首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We present an agent-based simulation (ABS) of Ceratitis capitata (“Medfly”) developed for estimating the time to extirpation of this pest in areas where quarantines and eradication treatments were immediately imposed. We use the ABS, implemented in the program MED-FOES, to study seven different outbreaks that occurred in Southern California from 2008 to 2010. Results are compared with the length of intervention and quarantine imposed by the State, based on a linear developmental model (thermal unit accumulation, or “degree-day”). MED-FOES is a useful tool for invasive species managers as it incorporates more information from the known biology of the Medfly, and includes the important feature of being demographically explicit, providing significant improvements over simple degree-day calculations. While there was general agreement between the length of quarantine by degree-day and the time to extirpation indicated by MED-FOES, the ABS suggests that the margin of safety varies among cases and that in two cases the quarantine may have been excessively long. We also examined changes in the number of individuals over time in MED-FOES and conducted a sensitivity analysis for one of the outbreaks to explore the role of various input parameters on simulation outcomes. While our implementation of the ABS in this work is motivated by C. capitata and takes extirpation as a postulate, the simulation is very flexible and can be used to study a variety of questions on the invasion biology of pest insects and methods proposed to manage or eradicate such species.  相似文献   

2.
Severe damage was caused to coastal forest vegetation by the Libeccio, a sea wind blowing against the Italian coast from W-SW. The behaviour of common cypress (Cupressus sempervirens), smooth cypress (C. glabra) and Monterey cypress (C. macrocarpa) in response to the Libeccio windstorms of 1990 was compared with that due to treatments with the surfactant ABS (sodium dodecylbenzenesulphonate). As regards both the nature and the intensity of the damage to the leaf waxes, the surge damage caused by the windstorms differed little from that produced artifi-cially by ABS sprays.  相似文献   

3.
The in vitro antimicrobial activity of Ankaferd Blood Stopper (ABS) was assessed on 102 clinical isolates from both Gram negative and Gram positive bacteria and four standard strains, including MRSA ATCC 43300, MSSA ATCC 25923, P. aeruginosa ATCC 27853 and E. coli ATCC 35218. ABS was significantly active against all bacteria investigated.  相似文献   

4.
以汽车气压ABS为研究对象,利用M atlab/S im u link软件建立了两通道三传感器气压ABS的仿真模型,设计了针对气压ABS的自适应模糊控制器.通过模拟仿真,证实了自适应模糊控制气压ABS在减小汽车制动距离、防止车轮抱死方面有明显的效果,分析了滞后时间、汽车总质量、汽车质心位置、路面附着系数和制动初始速度等因素对气压ABS效果的影响,提出了“采用电-气制动方式减少滞后时间,取消传统制动总阀,增大前轮制动器因数和加装减速度传感器”等改进建议.  相似文献   

5.
在福建省永春县,对毛竹(Phyllostachys pubescens)叶片的灰分含量、干重热值、去灰分热值月动态变化规律进行研究。结果表明:①毛竹成熟叶、老叶的灰分含量月变化趋势相似,毛竹成熟叶、老叶的灰分含量在秋季的10月至翌年春季的3月灰分含量较高,而春夏季相对较低;毛竹成熟叶的灰分含量在7.56%~15.91%之间,老叶的灰分含量在7.46%~16.67%,老叶的灰分含量显著高于成熟叶(P=0.0199)。②毛竹成熟叶、老叶的干重热值月变化趋势相似;成熟叶的干重热值在18.166~20.923 kJ.g-1之间,老叶的干重热值在18.581~20.249 kJ.g-1,老叶的干重热值与成熟叶接近;成熟叶的干重热值与灰分含量相关性不显著,老叶的干重热值与灰分含量具有显著的线性负相关。③毛竹成熟叶、老叶的去灰分热值月变化趋势相似;成熟叶的去灰分热值在20.061~22.962 kJ.g-1之间,平均为(21.670±0.720)kJ.g-1;老叶的去灰分热值在20.793~23.053 kJ.g-1之间,平均为(21.779±0.584)kJ.g-1;成熟叶的去灰分热值与老叶接近。  相似文献   

