首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
Summary The relation has been studied between the high molecular weight glutenin (HMWg) subunit alleles and the bread-making quality of 226 lines of winter wheat (T. aestivum L.), grown in The Netherlands. The lines represented a wide range of genetic backgrounds, and had not been selected for quality, in contrast to the established varieties used by other authors.The variation in HMWg subunit genotypes accounted for about 20% of the total variation in loaf volume among the lines. Most important was the allelic variation at the Glu-D1 locus. The Glu-D1 allele encoding the subunits 5+10 was superior to its allelic counterpart, encoding 2+12. The difference in average of loaf volume between groups of lines containing 5+10 or 2+12 was negatively related with protein content of the flours. When protein content was below 9.2%, no effect of allelic variation at the Glu-D1 locus was present. Epistatic effects between the Glu-I loci also contributed to the variation in loaf volume of the lines: i.e. the effect of allelic variation at Glu-A1 and Glu-B1 depended on the allele present at the Glu-D1. The contribution of the epistatic effects was about half the contribution of the additive effects, and should therefore be included in predictive models for bread-making quality.  相似文献   

2.
选用我国春播麦区23份(试验I)和北部冬麦区21份(试验II)品种(系),研究了Glu-1位点等位变异及其亚基表达量对谷蛋白聚合体粒度分布的影响。结果表明,Glu-1位点等位变异及其亚基表达量显著影响谷蛋白聚合体的粒度分布,且影响程度受蛋白质含量,尤其是高分子量谷蛋白总量水平的影响。在高分子量谷蛋白总量较低时(试验I),Glu-B1和Glu-D1位点对不溶性谷蛋白大聚体含量(UPP)及其占聚合体蛋白总量的百分比(%UPP)的加性效应都达1%显著水平;Glu-B1和Glu-D1位点单个亚基对两者的贡献分别为7OE+8* >7+9 >17+18 >7+8和5+10 >2+12,具有5+10亚基组合的%UPP显著高于具有2+12的亚基组合。高分子量谷蛋白的亚基表达量与UPP含量呈高度正相关,相关系数为0.79~0.93(P < 0.01)。而在高分子量谷蛋白总量较高时(试验II),仅Glu-D1位点对%UPP的加性效应达5%显著水平,5+10亚基对%UPP的贡献显著高于2+12和4+12;亚基组合间的聚合体粒度分布无显著差异。高分子量谷蛋白的亚基表达量与UPP含量的相关系数为0.42~0.86(P < 0.05或0.01)。结合高分子量谷蛋白表达量和优质亚基进行选择,能有效提高不溶性谷蛋白大聚体的含量和相对比例,有利于面筋强度和加工品质的进一步提高。  相似文献   

3.
HMW-GS和LMW-GS组成对小麦加工品质的影响   总被引:11,自引:0,他引:11  
高分子量麦谷蛋白亚基(HMW-GS)和低分子量麦谷蛋白亚基(LMW-GS)是决定小麦加工品质的重要因素。以小麦品种PH82-2(亚基组成1, 14+15, 2+12和Glu-A3d, Glu-B3d, Glu-D3c)和内乡188(亚基组成1, 7+9, 5+10和 Glu-A3a, Glu-B3j, Glu-D3b)的242份F3和F4株系(试验I)和91份产量比较试验材料(试验II)研究了贮藏蛋白组成对小麦加工品质的影响。结果表明,HMW-GS和LMW-GS等位变异对籽粒蛋白质含量的影响不大,但对加工品质均有极显著影响(P<1%)。就位点的效应而言,Glu-D1位点对加工品质的效应较大,而Glu-D3位点的效应较小。就单个亚基而言,在Glu-B1位点,14+15<7+9;在Glu-D3位点,Glu-D3c>Glu-D3b。1B/1R易位系的部分品质性状,如和面时间、曲线下降斜度和峰积分好于非1B/1R易位系。  相似文献   

