首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Feeding experiments and laboratory analyses were conducted to establish the essential fatty acid (EFA) requirement of red drum (Sciaenops ocellatus). Juvenile red drum were maintained in aquaria containing brackish water (5 ± 2‰ total dissolved solids) for two 6-week experiments. Semipurified diets contained a total of 70% lipid consisting of different combinations of tristearin [predominantly 18:0] and the following fatty acid ethyl esters: oleate, linoleate, linolenate, and a mixture of highly unsaturated fatty acids (HUFA) containing approximately 60% eicosapentaenoate plus docosahexaenoate. EFA-deficient diets (containing only tristearin or oleate) rapidly reduced fish growth and feed efficiency, and increased mortality. Fin erosion and a “shock syndrome” also occurred in association with EFA deficiency. Of the diets containing fatty acid ethyl esters, those with 0.5–1% (n-3) HUFA (0.3–0.6% eicosapentaenoate plus docosahexaenoate) promoted the best growth, survival, and feed efficiency; however, the control diet containing 7% menhaden fish oil provided the best performance. Excess (n-3) HUFA suppressed fish weight gain; suppression became evident at 1.5% (n-3) HUFA, and was pronounced at 2.5%. Fatty acid compositions of whole-body, muscle and liver tissues from red drum fed the various diets generally reflected dietary fatty acids, but modifications of these patterns also were evident. Levels of saturated fatty acids appeared to be regulated independent of diet. In fish fed EFA-deficient diets (containing only tristearin or oleate), monoenes increased and (n-3) HUFA were preferentially conserved in polar lipid fractions. Eicosatrienoic acid [20:3(n-9)] was not elevated in EFA-deficient red drum, apparently due to their limited ability to transform fatty acids. Red drum exhibited some limited ability to elongate and desaturate linoleic acid [18:2(n-6)] and linolenic acid [18:3(n-3)]; however, metabolism of 18:3(n-3) did not generally result in increased tissue levels of (n-3) HUFA. Based on these responses, the red drum required approximately 0.5% (n-3) HUFA in the diet (approximately 7% of dietary lipid) for proper growth and health.  相似文献   

2.
Simultaneous, 6-week feeding trials were conducted in which diets containing menhaden, corn, coconut and hydrogenated menhaden oil at 7.0%, plus a diet containing 14% menhaden oil, were fed to triplicate groups of juvenile red drum (Sciaenops ocellatus) at two different salinities (5 and 32%.). Weight gain was significantly (p < 0.05) affected by diet and salinity. Fish fed the diet containing 14% menhaden oil had the greatest weight gain; whereas, fish fed the diet containing coconut oil gained the least weight. Fish in brackish water had significantly greater weight gain than fish in full-strength seawater over the 6-week period, although fish fed coconut and saturated menhaden oil in brackish water had reduced survival. Dietary lipid also significantly affected muscle and liver total lipid, hepatosomatic index (HSI), and intraperitoneal fat (IPF) ratio, as fish fed the diets containing 14% menhaden oil had higher values for all of these body condition indices.After the feeding trial, fish were subjected to a chronic cold tolerance assay. In the chronic trial, where temperature was gradually reduced over a 3-week period, fish fed the diets containing menhaden oil had significantly lower median lethal temperatures (MLT) than those fish fed the diets containing coconut, corn and saturated menhaden oils. No significant effects of cold exposure were observed on muscle and liver total lipid. Cold exposure prompted a modification in lipid metabolism by lowering total saturated fatty acids and raising (n – 3) highly unsaturated fatty acids (HUFA) in the neutral lipid of liver. Fish with the lowest MLT in the chronic assay exhibited signs of conserving (n – 3) HUFA and depleting (n – 6) fatty acids [primarily 18:2 (n – 6)], resulting in higher (n – 3)/(n – 6) ratios in the polar lipid of liver. These data suggest that the lower lethal temperature of juvenile red drum can be reduced through dietary manipulation involving the inclusion of high levels of dietary lipid rich in (n – 3) HUFA.  相似文献   

