successfully constructed. The expression of MRP1 at mRNA and protein levels was significantly decreased after sh-MRP1-2.1-1 and sh-MRP1-2.1-2 were transfected into A549/DDP cells. The intracellular accumulation of Rho123 significantly increased from(16.93±0.58)% to (89.02±0.59)% and (82.56±1.37)%. IC50 of cisplatin were decreased from (101.45±0.64) μmol/L to (38.06±0.05) μmol/L and (53.72±0.36) μmol/L. IC50 of 5-fluorouracil were decreased from (263.20±2.00) μmol/L to (98.82±1.16) μmol/L and (141.81±0.49) μmol/L. CONCLUSION: The shRNA expression plasmid pSilencer 2.1-U6 neo-MRP1 can stably and permanently inhibit MRP1 gene. The sensitivity of A549/DDP cells to drug is reversed.  相似文献   

14.
AIM: To investigate the effect of propofol on the viability, invasion ability and apoptosis of colorectal cancer cells.METHODS: Propofol at 10, 25, 50 and 100 μmol/L was used to treat LoVo cells for 72 h, and propofol at 100 μmol/L was used to treat the LoVo cells for 12, 24, 48 and 72 h. The cell viability was measured by CCK-8 assay. The invasion ability of the LoVo cells treated with propofol at 100 μmol/L for 72 h was detected by Transwell assay. The cell cycle distribution and cell apoptotic rate were analyzed by flow cytometry. The protein levels of matrix metalloproteinase (MMP)-2, MMP-9, cleaved caspase-3, Notch1 and hairy and enhancer of split 1 (Hes1) were determined by Western blot.RESULTS: Propofol inhibited LoVo cell viability. The cell invasion ability, S stage cells, and the protein levels of MMP-2, MMP-9, Notch1 and Hes1 in propofol group were significantly lower than those in control group, and the apoptotic rate, G0/G1 cells and the protein level of cleaved caspase-3 were significantly higher than those in control group (P<0.01).CONCLUSION: Propofol inhibits the viability and invasion ability of colorectal cancer LoVo cells, blocks cell cycle and induces apoptosis. The mechanism is related to down-regulation of Notch1 signaling pathway.  相似文献   

15.
AIM: To investigate the synergistic effect of decitabine (DCA) and valproic acid (VPA) on apoptosis and cell cycle arrest at G0/G1 phase in gastric cancer MGC-803 cells. METHODS: Gastric cancer MGC-803 cells were used in the study and divided into the following groups according to the treatment with different drugs for 72 h: DCA 1.5 μmol/L,DCA 3.0 μmol/L, VPA 1.5 mmol/L, DCA 1.5 μmol/L+VPA 1.5 mmol/L and DCA 3.0 μmol/L+VPA 1.5 mmol/L. The early and late apoptotic rates were detected by annexin V and PI staining. The cell cycle was also determined by flow cytometry. The relative nm23-H1 mRNA expression level was measured by real-time quantitative PCR. RESULTS: The apoptotic rates in VPA 1.5 mmol/L+DCA 1.5 μmol/L group (early: 33.58%±3.88%; late: 31.52%±4.20%) and VPA 1.5 mmol/L+DCA 3.0 μmol/L group (early: 42.61%±4.23%; late: 38.01%±3.86%), the percentages of the cells in G0/G1 phase in VPA 1.5 mmol/L+DCA 1.5 μmol/L group (61.55%±2.38%) and VPA 1.5 mmol/L+DCA 3.0 μmol/L group (66.75%±2.48%), and the relative nm23-H1 mRNA expression levels in VPA 1.5 mmol/L +DCA 1.5 μmol/L group (1.84±0.46) and VPA 1.5 mmol/L+DCA 3.0 μmol/L group (3.02±0.36) were all significantly higher than those in the corresponding concentrations of single drug treatment groups (P<0.01). CONCLUSION: Synergistic effect of VPA and DCA on apoptosis and cell cycle arrest in gastric cancer MGC-803 cells is possibly via inactivation of nm23-H1 gene expression.  相似文献   

16.
JIANG Jian-wei  ZHANG Yuan 《园艺学报》2004,20(11):1994-1998
AIM: To evaluate the inhibitory effect of galactose (Gal)-polyethyleneimine (PEI)-c-myc antisense oligodeoxynucleotide (ASODN) complex on proliferation of human hepatocellular carcinoma cells. METHODS: Human hepatocellular carcinoma cell line Bel-7402 was treated with Gal-PEI-ASODN complex. Cell proliferation was tested by trypan blue dye at different time points and with various concentrations of ASODN treatment. Cell morphology was observed under inverted microscope, cell hypodiploid percentage was analyzed by flow cytometry and cell ultrastructure was observed through electron microscopy. RESULTS: Compared with ASODN group (20 μmol/L) from 0 h to 96 h, Gal-PEI-ASODN complex (with ASODN 0.75 μmol/L) significantly suppressed Bel-7402 cells proliferation, the ASODN concentration within Gal-PEI-ASODN complex and time course acquired were significantly lower and shorter, respectively. Incubated with pure ASODN at different concentrations for 72 hours, cell proliferation was inhibited and IC50 was 20.9 μmol/L; while mediated with galactose receptor for 48 hours, ASODN significantly inhibited cell proliferation and IC50 was only 0.294 μmol/L, the inhibitory efficacy of ASODN enhanced 70.9 folds. While Bel-7402 cells were incubated with Gal-PEI-ASODN complex for 48 hours, cell hypodiploid percentage was much higher than ASODN groups and cell apoptosis was seen under electron microscopy. CONCLUSIONS: Galactose receptor mediated ASODN delivery may significantly increase proliferation inhibition efficacy on Bel-7402 cells.  相似文献   