6.
改性剂对木塑复合材料力学性能影响的研究   总被引:5,自引:0,他引:5  
采用木材纤维,分别与PE、PS、ABS、SAN等热塑性高分子聚合物,经热压复合工艺制成木塑复合板材,通过加入不同的改性剂以及改变改性剂的加入量,研究它们对木塑复合材料力学性能的影响。结果表明:改性剂的加入能使木材纤维与各种热塑性高分子聚合物很好地胶接;改性剂不同对木塑复合材料的性能产生不同的影响;改性剂的加入量为木材纤维用量的5%时,该法制作的木塑复合板材力学性能最佳。  相似文献   

7.
We estimated the amount of nitrogen (N) remobilized from 1-year-old leaves at various positions in the crowns of mature Quercus glauca Thunb. ex Murray trees and related this to the production of new shoots. Leaf N concentration on an area basis (Na) and total N (Nt= Na x lamina area of all leaves on a shoot) were related to photosynthetic photon flux (PPF) on the leaves of current-year and 1-year-old shoots. When new shoots (S02 shoots; flushed in 2002) flushed, only a portion of the leaves on the previous year's shoots (S01 shoots; flushed in 2001) were shed. After the S02 shoots flushed, S01 shoots were defined as 1-year-old shoots (S01* shoots). Both Na and Nt were positively correlated with PPF for S01 shoots, but not for S01* shoots. The fraction of remobilized N (% of the maximum Na in S01 leaves) from remaining leaves was 5-35%, with the fraction size being positively correlated with the number of S02 shoots on an S01* shoot (new shoot number). However, the mean fraction of remobilized N from fallen leaves was 45% and was unrelated to new shoot number. The total amount of N remobilized from both fallen and remaining leaves was 1-20 mg per S01* shoot. Total remobilized N was positively correlated with new shoot number. There was a statistically significant positive relationship between the light-saturated net photosynthetic rate on a leaf area basis (Amax) and Na for both S01* and S02 leaves. However, when we compared leaves with similar Na, Amax of S01* leaves was only half that of S02 leaves, indicating that 1-year-old leaves had lower instantaneous N-use efficiency (Amax per unit Na) than current-year leaves. Ratios of chlorophyll a:b and Rubisco:chlorophyll were lower in S01* leaves than in S02 leaves, indicating that 1-year-old leaves were acclimatized to lower light environments. Thus, in Q. glauca, the N allocation theory (i.e., that N is distributed according to local PPF) applied only to the current-year shoots. Although the amount of foliar N in 1-year-old shoots was not strongly affected by the PPF on 1-year-old leaves, it was affected by interactions with current-year shoots.  相似文献   

8.

The leaves and leaf litter of Cryptomeria japonica D. Don was collected from April 1994 to March 1995 to describe the seasonal changes in nutrient concentrations in leaves and leaf litter. Nitrogen (N), phosphorus (P) and potassium (K) concentrations were in the order new leaves > old leaves > leaf litter, whereas calcium (Ca) concentration was in the order leaf litter > old leaves > new leaves during the whole year. N, P and K concentrations were at their highest during the new leaf growth phase, and then decreased as a result of the diluting effect and translocation, whereas Ca increased with time. Magnesium did not show any clear seasonal trend compared with other nutrients. N resorption efficiency was lower than P resorption efficiency. There were two nutrient resorption peaks, which could be attributed to high nutrient translocation to new leaves in the spring and to translocation from old leaves before senescence in the autumn. A significant correlation between N and P resorption was observed.  相似文献   