3.
A 6‐week feeding trial was conducted to evaluate the nutritional value of dietary linoleic (18:2n‐6, LOA) and linolenic (18:3n‐3, LNA) acids for juvenile Litopenaeus vannamei by determining their effects on growth, survival and fatty acid composition of hepatopancreas and muscle tissue. Diets were formulated to contain 5% total lipid. A basal diet contained only palmitic and stearic acids, each at 2.5% of diet. Six diets contained one of three levels (0.25, 0.5 and 1%) of either LOA or LNA, and three diets had different ratios of LNA/LOA (1, 3, 9) at a combined inclusion level of 0.5% of diet. An additional diet contained 0.5% of a mixture of n‐3 highly unsaturated fatty acids (HUFA). The fatty acid profile of hepatopancreas and muscle of shrimp reflected the profile of the diets. HUFA of the n‐3 family showed higher nutritional value than LOA or LNA for juvenile L. vannamei by producing significantly (P < 0.05) higher final weight and weight gain. Neither LOA nor LNA, alone or in combination, improved growth significantly compared with shrimp fed the basal diet.Thus, dietary requirements for LOA and LNA were not demonstrated under these experimental conditions.  相似文献   

4.
Arctic charr,Salvelinus alpinus L. were fed five test diets containing 0% or 1% of different polyunsaturated fatty acids (PUFA) for 93 days. The fish were injected intraperitoneally with (1–14C)–18:2(n–6) or (1–14C)–18:3(n–3), and the bioconversion to longer chain PUFA studied. The conversion rate in neutral lipids was slow, with most label found as the fatty acid injected, while extensive modification took place prior to or during incorporation into polar lipids. Linolenic acid was preferred over linoleic acid as substrate for elongation and desaturation regardless of diet. In polar lipids, the predominant products of (1–14C)–18:2(n–6) metabolism were generally 20:3(n–6) and 20:4(n–6), while 18:4(n–3), 20:5(n–3) and 22:6(n–3) were the major products of (1–14C)–18:3(n–3) metabolism. The lack of radioactivity in 22:5(n–6) suggests that 4 desaturation is specific for (n–3) PUFA. Feeding the PUFA deficient diet reduced the 5 desaturation compared to fish maintained on PUFA supplemented diets. The 6 desaturation was only reduced in fish fed C18 PUFA and injected with (1–14C)–18:3(n–3). Longer chain C20 and C22 PUFA, particularly those of the (n–3) family, exerted some inhibition on the elongation and desaturation of injected fatty acids compared to those fed C18 PUFA. The incorporation of radiolabelled fatty acids into polar lipids of fish fed a commercial diet was very low, and the desaturation neglectible in both polar and neutral lipids, showing that Arctic charr under culture conditions do not convert short chain PUFA to longer chain metabolites.  相似文献   

5.
An experiment was conducted in aquaria with channel catfish (Ictalurus punctatus) to determine the efficacy of augmenting fillets with conjugated linoleic acid (CLA) and omega-3 highly unsaturated fatty acids (− 3 HUFA) by feeding diets amended with products containing high levels of these nutrients. Refined menhaden fish oil at 1.5% of diet supplied the − 3 HUFA. CLA was used at dietary levels of 0.5% and 1% with a preparation that contained approximately 65% isomers of CLA. Corn oil was added to the basal diet at maximum inclusion level for added lipids of 3% for the control diet and to adjust total added lipid content of the other diets to 3%. Average initial body weight was 57.39 ± 0.25 g/fish. Six experimental diets were fed twice daily to four replicate aquaria for six weeks. At that time, fish were group weighed for determination of weight gain and feed conversion. Fillets of six fish per aquarium were recovered and stored at − 80 °C for moisture and total lipid analyses, fatty acid analysis, and sensory evaluation. Results showed feed consumption and feed conversion did not differ (> 0.05). Significantly (< 0.05) greater body weight gains were observed only for fish fed the diets with two combinations of CLA and 1.5% fish oil compared to fish fed the diet containing 0.5% CLA and corn oil. Fillet − 3 HUFA levels were significantly (< 0.05) elevated for fish fed diets containing fish oil when compared to − 3 HUFA of fillets of fish fed diets containing either corn oil or CLA and corn oil. Similarly, fillets from fish fed diets amended with CLA contained substantial amounts of CLA of up to 6.4% of total lipids. Fillets from fish fed corn oil or fish oil diets had no CLA. Taste panel evaluation indicated that fillets containing − 3 HUFA and CLA were essentially without fishy off-flavor and had excellent sensory qualities. Catfish fillets produced by amending diets with sources of − 3 HUFA and CLA at the levels used in this study would contain elevated levels of these nutraceuticals and could be an important human food source for these healthful fatty acids.  相似文献   

