首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the dawn of the industrial era, the atmospheric concentrations of several radiatively active gases have been increasing as a result of human activities. The radiative heating from this inadvertent experiment has driven the climate system out of equilibrium with the incoming solar energy. According to the greenhouse theory of climate change, the climate system will be restored to equilibrium by a warming of the surfacetroposphere system and a cooling of the stratosphere. The predicted changes, during the next few decades, could far exceed natural climate variations in historical times. Hence, the greenhouse theory of climate change has reached the crucial stage of verification. Surface warming as large as that predicted by models would be unprecedented during an interglacial period such as the present. The theory, its scope for verification, and the emerging complexities of the climate feedback mechanisms are discussed.  相似文献   

2.
Rapid global warming of 5 degrees to 10 degrees C during the Paleocene-Eocene Thermal Maximum (PETM) coincided with major turnover in vertebrate faunas, but previous studies have found little floral change. Plant fossils discovered in Wyoming, United States, show that PETM floras were a mixture of native and migrant lineages and that plant range shifts were large and rapid (occurring within 10,000 years). Floral composition and leaf shape and size suggest that climate warmed by approximately 5 degrees C during the PETM and that precipitation was low early in the event and increased later. Floral response to warming and/or increased atmospheric CO2 during the PETM was comparable in rate and magnitude to that seen in postglacial floras and to the predicted effects of anthropogenic carbon release and climate change on future vegetation.  相似文献   

3.
Purves D  Pacala S 《Science (New York, N.Y.)》2008,320(5882):1452-1453
Dynamic global vegetation models (DGVMs) have shown that forest dynamics could dramatically alter the response of the global climate system to increased atmospheric carbon dioxide over the next century. But there is little agreement between different DGVMs, making forest dynamics one of the greatest sources of uncertainty in predicting future climate. DGVM predictions could be strengthened by integrating the ecological realities of biodiversity and height-structured competition for light, facilitated by recent advances in the mathematics of forest modeling, ecological understanding of diverse forest communities, and the availability of forest inventory data.  相似文献   

4.
Estimates of glacial-interglacial climate change in tropical Africa have varied widely. Results from a process-based vegetation model show how montane vegetation in East Africa shifts with changes in both carbon dioxide concentration and climate. For the last glacial maximum, the change in atmospheric carbon dioxide concentration alone could explain the observed replacement of tropical montane forest by a scrub biome. This result implies that estimates of the last glacial maximum tropical cooling based on tree- line shifts must be revised.  相似文献   

5.
A simple climate model has been used to calculate the effect of past changes in the land-sea distribution on the seasonal cycle of temperatures during the last 100 million years. Modeled summer temperatures decreased over Greenland by more than 10 degrees C and over Antarctica by 5 degrees to 8 degrees C. For the last 80 million years, this thermal response is comparable in magnitude to estimated atmospheric carbon dioxide effects. Analysis of paleontological data provides some support for the proposed hypothesis that large changes due to seasonality may have sometimes resulted in an ice-free state due to high summer temperature rather than year-round warmth. Such "cool" non-glacials may have prevailed for as much as one-third of the last 100 million years.  相似文献   

6.
We report a 2000-year Antarctic ice-core record of stable carbon isotope measurements in atmospheric methane (delta13CH4). Large delta13CH4 variations indicate that the methane budget varied unexpectedly during the late preindustrial Holocene (circa 0 to 1700 A.D.). During the first thousand years (0 to 1000 A.D.), delta13CH4 was at least 2 per mil enriched compared to expected values, and during the following 700 years, an about 2 per mil depletion occurred. Our modeled methane source partitioning implies that biomass burning emissions were high from 0 to 1000 A.D. but reduced by almost approximately 40% over the next 700 years. We suggest that both human activities and natural climate change influenced preindustrial biomass burning emissions and that these emissions have been previously understated in late preindustrial Holocene methane budget research.  相似文献   

7.
Climate models with enhanced greenhouse gas concentrations have projected temperature increases of 2 degrees to 4 degrees C, winter precipitation increases of up to 15 percent, and summer precipitation decreases of 5 to 10 percent in the central United States by the year 2030. An analysis of the climate record over the past 95 years for this region was undertaken in order to evaluate these projections. Results indicate that temperature has increased and precipitation decreased both during winter and summer, and that the ratio of winter-to-summer precipitation has decreased. The signs of some trends are consistent with the projections whereas others are not, but none of the changes is statistically significant except for maximum and minimum temperatures, which were not among the parameters predicted by the models. Statistical models indicate that the greenhouse winter and summer precipitation signal could have been masked by natural climate variability, whereas the increase in the ratio of winter-to-summer precipitation and the higher rates of temperature change probably should have already been detected. If the models are correct it will likely take at least another 40 years before statistically significant precipitation changes are detected and another decade or two to detect the projected changes of temperature.  相似文献   