4.
Allelic variations at the Glu-1 and Glu-3 loci play an important role in determining dough properties and bread-making quality. Two hundred and fifty-one cultivars and advanced lines from four major Chinese wheat-producing zones in the autumn-sown wheat regions were used to investigate the high-molecular-weight glutenin subunits (HMW GS) and low-molecular-weight glutenin subunit (LMW GS) composition controlled by the Glu-1 and Glu-3 loci, respectively, as well as the presence of the 1B.1R translocation, and to determine the association of storage protein composition with protein content, SDS sedimentation value, and dough-mixing properties measured by mixograph. Three, nine, and four allelic variations were present at Glu-A1, Glu-B1, and Glu-D1, respectively. Subunits 1, N, 7+8, 7+9, and 2+12 are the dominant HMW GS, with frequencies of 51.3, 39.4, 38.2, 45.0, and 59.8%, respectively. Five and eight allelic variations were present at the Glu-A3 and Glu-B3 loci (data of Glu-D3 were not available), Glu-A3a, Glu-A3d, Glu-B3j (presence of the 1B.1R translocation), and Glu-B3d are the dominant LMW GS, with frequencies of 37.1, 31.7, 44.6, and 20.3%, respectively. The frequencies of allelic variation at Glu-1 and Glu-3 differ greatly in different regions. The effects of HMW GS and LMW GS on SDS sedimentation value, mixing time, and mixing tolerance were significant at P = 0.01, with Glu-D1 and Glu-B3 showing the largest contributions to mixing time and mixing tolerance. Averaged data from two locations showed that the quality effects of glutenin loci could be ranked as Glu-B3 > Glu-B1 > Glu-A1 > Glu-D1 > Glu-A3 for SDS sedimentation value, Glu-D1 > Glu-B3 > Glu-A1 = Glu-B1 = Glu-A3 for mixing time, and Glu-D1 > Glu-B3 = Glu-B1 > Glu-A3 > Glu-A1 for mixing tolerance, respectively. The significant and negative effect of the 1B.1R translocation on dough properties was confirmed. It was concluded that the high frequency of undesirable HMW GS and LMW GS and the presence of the 1B.1R translocation are responsible for the weak gluten property of Chinese germplasm; hence, reducing the frequency of the 1B.1R translocation and integration of desirable subunits at Glu-1 and Glu-3 such as 1, 7+8, 14+15, 5+10, Glu-A3d, and Glu-B3d, could lead to the improvement of gluten quality in Chinese wheats.  相似文献   

5.
This paper reports the correlation between the rheological properties of bread wheat dough and the types and quantities of endosperm proteins in 28 common wheat cultivars. Different methods were used to analyse the allelic composition of these cultivars and the relative quantities of the different proteins contributing to the gluten structure. Neither dough strength (W) nor tenacity/extensibility (P/L) correlated with allelic composition. Different wheats with the same allelic composition (i.e., with respect to glutenins) showed different rheological properties. The glutenins were the most influential components of W and P/L, especially the high molecular weight (HMW) glutenin subunits and in particular the type x form. These proteins seem to increase W and are the main constituents of the gluten network. The gliadins and low molecular weight (LMW) glutenin subunits appear to act as a “solvent”, and thus modify the rheological properties of the dough by either interfering with the polymerisation of the HMW glutenin subunits, or by altering the relative amounts of the different types of glutenin available. Thus, the protein subunits coded for by the alleles Glu-B1x7 and Glu-D1x5 stabilised the gluten network, whereas those coded for by Glu-B1x17 and Glu-D1x2 had the opposite effect. Dough properties therefore appear to depend on the glutenin/gliadins balance, and on the ratio of the type x and type y HMW proteins. The influence of external factors seems to depend on the allelic composition of each cultivar.  相似文献   

6.
Glutenin, one of major factors effecting bread-making quality, is comprised of a mixture of polymers, viz. high-molecular-weight glutenin subunits (HMW-GSs) and low-molecular-weight glutenin subunits (LMW-GSs). Understanding variation among these glutenin subunits can help breeders determine allelic effects on specific quality traits and to use them as genetic markers. The HMW-GS and LMW-GS compositions of 390 landraces and 225 released varieties were analyzed by SDS–PAGE, and some quality traits, including Zeleny sedimentation volume, dough development time, stability time and strengths, were evaluated. The results indicated that 17 and 13 HMW-GSs were present in landraces and released varieties, respectively. For LMW-GS (Glu-A3 and Glu-B3 loci), 12 alleles were found in both landraces and released varieties. Total allelic richness at glutenin loci in landraces was higher, but the genetic dispersion index was lower than in released varieties. Two new subunit combinations 6 + 16 and 7 + 22, and some rare subunits 6 + 9*, 23 + 22, 6* + 8, 7 and 8, were identified in landraces and released varieties. The Glu-D1 and Glu-B3 loci had significantly positive effects. Based on the comparison of the effect of each subunit on quality, it was concluded that subunits 1 at Glu-A1, 13 + 16, 17 + 18 and 6 + 16 at Glu-B1, 5 + 10 at Glu-D1, Glu-A3b at Glu-A3 and Glu-B3d at Glu-B3 contributed larger positive effects on bread-making quality than alternative alleles. From this study, genetic materials with strong gluten and good quality were identified in landraces that did not carry the 1BL.1RS translocation.  相似文献   