6.
This study examined the dietary requirement of arachidonic acid (ARA) when that of linoleic acid (LOA), the natural precursor to ARA, was also satisfied with linolenic acid (LNA) and also with and without the other key dietary highly unsaturated fatty acids (HUFA). Growth by prawns fed diets supplemented with ARA was poorer than in diets where it was not present. Supplementation of ARA to diets with either optimized HUFA or just optimised poly unsaurated fatty acids (PUFA) (i.e. LOA, LNA) resulted in poorer growth. Growth was poorest by prawns (215 ± 13%) fed diets with ARA supplemented at 20% of the total fatty acids but including 7% LOA, 21% LNA and 4% of both eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Growth was best in prawns fed diets devoid of ARA but with 7% LOA and 21% LNA (350 ± 19%). Prawns fed the reference diet (348 ± 21%) and the other diet devoid of ARA but containing about 7% LOA, 21% LNA and 4% of both EPA and DHA (345 ± 18%) had similar growth. The growth responses were not effects of altered lipid or fatty acid digestibilities. Indeed supplementation of ARA to the diet marginally improved the digestibility of the total neutral lipid in the diet and the digestibilities of some other dietary fatty acids. The amount of lipid in the digestive glands of prawns fed with the diets was reduced by the inclusion of ARA in the dietary lipids. Composition of the lipids in the digestive gland (DG) of the prawns was almost directly related to the composition of their dietary lipids. The proportion of ARA in the total fatty acids increased with level of supplementation of dietary ARA. An increased level of dietary ARA reduced the proportion of EPA, DHA in the DG lipid and also the total n‐3 and n‐6 fatty acids in the DG lipid. The results of this study support that addition of ARA to the diet of Penaues monodon when the other key essential fatty acids (EFA) have been optimized, does not improve their growth performance. It is suggested that key cause for this response may lie in the importance of the balance of the n‐3 to n‐6 fatty acids in the diet of these animals.  相似文献   

7.
不同脂肪源对褶皱臂尾轮虫脂类和脂肪酸组成的影   总被引:6,自引:0,他引:6       下载免费PDF全文
以褶皱臂尾轮虫(Brachionus plicatilis)为实验动物并设计不同脂肪源饵料,分别为:面包酵母Saccharomyces cerevisice(对照组),微绿球藻Nannochlorpisis oculata(A),5%大豆磷脂 5%鱼油 90%面包酵母(C)。结果表明:(1)接受不同脂肪源的轮虫的脂肪酸组成显著不同,尤其是高度不饱和脂肪酸(HUFA,20C)含量存在显著差异,说明饵料中HUFA含量对轮虫体内相应脂肪酸的含量有显著影响。投喂饵料C使轮虫的脂类HUFA水平得到了强化,提高了轮虫的营养价值。(2)轮虫脂类的HUFA水平不仅由饵料中脂类的相应脂肪酸组成决定,而且轮虫脂类HUFA的提高和强化效果与饵料中HUFA的化学形态密切相关。甘油三酯型饵料HUFA的强化轮虫效果高于磷脂型的HUFA。(3)将富含HUFA的鱼油直接添加在干性饵料如面包酵母中,而不是通过对鲁油乳化后直接强化轮虫,同样能取得良好的强化效果,且操作简便、不易污染水质,适用于轮虫的规模生产。  相似文献   

8.
9.
A 10‐week trial was conducted to determine the response of juvenile jade perch Scortum barcoo on the replacement of dietary fish oil (FO) in a fishmeal free diet. Three iso‐nitrogenous, isocaloric and isolipidic diets were formulated, each containing a different primary fat source: FO, linseed oil (LO), and a mixture of Schizochytrium and LO. The substitution of FO with the mixture of Schizochytrium and LO did not cause a difference in growth. However, there was an 8% reduction in weight gain in fish fed dietary LO, indicating that juvenile jade perch do require a minimal concentration of dietary n‐3 highly unsaturated fatty acids (HUFA). Fish fed the Schizochytrium diet stored more efficient n‐3 HUFA and in particular DHA in their flesh, and retained a higher fillet recovery compared to fish fed FO. In addition, we demonstrated that jade perch are able to produce both n‐3 HUFA and n‐6 HUFA when dietary PUFA are present. Fish fed the LO diet for 10 weeks contained the lowest amount of n‐3 HUFA in fillets among dietary treatment groups. However, feeding these fish the Schizochytrium diet for an additional 4 weeks increased the n‐3 HUFA content towards the same concentration of n‐3 HUFA found in the flesh of fish fed FO, without affecting the sensory properties of the fillets. In contrary, feeding the Schizochytrium diet for a continuous period of 14 weeks lowered overall sensory property scores.  相似文献   