8.
Passive microwave radiometry from satellites provides more precise atmospheric temperature information than that obtained from the relatively sparse distribution of thermometers over the earth's surface. Accurate global atmospheric temperature estimates are needed for detection of possible greenhouse warming, evaluation of computer models of climate change, and for understanding important factors in the climate system. Analysis of the first 10 years (1979 to 1988) of satellite measurements of lower atmospheric temperature changes reveals a monthly precision of 0.01 degrees C, large temperature variability on time scales from weeks to several years, but no obvious trend for the 10-year period. The warmest years, in descending order, were 1987, 1988, 1983, and 1980. The years 1984, 1985, and 1986 were the coolest.  相似文献   

9.
Paleoatmospheric signatures in neogene fossil leaves   总被引:1,自引:0,他引:1  
An increase in the atmospheric carbon dioxide (CO(2)) concentration results in a decrease in the number of leaf stomata. This relation is known both from historical observations of vegetation over the past 200 years and from experimental manipulations of microenvironments. Evidence from stomatal frequencies of fossil Quercus petraea leaves indicates that this relation can be applied as a bioindicator for changes in paleoatmospheric CO(2) concentrations during the last 10 million years. The data suggest that late Neogene CO(2) concentrations fluctuated between about 280 and 370 parts per million by volume.  相似文献   

10.
Several indices of large-scale patterns of surface temperature variation were used to investigate climate change in North America over the 20th century. The observed variability of these indices was simulated well by a number of climate models. Comparison of index trends in observations and model simulations shows that North American temperature changes from 1950 to 1999 were unlikely to be due to natural climate variation alone. Observed trends over this period are consistent with simulations that include anthropogenic forcing from increasing atmospheric greenhouse gases and sulfate aerosols. However, most of the observed warming from 1900 to 1949 was likely due to natural climate variation.  相似文献   

11.
Modern global climate change   总被引:5,自引:0,他引:5  
Modern climate change is dominated by human influences, which are now large enough to exceed the bounds of natural variability. The main source of global climate change is human-induced changes in atmospheric composition. These perturbations primarily result from emissions associated with energy use, but on local and regional scales, urbanization and land use changes are also important. Although there has been progress in monitoring and understanding climate change, there remain many scientific, technical, and institutional impediments to precisely planning for, adapting to, and mitigating the effects of climate change. There is still considerable uncertainty about the rates of change that can be expected, but it is clear that these changes will be increasingly manifested in important and tangible ways, such as changes in extremes of temperature and precipitation, decreases in seasonal and perennial snow and ice extent, and sea level rise. Anthropogenic climate change is now likely to continue for many centuries. We are venturing into the unknown with climate, and its associated impacts could be quite disruptive.  相似文献   

12.
High-precision uranium-thorium mass spectrometric chronology and (18)O-(13)C isotopic analysis of speleothem calcite from Cold Water Cave in northeast Iowa have been used to chart mid-Holocene climate change. Significant shifts in dagger(18)O and dagger(13)C isotopic values coincide with well-documented Holocene vegetation changes. Temperature estimates based on (18)O/(16)O ratios suggest that the climate warmed rapidly by about 3 degrees C at 5900 years before present and then cooled by 4 degrees C at 3600 years before present. Initiation of a gradual increase in dagger(13)C at 5900 years before present suggests that turnover of the forest soil biomass was slow and that equilibrium with prairie vegetation was not attained by 3600 years before present.  相似文献   

13.
气候变化对中国草原生态系统影响研究综述   总被引:1,自引:0,他引:1  
分析了近50年来中国主要草原区以温度和降水变化为主的气候变化特征,阐述了气温和降水的改变对中国主要草原生态系统影响的相关研究结果,总结了气候变化对中国主要草原区植被时空格局的影响。近50年来,中国草原区气温普遍升高,降水变化时空差异较大。多数研究结果表明,温度升高对植物物候的影响存在较大的不确定性,对草原植被净初级生产力(net primary productivity, NPP)的影响也具有区域性差异,增温加速土壤碳分解,降低植物物种多样性。降水增多使植物物候期提前,生长季延长,草原NPP提高,物种丰富度增加,但植被生长对降水的变化具有一定的滞后性;不同的水热组合对植被生长的影响不同。温度升高和降水增多均会使草原植被覆盖度增加。总的来说,气候变化对中国草原区植被生长起促进作用,但在局部区域,抑制其生长。建议在未来的气候变化条件下,结合宏观和微观方面,系统分析中国草地生态系统的敏感性和脆弱性,加强对中国草地生态系统的综合研究,从而降低研究结果的不确定性。  相似文献   

14.
Over the past 40 years, Southern Hemisphere circumpolar westerly winds have strengthened. In his Perspective, Karoly highlights the modeling study by Gillett and Thompson, who show that these observed Southern Hemisphere climate changes in spring and summer can be explained as a response to stratospheric ozone depletion over Antarctica. The observed strengthening of the circumpolar westerlies in winter is less likely to be the response to springtime Antarctic ozone depletion, but may be due in part to increasing atmospheric greenhouse gases. Understanding the different causes and practical impacts of these trends in Southern Hemisphere circulation is an important next step for climate researchers.  相似文献   