7.
选用北方冬麦区近年来育成的优质强筋品种及山东省主栽品种共42份, 采用反相高效液相色谱法(RP-HPLC)和凝胶色谱法(SE-HPLC)对小麦贮藏蛋白组分进行量化, 分析了不同高分子量谷蛋白亚基(HMW-GS)组成对其表达量、面团流变学特性和面包加工品质的影响。结果表明, Glu-D1位点对谷蛋白亚基含量和加工品质的加性效应最大, 达5%显著水平, 贡献率为28.5%~71.3%。在Glu-A1和Glu-D1位点, 单个亚基对谷蛋白亚基含量和加工品质的贡献分别为1>2*>N和5+10>2+12>4+12, 而在Glu-B1位点, 则表现为差异不显著。不同亚基组合的HMW–GS表达量差异达5%显著水平, 相同亚基组合的品种间贮藏蛋白组分表达量的变异较大, 亚基表达量的差异可能是导致品种间品质差异的重要原因。1B/1R易位显著降低LMW-GS、谷蛋白总量和%UPP, 导致加工品质变劣。选择具有优质亚基组合, 且谷蛋白亚基表达量高的类型, 是有效改良面筋强度, 进一步提高优质新品种选育的有效途径。  相似文献   

8.
Multiplex-PCR typing of high molecular weight glutenin alleles in wheat   总被引:26,自引:0,他引:26  
W. Ma  W. Zhang  K.R. Gale 《Euphytica》2003,134(1):51-60
In Australian commercial cultivars, each high molecular weight glutenin (Glu-1) homoeologous locus consists of one of two predominant alleles: Glu-A1a (subunit Ax1) or Glu-A1b (subunit Ax2*) at the GluA1 locus, Glu-B1b (Bx7 and By8 subunits) or Glu-B1i (Bx17 and By18 subunits) at the Glu-B1 locus, and Glu-D1d (Dx5 and Dy10 subunits) or Glu-D1a (Dx2 and Dy12 subunits) at the Glu-D1 locus. PCR-based assays have been developed in this study to discriminate between these common alleles at each locus. Primers specific for the Glu-A1 Ax2* gene give a single fragment of 1319 bp only in the presence of this gene. Primers targeting the Glu-B1 locus resulted in a co-dominant marker for which the Bx7 genotype produced two fragments (630 bp and 766 bp) and the Bx17 genotype a single fragment (669 bp). The third pair of primers was specific for the Dx5 gene and resulted in a single band of 478 bp. A multiplexed PCR assay was established which permitted the discrimination of the major HMW glutenins in a single PCR reaction and agarose gel assay. As the HMW glutenin composition of a wheat line is extremely important in determining the functional properties of wheat gluten, these markers are useful for the purposes of marker-assisted breeding. These markers may also be useful for the purpose of DNA-based identification of wheat varieties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Forty-two winter wheat varieties and 193 F2 and BC1F2 seeds were screened for Glu-D1d allele encoding the HMW glutenin subunits 5 + 10 using polymerase chain reaction (PCR). The segregating populations originated from crosses involving wheat parents with good and poor bread-making quality. A clear PCR product of 450 bp, representing 1Dx5 of the Glu-D1d allele was identified in 24 varieties and 111 hybrid seeds. Four different Glu-D1 alleles: a (2 + 12), b (3 + 12), c (4 + 12) and d (5 + 10) were detected using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Only genotypes possessing Glu-D1d gave a positive PCR signal, hexaploid triticale and 4 × wheat lacking Glu-D1 locus gave a negative signal. The efficiency of PCR selection for bread-making quality in early generations using half seed is discussed.  相似文献   

10.
利用重组自交系群体--RILL-8群体的131个系为材料,检测和分析了其高分子量麦谷蛋白亚基及亚基组合.结果表明,RIL-8群体Glu-A1、Glu-B1、Glu-D1位点编码的亚基分别为1、N,7 9、7 8和5 10、2 12,主要存在7种亚基组合类型.不同亚基及亚基组合类型在相同位点上仅存在1对等位基因差异,可以用其进行相同位点不同亚基及亚基组合对品质性状效应值的估算.  相似文献   

11.
High molecular weight glutenin subunit composition of Chinese bread wheats   总被引:28,自引:0,他引:28  
Summary The endosperm storage proteins of 205 Chinese bread wheat cultivars and advanced lines were fractionated by SDS-PAGE to determine their high molecular weight (HMW) glutenin subunit composition. Seventeen alleles were identified: three at Glu-A1, eight at Glu-B1, and six at Glu-D1. The most common alleles were Null, 1, 7+8, 7+9, and 2+12. The results indicate that wheats from different regions differ in their frequencies of HMW glutenin subunits, however, none of the subunits could be related to specific environments. The glutenin quality scores of Chinese wheats ranged from 3 to 10, with an average of 6.7. Increasing quality scores have implications in improving steam-bread making quality for Chinese consumers. On the basis of HMW glutenin subunit composition, Chinese wheats are close to European wheats, especially Italian wheats because several Italian introductions are widely distributed in the pedigrees of Chinese wheat.  相似文献   