10.
This study evaluated the nutritional value of dietary n‐3 and n‐6 polyunsaturated fatty acids (PUFA) such as linoleic (LOA) and linolenic (LNA) acids, and highly unsaturated fatty acids (HUFA) such as arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids for juvenile Litopenaeus vannamei, based on their effects on growth, survival, and fatty acid composition of hepatopancreas and muscle tissue. Diets contained 5% total lipid. A basal diet contained palmitic and stearic acids each at 2.5% of diet. Five diets contained 0.5% dry weight of LOA, LNA, AA, EPA, or DHA. An additional diet evaluated HUFA in combination by supplementing at 0.5% of diet, a mixture of n‐3 HUFA. All HUFA showed higher nutritional value than PUFA for shrimp and produced significantly (P < 0.05) higher final weight, weight gain, and total lipid in shrimp muscle. Fatty acid profiles of shrimp tissues reflected the composition of the dietary lipids. In general, saturated fatty acids were more abundant in the neutral factions, while PUFA and HUFA were more abundant in the polar fractions of tissues. Under these experimental conditions, HUFA had much greater nutritional value than PUFA for juvenile L. vannamei; moreover, dietary requirements for PUFA were not demonstrated.  相似文献   

11.
A feeding experiment was conducted on gilthead seabream (Sparus aurata) broodstock to investigate the incidence of n-3 highly unsaturated fatty acids (n-3 HUFA) dietary deficiencies on the lipid composition of female liver, gonads and eggs, in relation to spawning quality. Broodstock were fed a control (C) diet or a n-3 HUFA deficient (D) but linolenic acid rich diet. After 20 weeks of feeding, the results showed that levels of total neutral (TNL) and total polar (TPL) lipids of female gonads and eggs were independent of diet. However the fatty acid composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) of female liver, gonads and eggs in the two groups of fish showed marked differences, reflecting the influence of fatty acid levels in the broodstock diets. This influence was even higher in TNL than in the phospholipid classes examined. In fish fed n-3 HUFA deficient diet, fatty acid composition of TNL of female gonads and eggs reflected the diet more than liver. A higher egg production in broodstock fed C diet (1.8% n-3 HUFA in diet) was extended to spawning quality such as percentages of fertilised and hatched eggs.  相似文献   

12.
Replacement of fish oil with sustainable alternatives, such as vegetable oil, in aquaculture diets has to be achieved without compromising the nutritional quality, in terms of n-3 highly unsaturated fatty acid (HUFA) content, of the product. This may be possible if the level of replacement is not too high and oil blends are chosen carefully but, if high levels of fish oil are substituted, a fish oil finishing diet prior to harvest would be required to restore n-3HUFA. However, a decontaminated fish oil would be required to avoid increasing undesirable contaminants. Here we test the hypotheses that blending of rapeseed and soybean oils with southern hemisphere fish oil will have a low impact upon tissue n-3HUFA levels, and that decontamination of fish oil will have no major effect on the nutritional quality of fish oil as a feed ingredient for Atlantic salmon. Salmon (initial weight ~ 0.8 kg) were fed for 10 weeks with diets in which 60% of fish oil was replaced with blends of soybean, rapeseed and southern hemisphere fish oil (SVO) or 100% decontaminated northern fish oil (DFO) in comparison with a standard northern fish oil diet (FO). Decontamination of the oil was a two-step procedure that included treatment with activated carbon followed by thin film deodorisation. Growth performance and feed efficiency were unaffected by either the SVO or DFO diets despite these having lower gross nutrient and fatty acid digestibilities than the FO diet. There were also no effects on the gross composition of the fish. Liver and, to a lesser extent flesh, lipid levels were lower in fish fed the SVO blends, due to lower proportions of neutral lipids, specifically triacylglycerol. Tissue lipid levels were not affected in fish fed the DFO diet. Reflecting the diet, flesh eicosapentaenoic acid (EPA) and total n-3 fatty acids were higher, and 18:1n-9 lower, in fish fed DFO than FO, whereas there were no differences in liver fatty acid compositions. Flesh EPA levels were only slightly reduced from about 6% to 5% although docosahexaenoic acid (DHA) was reduced more severely from around 13% to about 7% in fish fed the SVO diets. In contrast, the liver fatty acid compositions showed higher levels of n-3 HUFA, with DHA only reduced from 21% to about 18% and EPA increased from under 8% to 9–10% in fish fed the SVO diets. The evidence suggested that increased liver EPA (and arachidonic acid) was not simply retention, but also conversion of dietary 18:3n-3 and 18:2n-6. Increased HUFA synthesis was supported by increased hepatic expression of fatty acyl desaturases in fish fed the SVO diets. Flesh n-3HUFA levels and desaturase expression was significantly higher in fish fed soybean oil than in fish fed rapeseed oil. In conclusion, partial replacement of fish oil with blends of vegetable oils and southern hemisphere fish oil had minimal impact on HUFA levels in liver, but a greater effect on flesh HUFA levels. Despite lower apparent digestibility, decontamination of fish oil did not significantly impact its nutritional quality for salmon.  相似文献   