17.
AIM: To explore the effects of aflatoxin G1(AFG1 )on proliferation and TNF-α secretion of human peripheral blood mononuclear cells(HPBM) in vitro. METHODS: The effects of AFG1 on proliferation of HPBM were analysed with flow cytometric (FCM) DNA analysis and MTT bioassay, while that on TNF-α secretion was detected with ELISA.RESULTS: FCM analysis revealed that 6 h after treatment, proliferation index(PI) of 1000 μg/L AFG1 treated HPBM was significantly higher than that of control. 24 h after AFG1 treatment, stimulating effects on proliferation was found in HPBM treated with AFG1 at 200 μg/L and 1 000μg/L.Regression analysis showed that PI was postively correlated with the concentrations of AFG1 in the concentration range from 0 to 1 000μg/L( r=0. 5122 and 0.5119 respectively,P<0.05).MTT bioassay showed that the A value of the cells treated with AFG1 at 2 000 μg/L was higher than that of the control. Double antibody sandwich enzyme linked immunosorbent assay (ELISA) results showed that AFG1 at a dose of 100 μg/L could significantly inhibit lipopolysaccharide-induced TNF-α secretion.CONCLUSION: AFG1 could stimulate the proliferation of HPBM and could decrease TNF-α secretion at certain concentration.  相似文献   

18.
19.
AIM: To investigate the roles of ATP-sensitive potassium (KATP) channels in high glucose-induced cardiac injury and the inhibitory effect of hydrogen sulfide (H2S) on the cardiomyocyte injury. METHODS: The expression level of KATP channel protein was tested by Western blot. The cell viability was measured by CCK-8 assay. The number of apoptotic cells was observed by Hoechst 33258 nuclear staining. Mitochondrial membrane potential (MMP) was examined by JC-1 staining. RESULTS: After the H9c2 cells were treated with 35 mmol/L glucose (high glucose, HG) for 1~24 h, the protein level of KATP channel was significantly reduced at 6 h, 9 h, 12 h and 24 h, reaching the minimum level at 12 h and 24 h. Pretreatment of the cells with 400 μmol/L NaHS (a donor of H2S) prior to exposure to HG for 12 h considerably blocked the down-regulation of KATP channels induced by HG. Pretreatment of the cells with 100 μmol/L mitochondrial KATP channel opener diazoxide, 50 μmol/L non-selective KATP channel opener pinacidil or NaHS obviously inhibited HG-induced injuries, leading to an increase in the cell viability, and decreases in the number of apoptotic cells and the MMP loss. Pretreatment with 100 μmol/L mitochondrial KATP channel antagonist 5-hydroxydecanoic acid or 1 mmol/L non-selective KATP channel antagonist glibenclamide attenuated the above cardioprotective effects of NaHS. CONCLUSION: KATP channels mediate the inhibitory effect of H2S on HG-induced cardiac injury.  相似文献   

20.
AIM: To study the roles of ClC-3 chloride channel in the inhibition of nasopharyngeal carcinoma cell cycle by metformin. METHODS: The CNE-2Z cells were treated with metformin at different concentrations. The viability of CNE-2Z cells was measured by CCK-8 assay. The cell cycle distribution was detected by flow cytometry. The protein expression of ClC-3 was determined by Western blot. The Cl- currents was record by the patch-clamp technique. In addition, the cell cycle distribution was analyzed in the nasopharyngeal carcinoma CNE-2Z cells which over-expressed ClC-3 by pEZ-M03-ClC-3 plasmid transfection. RESULTS: Metformin inhibited the viability of CNE-2Z cells at 5, 10 and 20 mmol/L. Metformin at 10 mmol/L prevented the activation of chloride currents induced by hypotonicity, inhibited the protein expression of ClC-3 chloride channel and arrested the nasopharyngeal carcinoma CNE-2Z cells at G0/G1 phases. ClC-3 chloride channel protein over-expression reversed the effect of metformin on the cell cycle distribution of CNE-2Z cells. CONCLUSION: Metformin inhibits the CNE-2Z cell cycle, which may be related to the inhibition of ClC-3 chloride channel function and protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号