15.
北京市植被指数变化与影响因素分析   总被引:2,自引:0,他引:2  
利用MODIS归一化植被指数(NDVI)数据分析了北京市2001—2010年植被覆盖的时空变化特征,并从气候因子和人类活动两个方面分析影响植被覆盖变化的因素。北京市近10年的植被覆盖变化大致可分为两个阶段:2001—2003年植被覆盖小幅度下降时期;2004—2010年植被覆盖上升时期。空间上植被覆盖变化则存在显著差异:怀柔、密云北部和延庆东北部的林地和部分草地,以及西南地区即门头沟和房山地区的林地植被覆盖显著提高;植被覆盖显著下降地区分布较为特殊,昌平、延庆、顺义、大兴和房山的东部地区,以海淀、朝阳、城市中心为圆心的外围向四周延伸。研究表明,植被覆盖变化是气候因素和人类活动共同作用的结果。北京市近10年气温和降水量总体都呈现增加趋势,分别以每10年0409 ℃和每年156 mm的速度增加,植被覆盖与降水的关系更为密切,月际水平的相关程度明显高于年际水平的相关程度。人类活动也是影响植被覆盖变化的重要因素,土地利用类型的改变、农业生产水平的提高以及植被建设的管理对植被覆盖都有不同程度的影响。   相似文献   

16.
Projected changes in the Earth's climate can be driven from a combined set of forcing factors consisting of regionally heterogeneous anthropogenic and natural aerosols and land use changes, as well as global-scale influences from solar variability and transient increases in human-produced greenhouse gases. Thus, validation of climate model projections that are driven only by increases in greenhouse gases can be inconsistent when one attempts the validation by looking for a regional or time-evolving "fingerprint" of such projected changes in real climatic data. Until climate models are driven by time-evolving, combined, multiple, and heterogeneous forcing factors, the best global climatic change "fingerprint" will probably remain a many-decades average of hemi-spheric- to global-scale trends in surface air temperatures. Century-long global warming (or cooling) trends of 0.5 degrees C appear to have occurred infrequently over the past several thousand years-perhaps only once or twice a millennium, as proxy records suggest. This implies an 80 to 90 percent heuristic likelihood that the 20th-century 0.5 +/- 0.2 degrees C warming trend is not a wholly natural climatic fluctuation.  相似文献   

17.
A high-resolution western tropical Atlantic sea surface temperature (SST) record from the Cariaco Basin on the northern Venezuelan shelf, based on Mg/Ca values in surface-dwelling planktonic foraminifera, reveals that changes in SST over the last glacial termination are synchronous, within +/-30 to +/-90 years, with the Greenland Ice Sheet Project 2 air temperature proxy record and atmospheric methane record. The most prominent deglacial event in the Cariaco record occurred during the Younger Dryas time interval, when SSTs dropped by 3 degrees to 4 degrees C. A rapid southward shift in the atmospheric intertropical convergence zone could account for the synchroneity of tropical temperature, atmospheric methane, and high-latitude changes during the Younger Dryas.  相似文献   

18.
Previous climate model projections of climate change accounted for external forcing from natural and anthropogenic sources but did not attempt to predict internally generated natural variability. We present a new modeling system that predicts both internal variability and externally forced changes and hence forecasts surface temperature with substantially improved skill throughout a decade, both globally and in many regions. Our system predicts that internal variability will partially offset the anthropogenic global warming signal for the next few years. However, climate will continue to warm, with at least half of the years after 2009 predicted to exceed the warmest year currently on record.  相似文献   

19.
The results of an analysis of more than 60,000 atmospheric measurements of carbon monoxide taken over 3(1/2) years at Cape Meares, Oregon (45 degrees N, 125 degrees W), indicate that the background concentration of this gas is increasing. The rate of increase, although uncertain, is about 6 percent per year on average. Human activities are the likely cause of a substantial portion of this observed increase; however, because of the short atmospheric lifetime of carbon monoxide and the relatively few years of observations, fluctuations of sources and sinks related to the natural variability of climate may have affected the observed trend. Increased carbon monoxide may deplete tropospheric hydroxyl radicals, slowing down the removal of dozens of man-made and anthropogenic trace gases and thus indirectly affecting the earth's climate and possibly the stratospheric ozone layer.  相似文献   

20.
Body size plays a critical role in mammalian ecology and physiology. Previous research has shown that many mammals became smaller during the Paleocene-Eocene Thermal Maximum (PETM), but the timing and magnitude of that change relative to climate change have been unclear. A high-resolution record of continental climate and equid body size change shows a directional size decrease of ~30% over the first ~130,000 years of the PETM, followed by a ~76% increase in the recovery phase of the PETM. These size changes are negatively correlated with temperature inferred from oxygen isotopes in mammal teeth and were probably driven by shifts in temperature and possibly high atmospheric CO(2) concentrations. These findings could be important for understanding mammalian evolutionary responses to future global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号