13.
维生素E、C和HUFA交互作用对中华绒螯蟹生殖性能的影响   总被引:10,自引:3,他引:10  
艾春香 《水产学报》2002,26(6):533-541
通过投喂添加或不添加VE、VC和HUFA的四组实验饲料,经198d饲养实验,以雌蟹的性腺系数、产卵力、孵化率、各组织超氧化物歧化酶(SOD)活性和过氧化产物丙二醛(MDA)含量等为指标,研究这两类营养素交互作用对其生殖性能的影响。结果表明,VE、VC和HUFA对雌蟹生殖性能有显著的影响(P<0.05):在产卵力方面,1组为3790个卵细胞·g-1体重,极显著高于2组(为2317个卵细胞·g-1体重)和3组(为2129个卵细胞·g-1体重)(P<0.01),显著高于4组(为3050个卵细胞·g-1体重)和5组(对照组)(为3010个卵细胞·g-1体重)(P<0.05);而孵化率方面,1组(86.17%)极显著高于2组(36.06%)、3组(29.18%)和4组(25.73%)(P<0.01),也显著高于5组(71.12%)(P<0.05)。1组和2组雌蟹性腺中SOD活性分别为40.09Nu·mL-1和39.87Nu·mL-1,相应地,MDA含量分别为6.87nmol·mL-1和3.33nmol·mL-1;而3组和4组雌蟹,尽管其性腺中SOD活性较高,分别为79.21Nu·mL-1和85.2Nu·mL-1,但由于饲料中抗氧化性VE、VC的缺乏,导致脂质过氧化发生,其MDA含量显著增加(P<0.05),分别为12.65nmol·mL-1和25.18nmol·mL-1。4组雌蟹的产卵力较大,但因VE、VC的缺乏发生脂质过氧化,导致所产的卵质低下,从而影响了卵子的孵化率。结果表明,VE、VC和HUFA都是河蟹保持良好的生殖性能的必需营  相似文献   

14.
The incorporation, and the capacity for desaturation and elongation in vivo, of intraperitoneally-injected, 14C-labelled n–3 and n–6 C18 and C20 PUFAs were investigated in juvenile gilthead sea bream, Sparus aurata. The results indicate that juvenile gilthead sea bream have only limited ability to convert CH PUFAs to C20 and C22 HUFAs in vivo. The data are consistent with the results from nutritional studies on larvae, postlarvae and fingerlings that have shown that gilthead sea bream require the provision of preformed eicosapentaenoic and docosahexaenoic acids in the diet. The impairment in the desaturase/elongase pathway was quantitatively and qualitatively similar to that found in turbot, Scophthalmus maximus, being at the level of the 5-desaturase. The low activity of 5-desaturase combined with the consistent finding that arachidonic acid is selectively retained in membrane phosphatidylinositol suggests that, in addition to eicosapentaenoic and docosahexaenoic acids, gilthead sea bream may also have a requirement for preformed arachidonic acid in the diet.Abbreviations AA 5,8,11,14-eicosapenaenoic acid (arachidonic acid, 20:4n–6) - CPL diradyl (diacyl + alkenylacyl + alkylacyl) glycerophosphocholine - DHA 4,7,10,13,16,19-docosahexaenoic acid (22:6n–3) - EPA 5,8,11,14,17-eicosapentaenoic acid (20:5n–3) - EPL diradyl (diacyl, alkenylacyl + alkylacyl) glycerophosphoethanolamine - HUFA highly unsaturated fatty acids ( C20 and with 3 double bonds) - LA 9,12-octadecadienoic acid (linoleic acid, 18:2n–6) - LNA 9,12,15-octadecatrienoic acid (-linolenic acid, 18:3n–3) - PI phosphatidylinositol - PS phosphatidylserine - PUFA polyunsaturated fatty acid(s)  相似文献   

