首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of all the galaxies in the visible part of the universe, 500 million are seen through intervening galaxies. In some instances the foreground galaxy will act as a gravitational lens and produce distorted and (in brightness) greatly amplified images of the galaxy behind it; such images may simulate starlike superluminous objects such as quasars (quasi-stellar objects). The number of gravitational lenses is several times greater than the number of quasars yet observed. In other instances the superposition of the image upon a visible foreground galaxy may simulate morphological configurations resembling N-type, dumbbell, spiral, or barred-spiral galaxies.  相似文献   

2.
Terrell J 《Science (New York, N.Y.)》1966,154(3754):1281-1288
Many difficulties face the conventional interpretation of the red shift of quasars as a Hubble shift, with associated immense distances. These objects are not of galactic size or nature, and are not associated with galaxies or clusters of galaxies. The continuing energy source for such enormous powers for a period of 10(6) to 10(7) years has not been clearly revealed. The absence of the expected absorption for the Lyman-alpha spectral line of hydrogen is a new difficulty. Because of the relativistic limit on the diameter which can produce rapid fluctuations of light output, there may not be enough surface to radiate the required light.A similar and perhaps more serious difficulty exists for the fluctuating radio output. Calculations given here for synchrotron radiation self-absorption lead to a reasonably accurate formula for the angular diameter of a radio source. For the quasar 3C 273B these relations indicate a conflict with the usually assumed distance. However, the discrepancy may be explained in terms of strong variation of radio diameter with frequency. For CTA 102 the conflict is more serious, and could be explained -for cosmological distance-only by rejecting the data of Sholomitskii. These difficulties are removed by the hypothesis that the observed quasars were ejected from a gravitational collapse at the center of our own galaxy, which may have occurred roughly 5 million years ago. The resultant distances, of the order of a million lightyears, reduce the energy problem by a factor of 10(6) or 10(7). On this basis the optical diameter would be less than a light-hour, about the size of the earth's orbit. A rotating mass of a few thousand solar masses with this diameter would account for the unusual line width, could easily produce the required radiated energy, and could readily account for observed short fluctuation periods and variations in spectrum. It is suggested that the radio output may be produced by high-speed passage of the quasar through intergalactic gas. This would probably correspond to a radio size of a few light-years or less, in agreement with the fluctuations. Since the radio power would be considerably less than that of radio galaxies, it is suggested that radio galaxies may have ejected groups of quasars. This would explain the peculiarly distant locations of the radio sources for many such galaxies. The objections to this model that have been raised are apparently not fatal. In particular, the receding hydrogen cloud discovered by Koehler to be in the line of sight to 3C 273 is more plausibly interpreted as having been ejected from our own galaxy, in the manner observed for other galaxies, than as being associated with the Virgo cluster of galaxies. The latter interpretation, which would place 3C 273 further away, is in conflict with Lyman-alpha absorption data for 3C 9 and other quasars. Thus the local model seems to give a reasonable explanation not only of quasars but also of radio galaxies, bothv of which seem largely to defy explanation on other grounds. Whether or not this model is valid, it is clear that an understanding of quasars will radically change our understanding of the universe.  相似文献   

3.
Relativistic outflows or "jets" are collimated streams of high-energy electrons that emit synchrotron radiation at radio wavelengths and have bulk velocities that are a substantial fraction of the speed of light. They trace the outflow of enormous amounts of energy and matter from a central supermassive black hole in distant radio galaxies. As Fender explains in this Perspective, much smaller, more local sources may also produce such jets. Data presented by Paredes et al. point toward association of one such source, a relatively faint x-ray binary, with a gamma-ray source. This and similar pairs may contribute substantially to the production of high-energy particles and photons within our galaxy.  相似文献   