9.
Ishida A  Yazaki K  Hoe AL 《Tree physiology》2005,25(5):513-522
In a field study, we compared anatomy and diurnal gas exchange and chlorophyll fluorescence in sunlit mature leaves of Macaranga gigantea (Reichb. f. and Zoll.) Muell. seedlings, saplings, an adult tree and suckers originating from stumps. We tested the hypothesis that the pattern of resource use shifts across various life stages with ontogenetic changes in leaf anatomy and physiology. Among leaves of different developmental stages, seedling leaves were the smallest and thinnest, whereas adult tree leaves were the largest and thickest, and the air space within the lamina was largest in seedling leaves and smallest in adult tree leaves. Photosynthetic nitrogen-use efficiency (PNUE) was higher in seedling and sapling leaves than in adult tree leaves. Mean PNUE in seedling leaves was 1.6 times that in adult tree leaves. Nevertheless, among the developmental stages, net photosynthetic rate (Pn) per unit leaf area was lowest in seedling leaves because they have the lowest nitrogen (N) content per unit leaf area. In situ water vapor stomatal conductance (g(s) at a given leaf-to-air vapor pressure deficit was highest in sapling leaves, suggesting that they have a high hydraulic efficiency per unit leaf area. Among developmental stages, intrinsic water-use efficiency (Pn/g(s)) and photochemical capacity of photosystem II were lowest in seedling leaves. Sapling leaves had the highest N concentration and Pn per unit dry mass and the highest g(s), indicating that the gradual transition from the seedling stage to the sapling stage is accompanied by an accumulation of N in plant bodies and the development of hydraulic systems to counteract unfavorable environmental stresses. The properties of adult tree leaves (low PNUE, high carbon:N ratio, small and dense cells and thick lamina) indicate that, during the transition from the sapling stage to the adult tree stage, the priority of resource use in leaves gradually shifts from enhancement of photosynthetic performance to defense against herbivory and mechanical damage. Leaf morphology and physiology were coordinated with the differences in resource use at each life stage.  相似文献   

10.
Mesophyll conductance, g(m), was estimated from measurements of stomatal conductance to carbon dioxide transfer, g(s), photosynthesis, A, and chlorophyll fluorescence for Year 0 (current-year) and Year 1 (1-year-old) fully sunlit leaves from short (2 m tall, 10-year-old) and tall (15 m tall, 120-year-old) Nothofagus solandrii var. cliffortiodes trees growing in adjacent stands. Rates of photosynthesis at saturating irradiance and ambient CO(2) partial pressure, A(satQ), were 25% lower and maximum rates of carboxylation, V(cmax), were 44% lower in Year 1 leaves compared with Year 0 leaves across both tree sizes. Although g(s) and g(m) were not significantly different between Year 0 and Year 1 leaves and g(s) was not significantly different between tree heights, g(m) was significantly (19%) lower for leaves on tall trees compared with leaves on short trees. Overall, V(cmax) was 60% higher when expressed on the basis of CO(2) partial pressure at the chloroplasts, C(c), compared with V(cmax) on the basis of intercellular CO(2) partial pressure, C(i), but this varied with leaf age and tree size. To interpret the relative stomatal and mesophyll limitations to photosynthesis, we used a model of carbon isotopic composition for whole leaves incorporating g(m) effects to generate a surface of 'operating values' of A over the growing season for all leaf classes. Our analysis showed that A was slightly higher for leaves on short compared with tall trees, but lower g(m) apparently reduced actual A substantially compared with A(satQ). Our findings showed that lower rates of photosynthesis in Year 1 leaves compared with Year 0 leaves were attributable more to increased biochemical limitation to photosynthesis in Year 1 leaves than differences in g(m). However, lower A in leaves on tall trees compared with those on short trees could be attributed in part to lower g(m) and higher stomatal, L(s), and mesophyll, L(m), limitations to photosynthesis, consistent with steeper hydraulic gradients in tall trees.  相似文献   