15.
The dietary requirement of the prawn Penaeus monodon for linoleic (LOA) and linolenic (LNA) fatty acids was examined in the absence of other long-chain polyunsaturated and highly unsaturated fatty acids (PUFA-20:2, 20:3, 22:2, 22:3 and HUFA-18:4, 20:4, 20:5, 22:4, 22:5, 22:6, respectively). Incremented dietary amounts of LOA (7, 14, 21, 28 and 35% of total fatty acids) and LNA (0, 7, 14, 21 and 28% of total fatty acids) were examined in a 5 × 5 factorial growth experiment lasting 50 days. An additional diet containing both PUFA and HUFA (cod-liver oil) was provided as a reference. The total lipid content (excluding sterols) of each of the 26 diets was maintained at 70 g kg−1 of dry diet. The fatty acid composition of the neutral lipid was manipulated by blending different plant oils and supplementing with purified free fatty acids to provide the desired fatty acid composition upon addition to the total diet. At the end of the 50-day growth experiment, the prawn digestive gland (DG) was quantitatively analysed for lipid and fatty acid content. Prawns fed the reference diet increased in weight (mean ± SEM) by 214 ± 6%. Growth was generally greater when combinations of LOA and LNA were used. The best growth (213 ± 17%) was obtained with the diet containing a fatty acid content of 14% LOA and 21% LNA. This growth was comparable to that of the reference diet. The digestibility of the total lipid in the diet was usually higher when both fatty acids were present. The lipid content of the DG was highest in prawns fed diets containing both LOA and LNA, similar to the growth response. The fatty acid composition of the prawn's DG lipid reflected the fatty acid composition of the diet. However, the maximum assimilation of LNA in the DG lipid (14.2% of DG lipid fatty acids) was about half that of LOA (32.5% of DG lipid fatty acids).  相似文献   

16.
The effect of dietary n−3 and n−6 polyunsaturated fatty acids (PUFAs) on juvenile Arctic charr Salvelinus alpinus (L.) were investigated with respect to essential fatty acid (EFA) deficiency and lipid metabolism using one commercial and 12 casein-based test diets. Arctic charr with mean weight of 1.6g were fed test diets for 12 weeks at 10°C. At the end of the feeding, blood, liver, muscle and whole fish were sampled to determine haematocrit, haemoglobin, water content, lipid and fatty acid composition. Charr fed diets containing 0–1.0% n−3 PUFAs showed typical EFA deficiency signs: fatty liver or elevated water content in whole body or substantial accumulation of 20:3n−9 in liver polar lipids. These signs were less apparent or disappeared when charr were fed diets containing ≥ 2.0% 18:3n−3. No correlation was found between dietary PUFAs and haematocrit or haemoglobin values. Significant changes in fatty acid composition of liver polar lipids in charr fed dietary PUFAs indicate that charr can convert 18:3n−3, 18:2n−6 and 20:5n−3 into long-chain PUFAs. While charr had a direct incorporation of dietary 22:6n−3 into liver and muscle there appears to be preferential utilization of n−3 PUFAs for elongation and desaturation. The conversion of 18:4n−3 was less in muscle than in livers. These findings, combined with data on growth and feed efficiency reported previously by Yang and Dick (1993), indicate that charr require 1−2% dietary 18:3n−3 (dry weight). Small amounts of dietary 18:2n−6 (up to 0.7%) did not have detrimental effects on charr.  相似文献   