4.
We have detected the neutral atomic hydrogen (HI) emission line at a cosmologically significant distance [redshift (z) = 0.18] in the rich galaxy cluster Abell 2218 with the Westerbork Synthesis Radio Telescope. The HI emission originates in a spiral galaxy 2.0 h65(-1) megaparsecs from the cluster core. No other significant detections have been made in the cluster, suggesting that the mechanisms that remove neutral gas from cluster galaxies are efficient. We infer that fewer than three gas-rich galaxies were accreted by Abell 2218 over the past 10(9) years. This low accretion rate is qualitatively consistent with low-density cosmological models in which clusters are largely assembled at z > 1.  相似文献   

5.
Recent x-ray, optical, and radio observations coupled with particle and gas dynamics numerical simulations reveal an unexpectedly complex environment within clusters of galaxies, driven by ongoing accretion of matter from large-scale supercluster filaments. Mergers between clusters and continuous infall of dark matter and baryons from the cluster periphery produce long-lived "stormy weather" within the gaseous cluster atmosphere-shocks, turbulence, and winds of more than 1000 kilometers per second. This weather may be responsible for shaping a rich variety of extended radio sources, which in turn act as "barometers" and "anemometers" of cluster weather.  相似文献   

6.
Peebles PJ 《Science (New York, N.Y.)》1984,224(4656):1385-1391
Debate on how galaxies and clusters of galaxies formed has reached an interesting stage at which one can find arguments for quite different scenarios. The galaxy distribution has a complex "frothy" character that could be the fossil of a network of protoclusters or pancakes that produced galaxies. However, there are galaxies like our own that seem never to have been in a protocluster but are physically similar to the galaxies in dense clusters. Some clues to be assessed in resolving this dilemma are the possible existence of galaxy filaments, the relative ages of galaxies and clusters of galaxies, and the continuity between cluster and field galaxies and between galaxies and clusters of galaxies.  相似文献   

7.
Arp H 《Science (New York, N.Y.)》1966,151(3715):1214-1216
Pairs of radio sources which are separated by from 2 degrees to 6 degrees on the sky have been investigated. In a number of cases peculiar galaxies have been found approximately midway along a line joining the two radio sources. The central peculiar galaxies belong mainly to a certain class in the recently compiled Atlas of Peculiar Galaxies. Among the radio sources so far associated with the peculiar galaxies are at least five known quasars. These quasars are indicated to be not at cosmological distances (that is, red shifts not caused by expansion of the universe) because the central peculiar galaxies are only at distances of 10 to 100 megaparsecs. The absolute magnitudes of these quasars are indicated to be in the range of brightness of normal galaxies and downward. Some of the radio sources which have been found to be associated with peculiar galaxies are galaxies themselves. It is therefore implied that ejection of material took place within or near the parent peculiar galaxies with speeds between 10(2) and 10(4) kilometers per second. After traveling for times of the order of 10(7) to 10(9) years, the luminous matter (galaxies) and radio sources (plasma) have reached their observed separations from the central peculiar galaxy. The large red shifts measured for the quasars would seem to be either (i) gravitational, (ii) collapse velocities of clouds of material falling toward the center of these compact galaxies, or (iii) some as yet unknown cause.  相似文献   

8.
Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.  相似文献   

9.
The Dark Age is the period between the time when the cosmic microwave background was emitted and the time when the evolution of structure in the universe led to the gravitational collapse of objects, in which the first stars were formed. The period of reionization started with the ionizing light from the first stars, and it ended when all the atoms in the intergalactic medium had been reionized. The most distant sources of light known at present are galaxies and quasars at redshift z congruent with 6, and their spectra indicate that the end of reionization was occurring just at that time. The Cold Dark Matter theory for structure formation predicts that the first sources formed much earlier.  相似文献   