11.
Beech leaves were sampled at the end of a prolonged hot dry period at a tree decline site in the Black Forest, Germany to investigate the potential role of flavanols in defense mechanisms against environmental stress. Green and yellowing leaves were harvested from the uppermost canopy of trees that were more than 200 years old and 30 m high. Yellowing leaves had a 7.4-fold higher concentration of total flavanols than green leaves. Green leaves contained flavanol inclusions, but during yellowing the inclusions disintegrated and the cells became filled with flavanols. Abscisic acid (ABA) stimulated the release of flavanols from intravacuolar inclusions of leaf petioles and flower pedicels. In addition, ABA caused flavanols to leach from the trichomes of beech galls. The antioxidative potential of leaf extracts, as estimated by indoleacetic acid (IAA) oxidation, was significantly higher in yellowing leaves than in green leaves. In vitro experiments revealed that (+)-catechin promoted growth of beech tissue.  相似文献   

12.
Changes in net carbon assimilation and water status were studied during leaf development in the deciduous, tropical species Brachystegia spiciformis Benth. In this upland savanna African tree, bud-burst and leaf development occur approximately two months before the rainy season. The newly formed leaves synthesize anthocyanin until the fully expanded leaves of the whole canopy are red. This foliage is referred to as "spring flush" foliage. Subsequently, the anthocyanins are metabolized and the pre-rain leaves become green. Carbon dioxide assimilation exhibited a bimodal diurnal pattern and was similar for pre-rain green leaves and fully expanded flushing leaves, although pre-rain green leaves showed a net uptake of carbon throughout the daylight period, whereas flushing leaves exhibited only brief periods of net photosynthesis in the morning and early afternoon. Measurements of leaf water potential and relative water content showed a diurnal pattern with considerable variation throughout the day. Leaf water potential and relative water content values decreased soon after sunrise reaching a minimum at a time corresponding to the afternoon peak in CO(2) assimilation. Stomatal conductance was closely related to transpiration rate in both flushing and pre-rain green leaves, although flushing leaves had lower stomatal conductances than pre-rain green leaves. Pre-rain green leaves exhibited a compensation irradiance of approximately 180 micro mol m(-2) s(-1), whereas flushing leaves had positive net photosynthesis only at PPFDs greater than 300 micro mol m(-2) s(-1). Rate of photosynthesis (expressed per leaf area or chlorophyll unit) increased as anthocyanin concentration decreased, although the photosynthetic rate continued to increase long after the leaf anthocyanins had been degraded to low, visually undetectable amounts. Post-rain green leaves had chlorophyll concentrations, transpiration rates and stomatal conductances similar to those of pre-rain green leaves; however, photosynthetic rates in post-rain leaves were more than three times higher. Thus, during the early stages of the spring flush, carbon asimilation rates of the flushing leaves were inversely related to leaf anthocyanin concentrations. In pre-rain green leaves, photosynthesis was limited by other non-stomatal factors.  相似文献   

13.
Frost resistance and ice nucleation temperatures of leaves, from bud swelling until after full expansion, were measured in situ for five major woody timberline species with recently developed field freezing equipment. Frost resistance determined in situ on leaves of attached twigs was significantly higher than values determined on detached leaves in laboratory tests (e.g., the temperature at which incipient frost damage was observed (LTi) was 1.2 degrees C higher for detached leaves than for attached leaves of Picea abies (L.) Karst.). Frost resistance of leaves of all species changed significantly during shoot expansion (e.g., changes of 7.2 and 11 degrees C for Rhododendron ferrugineum L. and Larix decidua Mill., respectively). Expanding leaves (between 0 and 60% of full expansion) were the most sensitive to frost, with LTi values ranging from -3.4 degrees C in R. ferrugineum to -6.3 degrees C in L. decidua. Among the studied species, P. abies and R. ferrugineum were the most frost sensitive throughout the shoot elongation period. In situ freezing patterns of leaves of attached twigs also differed from those of leaves of excised twigs. During leaf expansion, two distinct freezing exotherms were always registered in situ. The first freezing event (E1, high-temperature exotherm) was recorded at -1.5 +/- 0.2 degrees C and reflected extracellular ice formation. Exposure of leaves to temperatures at which E1 occurred was, in all cases, noninjurious. The low-temperature exotherm (E2) mostly coincided with frost damage, except for some stages of leaf expansion in R. ferrugineum and P. abies, indicating that in situ freezing exotherms were not accurate estimators of frost damage in these species.  相似文献   