17.
Precocious puberty is a major constraint to the economical rearing Eriocheir sinensis farming. Although dietary phospholipid (PL) and highly unsaturated fatty acids (HUFA) reportedly enhanced ovarian development in normal adult E. sinensis , it had opposite effects of reducing precocity in juveniles . This study investigated the effects of dietary PL and HUFA on survival, gonadal development and biochemical composition of precocious E. sinensis . Two diets with PL and HUFA supplementation (diet A) and deficient (diet B) were formulated and fed to precocious E. sinensis . Although no significant differences were found on survival and gonadosomatic index of crabs fed both diets, crabs fed diet B had significantly higher hepatosomatic index and hepatopancrean lipid content than crabs fed diet A. The percentages, 14:0, 18:1n-9, 20:5n-3 and 22:6n-3, in hepatopancreas, muscle and gonads were positively correlated to the diets. Interestingly, the crabs fed diet B accumulated significantly higher 18:2n-6 in gonads and muscle than those fed diet A. Furthermore, substantially higher 20:4n-6 was detected in the gonad and muscle than in the diets. These results suggested that dietary PL and HUFA had limited effects on male gonad biochemical composition. Meanwhile, the precocious E. sinensis may be capable of negating the negative effects of HUFA deficiency by enhanced tissue 18:2n-6 accumulation and converting 18:2n-6 to 20:4n-6.  相似文献   

18.
The beneficial effects of feeding n−3 highly unsaturated fatty acids (HUFA ≥ 20 carbon fatty acids with three or more double bonds) to palmetto bass (striped bass × white bass) larvae, 4–30 days of age, were studied using Artemia diets enriched with six n-3HUFA levels. Dietary n-3HUFA concentrations were < 0.03% (control diet), 0.33%, 0.63%, 0.87%, 1.26%, and 2.27% of dry-wt Artemia. Larval n-3HUFA contents were reduced at a faster rate with decreasing dietary n-3HUFA intake, and were significantly different by 30 days posthatch (4–20 mg g−1 dry-wt fish). Starved larvae selectively conserved endogenous n-3HUFA reserves, indicating an essential role of n-3HUFA in larval development. Mass mortality in the control and 0.33% n-3HUFA diets occurred at metamorphosis (26–28 days posthatch). At harvest, all fish, except those fed the two highest n-3HUFA diets, suffered from handling stress (shock syndrome) with increasing severity (25 to 100%) at decreasing dietary n-3HUFA intake. Recovery from shock syndrome was 100% at the 0.63% and 0.87% n-3HUFA diets, 63% at the 0.33% n-3HUFA diet and 0% at the control diet. Post-harvest survival was similar among the four highest dietary n-3HUFA groups (64–73%), whereas the two lowest n-3HUFA groups differed significantly (0 and 37%). Growth promotion was evident with increased dietary n-3HUFA intake as fish fed the highest n-3HUFA diet were twice the size of those fed the control diet (99 vs 52 mg wet-wt). Final fish sizes at the three highest n-3HUFA diets were similar. Given similar culture conditions, a minimum dietary n-3HUFA intake of 1.26% of dry-wt Artermia is recommended to avoid handling stress and promote growth in larval palmetto bass.  相似文献   

19.
Two 40-day feeding trials using extruded diets were conducted to assess the effect of a dietary phospholipid (PL) supplementation on growth, survival and fatty acid composition of European sea bass (Dicentrarchus labrax) and turbot (Scophthalmus maximus) from weaning onwards. Two dietary treatments (FO and PL) were tested; both had an identical extruded basis (92.5% total diet weight) coated with a different lipid fraction (7.5% total diet weight). Diet PL contained 2% egg yolk PL (69% pure). In diet FO the PL was replaced by hydrogenated coconut oil. The isolipidic diets contained an equal amount of fish oil ethyl esters providing 1.6% (% diet dry weight) of n-3 highly unsaturated fatty acids (HUFA). A diet water stability test showed no effect of the PL supplementation on the leaching of the dietary fatty acids. In both fish species weight, but not survival, significantly increased as a result of PL supplementation. Weaning onto the experimental diets resulted in similar changes in the relative percent levels of fatty acids in both species. In general, the percentage of saturated fatty acids levelled off after a rapid increase, while monoenes increased after an initial decrease. Total n-3 polyunsaturated fatty acids (PUFA) decreased and total n-6 PUFA remained almost constant. The major effect of the dietary PL on fish fatty acid composition was a 50% increase in n-6 and n-3 HUFAs compared to the PL-free FO diet. The rise in n-6 HUFA may have reflected the higher moiety in the dietary PL. On the other hand this was not the case for the n-3 HUFA since they represented only low levels in the PL fraction (0.1%) compared to that provided by the ethyl esters (1.6%) suggesting a more efficient incorporation of the PL n-3 HUFA than of the ethyl ester n-3 HUFA. A second hypothesis is that the dietary PL may have favored the incorporation of the dietary ethyl ester n-3 HUFA.  相似文献   

20.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号