10.
The origin of the substantial magnetic fields that are found in galaxies and on even larger scales, such as in clusters of galaxies, is yet unclear. If the second-order couplings between photons and electrons are considered, then cosmological density fluctuations, which explain the large-scale structure of the universe, can also produce magnetic fields on cosmological scales before the epoch of recombination. By evaluating the power spectrum of these cosmological magnetic fields on a range of scales, we show here that magnetic fields of 10(-18.1) gauss are generated at a 1-megaparsec scale and can be even stronger at smaller scales (10(-14.1) gauss at 10 kiloparsecs). These fields are large enough to seed magnetic fields in galaxies and may therefore have affected primordial star formation in the early universe.  相似文献   

11.
The age of the universe based on abundances of isotopes is in the range 10 billion to 15 billion years. This is consistent with the age range 12 billion to 20 billion years calculated from the evolution of the oldest galactic stars. A third estimate of the age of the universe is based on the Hubble relation between the velocities of galaxies and their distances from us, where the inverse of the Hubble parameter H is a measure of the age of a uniformly expanding universe. Evidence that has been accumulating over the past few years indicates that the expansion of the universe may exhibit a rather large local perturbation due to the gravitational attraction of the Virgo supercluster. Different types of observations still produce conflicting evidence about the velocity with which the Local Group of galaxies (of which our Milky Way system is a member) is falling into the Virgo cluster. The results to date indicate that this velocity lies somewhere in the range 0 to 500 kilometers per second. The resulting ambiguity in the flow pattern for relatively nearby galaxies makes values of H derived from galaxies with radial velocities less than 2000 kilometers per second particularly uncertain, and this restricts determinations of H to distant galaxies, for which distances are particularly uncertain. The best that can be said at present is that H(-1) yields a maximum time scale in the range 10 billion to 20 billion years.  相似文献   

12.
Binary supermassive black holes are produced by galactic mergers as the black holes from the two galaxies fall to the center of the merged system and form a bound pair. The two black holes will eventually coalesce in an enormous burst of gravitational radiation. Here we show that the orientation of a black hole's spin axis would change dramatically even in a minor merger, leading to a sudden flip in the direction of any associated jet. We identify the winged or X-type radio sources with galaxies in which this has occurred. The inferred coalescence rate is similar to the overall galaxy merger rate, implying that of the order of one merger event per year could be detected by gravitational wave interferometers.  相似文献   

13.
Many galaxies have taken on their familiar appearance relatively recently. In the distant Universe, galaxy morphology deviates significantly (and systematically) from that of nearby galaxies at redshifts (z) as low as 0.3. This corresponds to a time approximately 3.5 x 10(9) years in the past, which is only approximately 25% of the present age of the Universe. Beyond z = 0.5 (5 x 10(9) years in the past), spiral arms are less well developed and more chaotic, and barred spiral galaxies may become rarer. At z = 1, around 30% of the galaxy population is sufficiently peculiar that classification on Hubble's traditional "tuning fork" system is meaningless. On the other hand, some characteristics of galaxies have not changed much over time. The space density of luminous disk galaxies has not changed significantly since z = 1, indicating that although the general appearance of these galaxies has continuously changed over time, their overall numbers have been conserved.  相似文献   

14.
High-sensitivity x-ray measurements with the recently launched Einstein Observatory are having a major impact on wide areas of astronomical research. The x-ray luminosity of young O, B, and A stars and late K and M stars is found to be several orders of magnitude greater than predicted by current theories of coronal heating. Detailed x-ray images and spectra of supernova remnants are providing new information on the temperature, composition, and distribution of material ejected in supernova explosions as well as of the material comprising the interstellar medium. Observations of galaxies are yielding insights on the formation and evolution of stellar systems and galaxies over a wide range of variables. X-ray time variations are being used to probe the underlying energy source in quasars and active galactic nuclei. The distribution of mass in clusters of galaxies is being traced through detailed x-ray images, and the data are being used to classify clusters and trace their formation and evolution. Substantial progress is being made in several areas of cosmological research, particularly in the study of the diffuse x-ray background.  相似文献   