14.
Five-year-old 'Spring' navel (Citrus sinensis (L.) Osbeck) orange trees were completely defruited, 50% defruited or left fully laden to study effects of fruit load on concentrations of nitrogen (N) and carbohydrate, net assimilation of CO2 (Ac) and stomatal conductance (gs) of mature leaves on clear winter days just before fruit harvest. Leaves on defruited trees were larger, had higher starch concentrations and greater leaf dry mass per area (LDMa) than leaves on fruited trees. Both Ac and gs were more than 40% lower in sunlit leaves on defruited trees than in sunlit leaves on trees with fruit. Leaves immediately adjacent to fruit were smaller, had lower leaf nitrogen and carbohydrate concentrations, lower LDMa and lower Ac than leaves on non-fruiting branches of the same trees. Removing half the crop increased individual fruit mass, but reduced fruit color development. Half the trees were shaded with 50% shade cloth for 4 months before harvest to determine the effects of lower leaf temperature (Tl) and leaf-to-air vapor pressure difference on leaf responses. On relatively warm days when sunlit Tl > 25 degrees C, shade increased Ac and gs, but had no effect on the ratio of internal to ambient CO2 (Ci/Ca) concentration in leaves, implying that high mesophyll temperatures in sunlit leaves were more important than gs in limiting Ac. Sunlit leaves were more photoinhibited than shaded leaves on cooler days when Tl < 25 degrees C. Shade decreased total soluble sugar concentrations in leaves, but had no effect on leaf starch concentrations. Shading had no effects on canopy volume, yield or fruit size, but shaded fruit developed better external color than sun-exposed fruit. Overall, the presence of a normal fruit crop resulted in lower foliar carbohydrate concentrations and higher Ac compared with defruited trees, except on warm days when Ac was reduced by high leaf temperatures.  相似文献   

15.
We tested the hypothesis that leaf age affects photosynthetic induction, because conductance to CO2 diffusion usually decreases with increasing leaf age. Photosynthetic inductions, primarily determined by the light modulation of Rubisco activity and stomatal opening, were investigated in both young and mature leaves, as defined by leaf plastochron index (LPI), from three poplar clones: Populus alba L., P. nigra L. and P. x euramericana (Dode) Guinier. In all clones, maximum assimilation rates (A max), maximum stomatal conductance (G Smax) and dark respiration rates (RD) were higher in young leaves (LPI = 3-5) than in mature leaves (LPI = 10-14), and A max decreased from P. alba via P. x euramericana to P. nigra. The clones with high photosynthetic capacity had low induction states 60 s after leaf illumination (IS60; indicating a slow initial induction phase), and required less time to reach 90% photosynthetic induction (T90). In contrast, the clone with the lowest photosynthetic capacity (P. nigra) exhibited high IS60 (high initial induction state) but a long induction time (high T90). A comparison of mature leaves with young leaves revealed significantly (P < 0.01) lower IS60 values in mature leaves of P. nigra only, and significantly higher T90 values in mature leaves of P. alba only. In all clones, young leaves exhibited a lower percentage of maximum transient stomatal limitation during photosynthetic induction (4-9%) compared with mature leaves (16-30%). Transient biochemical limitation, assessed on the basis of the time constants of Rubisco activation (tau), was significantly higher in mature leaves than in young leaves of P. alba; whereas there were no significant differences in tau between young and mature leaves of the other poplar clones. Thus, our hypothesis that leaf age affects photosynthetic induction was confirmed at the level of transient stomatal limitation, which was significantly higher in mature leaves than in young leaves in all clones. For the induction parameters IS60, T90 and tau, photosynthetic induction was more clone-specific and was dependent on leaf age only in some cases, an observation that may apply to other tree species.  相似文献   