15.
Lamb RC  Weekes TC 《Science (New York, N.Y.)》1987,238(4833):1528-1534
One of the major astronomical discoveries of the last two decades was the detection of luminous x-ray binary star systems in which gravitational energy from accretion is released by the emission of x-ray photons, which have energies in the range of 0.1 to 10 kiloelectron volts. Recent observations have shown that some of these binary sources also emit photons in the energy range of 10(12) electron volts and above. Such sources contain a rotating neutron star that is accreting matter from a companion. Techniques to detect such radiation are ground-based, simple, and inexpensive. Four binary sources (Hercules X-1, 4U0115+63, Vela X-1, and Cygnus X-3) have been observed by at least two independent groups. Although the discovery of such very high energy "gamma-ray binaries" was not theoretically anticipated, models have now been proposed that attempt to explain the behavior of one or more of the sources. The implications of these observations is that a significant portion of the more energetic cosmic rays observed on Earth may arise from the action of similar sources within the galaxy during the past few million years.  相似文献   

16.
Liquid crystals are remarkably useful for laboratory exploration of the dynamics of cosmologically relevant defects. They are convenient to work with, they allow the direct study of the "scaling solution" for a network of strings, and they provide a model for the evolution of monopoles and texture. Experiments described here support the simple "one-scale" model for cosmic string evolution, as well as some qualitative predictions of string statistical mechanics. The structure of monopoles and their apparent cylindrical but not spherical symmetry is discussed. A particular kind of defect known as texture is described and is shown to have a dynamical instability-it can decay into a monopole-antimonopole pair. This decay process has been observed occurring in the liquid crystal, and studied with numerical simulations.  相似文献   

17.
Yoon SJ  Yi SK  Lee YW 《Science (New York, N.Y.)》2006,311(5764):1129-1132
The colors of globular clusters in most large elliptical galaxies are bimodal. This is generally taken as evidence for the presence of two cluster subpopulations that have different geneses. However, here we find that, because of the nonlinear nature of the metallicity-to-color transformation, a coeval group of old clusters with a unimodal metallicity spread can exhibit color bimodality. The models of cluster colors indicate that horizontal-branch stars are the main drivers behind the empirical nonlinearity. We show that the scenario gives simple and cohesive explanations for all the key observations and could simplify theories of elliptical galaxy formation.  相似文献   

18.
The relics of disrupted satellite galaxies have been found around the Milky Way and Andromeda, but direct evidence of a satellite galaxy in the early stages of disruption has remained elusive. We have discovered a dwarf satellite galaxy in the process of being torn apart by gravitational tidal forces as it merges with a larger galaxy's dark matter halo. Our results illustrate the morphological transformation of dwarf galaxies by tidal interaction and the continued buildup of galaxy halos.  相似文献   

19.
In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies. Here, we report Very Large Array telescope observations of giant ( approximately 2 Mpc by 1.6 Mpc), ring-shaped nonthermal radio-emitting structures, found at the outskirts of the rich cluster of galaxies Abell 3376. These structures may trace the elusive shock waves of cosmological large-scale matter flows, which are energetic enough to power them. These radio sources may also be the acceleration sites where magnetic shocks are possibly boosting cosmic-ray particles with energies of up to 10(18) to 10(19) electron volts.  相似文献   

20.
Sadeh D 《Science (New York, N.Y.)》1967,158(3805):1176-1178
The probability that a galaxy gathers light from another remote galaxy, and deflects and focuses it toward an observer on Earth, is calculated according to various cosmologic models. I pose the question of whether an object called a quasar is a single, intrinsically luminous entity or the result of accidental alignment, along the line of sight, of two normal galaxies, the more distant of which has its light amplified by the gravitational-lens effect of the nearer galaxy. If galaxies are distributed at random in the universe, the former alternative is true. But, if we assume that most galaxies exist in pairs, we can find about 30 galaxies occurring exactly one behind the other in such a way as to enable amplification of the order of 50. This model explains also the variations in intensity in quasars, but fails to explain others of their observed properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号