16.
James SA  Bell DT 《Tree physiology》2000,20(12):815-823
Juvenile and adult leaves of the heteroblastic species Eucalyptus globulus Labill. ssp. globulus did not show active diurnal orientation toward or away from incident radiation. Juvenile leaves of a late-maturing sapling of a Tasmanian provenance were evenly distributed in all azimuth sectors. In contrast, an early-maturing sapling of the same age from Wilsons Promontory, Victoria had a predominance of adult leaf blades facing east and west. Mid-vein and blade angles of juvenile and adult leaves were non-random with an overall vertical declination of the leaves. Both leaf types intercepted a greater irradiance during the morning than at midday. Sub-horizontal juvenile leaves intercepted 22% more irradiance than vertical adult leaves during the middle of the day. The amphistomatal and isobilateral adult leaves intercepted sunlight equally on both leaf surfaces. Stomatal conductance was variable during the period of measurement but was similar for the Tasmanian juvenile (0.4 to 0.9 cm s(-1)) leaves and Wilsons Promontory adult (0.5 to 1.2 cm s(-1)) leaves. Greater light interception by the sub-horizontal juvenile leaves would confer a growth advantage to saplings and regenerating canopies. Reduced light interception and leaf temperature of vertical adult E. globulus leaves would assist in water conservation, particularly at high solar angles.  相似文献   

17.
Urban L  Lu P  Thibaud R 《Tree physiology》2004,24(4):387-399
Carbohydrate and nitrogen contents, chlorophyll fluorescence and gas exchange were measured in leaves from both vegetative and reproductive terminal shoots of 12-year-old flowering mango trees. Reproductive shoot leaves were close to swelling floral buds, inflorescences or panicles bearing set fruits. Leaves close to inflorescences had lower rates of mitochondrial respiration (Rd) and net photosynthesis (Anet), and lower stomatal conductance (gs) and quantum efficiency of photosystem II under actinic light than vegetative shoot leaves. Leaf nitrogen concentration, which decreased from the beginning until the end of flowering, was lower in leaves close to inflorescences than in vegetative shoot leaves. However, these differences and changes were counterbalanced by an increase in leaf mass-to-area ratio so that leaf nitrogen per unit leaf area (Na) remained nearly constant during the whole flowering period, except in leaves close to panicles bearing set fruits. Net CO2 assimilation rate simulated by a biochemical model of leaf photosynthesis (Urban et al. 2003) was much higher than Anet measured at an ambient CO2 partial pressure (Ca) of either 36 or 70 Pa. The overestimation of Anet was more pronounced in leaves close to inflorescences, to panicles bearing set fruits and to reversing inflorescences (characterized by the appearance of leaves in terminal positions on inflorescences) than in vegetative shoot leaves. It is concluded that low Anet in leaves close to inflorescences was probably due neither to changes in Na nor to a decrease in Rubisco activity induced by low gs, but rather to a decrease in electron flow in photosystem II. This decrease was not directly associated with higher starch or soluble sugar contents.  相似文献   

18.
We studied the absorption, assimilation, translocation and distribution of nitrogen (N) from urea applied in autumn to leaves of 1-year-old potted Fuji/M26 apple (Malus domestica Borkh) trees. In early October, all leaves of each tree were painted with either 3% urea (enriched to 10 atom % with 15N) or water (control trees). Four trees were harvested before the treatment and N and amino acid contents were determined. Four trees from each treatment were harvested at 2, 4, 7, 10, 15 and 20 days after urea or water application. Total N, amino acids and 15N in leaves, bark, xylem, shank and roots were analyzed to determine uptake and mobilization of N from urea. Most uptake of 15N by leaves occurred during the first 2 days following application of urea. The mean rate of absorption during these 2 days was 0.29 g m-2 day-1. Amino acids in leaves, bark and roots increased significantly after urea application compared with control values. The highest concentrations of amino acids in leaves and bark occurred 4 days after application, whereas the highest concentrations of amino acids in roots occurred 10 days after application. Total 15N content in leaves peaked 2 days after urea application and then decreased, whereas 15N content in roots and bark increased throughout the experiment. Total 15N content in xylem and shank was low. Leaves absorbed 35% of the 15N applied as urea, and 63.6% of absorbed 15N was translocated out of leaves within 20 days after urea application. We conclude that N from urea was converted to amino acids in leaves after foliar application in autumn, and roots and bark were the main sinks of N from urea applied to leaves.  相似文献   

19.
泡桐丛枝病发生相关蛋白质的电泳分析   总被引:13,自引:4,他引:13  
对毛泡桐和白花泡桐同龄同方位的病株健叶,病株病叶和健株健叶蛋白质进行了单向和双向SDS聚丙烯酰胺凝胶电泳分析研究。单向电泳结果表明,毛泡桐和白花泡桐病株健叶,病株病叶和健株健叶的蛋白质在种类和数量上存在一定的差异。其明显的蛋白质凝胶扫描谱带分别有22、20和17以及27、21和22条;双向电泳结果表明,毛泡桐与白花泡桐在健株健叶,病株健叶和病株病叶蛋白质变化方面具有一定相似性,即在两种泡桐健株健叶和病株健叶中存在的一种pI6.8,MW24KD蛋白多肽在病株病叶中观察不到。我们认为这种情形可能与发生泡桐丛枝病有一定的关系。  相似文献   

20.
Relationships between CO(2) assimilation at light saturation (A(max)), nitrogen (N) content and weight per unit area (W(A)) were studied in leaves grown with contrasting irradiances (outer canopy versus inner canopy) and N supply rates in field-grown nectarine trees Prunus persica L. Batsch. cv. Fantasia. Both A(max) and N content per unit leaf area (N(A)) were linearly correlated to W(A), but leaves in the high-N treatment had higher N(A) and A(max) for the same value of W(A) than leaves in the low-N treatment. The curvilinear relationship between photosynthesis and total leaf N was independent of treatments, both when expressed per unit leaf area A(maxA) and N(A)) and per unit leaf weight (A(maxW) and N(W)), but the relationship was stronger when data were expressed on a leaf area basis. Both A(maxA) and N(A) were higher for outer canopy leaves than for inner canopy leaves and A(maxW) and N(W) were higher for leaves in the high-N treatment than for leaves in the low-N treatment. The relationship between A(max) and N resulted in a similar photosynthetic nitrogen-use efficiency at light saturation (A(max)NUE) for both N and light treatments. Photosynthetic nitrogen-use efficiency was similar among treatments throughout the whole light response curve of photosynthesis. Leaves developed in shade conditions did not show higher N-use efficiency at low irradiance. At any intercellular CO(2) partial pressure (C(i)), photosynthetic CO(2) response curves were higher for outer canopy leaves and, within each light treatment, were higher for the high-N treatments than for the low-N treatments. Consequently, most of the differences among treatments disappeared when photosynthesis was expressed per unit N. However, slightly higher assimilation rates per unit N were found for outer canopy leaves compared with inner canopy leaves, in both N treatments. Because higher daily irradiance within the canopies of the low-N trees more than compensated for the lower photosynthetic performances of these leaves compared to the leaves of high-N trees, daily carbon gain (and N-use efficiency on a daily assimilation basis) per leaf was higher for the low-N treatment than for the high-N treatment in both outer and inner canopy leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号