12.
Seed storage proteins of 131 Japanese Norin wheat (Triticum aestivum) varieties were fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis to determine allelic make-up in varieties at each of three loci that control high-molecular-weight (HMW) glutenin subunits. Three alleles were identified at the Glu-A1 locus, six at the Glu-B1 locus and five at the Glu-D1 locus. Twenty-four different, major glutenin HMW subunits were identified and each contained three to five subunits and seventeen different glutenin subunit patterns were observed for 19 subunits in the 131 Japanese Norin varieties. Fourteen alleles were identified by comparison of subunit mobility with that previously found in hexaploid wheat. Japanese Norin varieties showed a specific pattern of allelic variation in glutenin HMW subunits, different from that of Chinese and other country common wheats in allelic frequency at Glu-1 loci. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Summary High and low molecular weight glutenin subunit (HMW-GS and LMW-GS) compositions of 270 European spelts, 15 Iranian spelts and 25 bread wheat cultivars were analyzed by one- and two-dimensional gel electrophoresis. The results revealed a total of 22 HMW-GS alleles (4 at Glu-A1, 11 at Glu-B1 and 7 at Glu-D1) and 32 allele combinations among the three Glu-1 loci. Two major genotypes of HMW-GS: 1, 13+16, 2+12 and 1, 6.1+22.1, 2+12 were found to occur in Central European spelt wheat cultivars and landraces at higher frequencies of 35 and 28%, respectively. The Glu-B1 locus displayed the greatest variation and genetic diversity index (H) was 0.69 whereas Glu-A1 and Glu-D1 showed H index values of 0.26 and 0.19, respectively. The dendrogram constructed by HMW and LMW glutenin subunit bands revealed that European spelts form a separated cluster from common wheat suggesting that spelt and common wheat form distinct groups. In addition, all 15 Iranian spelt land variety accessions differed from European spelts and possessed similar HMW-GS alleles to common wheat. Because of a wider polymorphism Central European spelt wheats are an important genetic reserviour for improving common wheat quality. Both authors contributed equally to this work  相似文献   

14.
Two alleles, Glu-A1r encoding high-molecular-weight (HMW) glutenin subunits 39+40 and Glu-A1s encoding HMW glutenin subunits 41+42, were introgressed to bread wheat (Triticum aestivum L.) cv. Sicco from two accessions of T. boeoticum Boiss. ssp. thaoudar (A genome species, 2n=2x=14). Alleles at Glu-A1 in current commercial bread wheats encode zero or one subunit, and alleles at the homoeoloci Glu-B1 and Glu-D1 encode a maximum of two subunits; hence the maximum number of subunits found in commercial wheats is five, whereas the lines incorporating Glu-A1r and Glu-A1s carry six. Using near-isogenic lines, the current results demonstrated that the introduction of Glu-A1r resulted in diminished dough stickiness and improved stability during mixing compared with Glu-A1a encoding subunit 1, and a small improvement in gluten strength as shown by the SDS- sedimentation test. The introduction of Glu-A1a also resulted in a small improvement in gluten strength predicted by the SDS-sedimentation test. Thus the alleles are of potential value in breeding programmes designed to improve bread-making quality.  相似文献   

15.
The objective of this study was to identify allelic variations at Glu-1 loci of wheat (Triticum aestivum L.) advanced lines derived from hybridization of bread wheat and synthetic hexaploid wheats (2n = 6x = 42; AABBDD). Locally adapted wheat genotypes were crossed with synthetic hexaploid wheats. From the 134 different cross combinations made, 202 F8 advanced lines were selected and their HMW-GS composition was studied using SDS-PAGE. In total, 24 allelic variants and 68 HMW-GS combinations were observed at Glu-A1, Glu-B1, and Glu-D1 loci. In bread wheat, the Glu-D1 locus is usually characterized by subunits 1Dx2+1Dy12 and 1Dx5+1Dy10 with the latter having a stronger effect on bread-making quality. The subunit 1Dx5+1Dy10 was predominantly observed in these advanced lines. The inferior subunit 1Dx2+1Dy12, predominant in adapted wheat germplasm showed a comparative low frequency in the derived advanced breeding lines. Its successful replacement is due to the other better allelic variants at the Glu-D1 locus inherited in these synthetic hexaploid wheats from Aegilops tauschii (2n = 2x = 14; DD).  相似文献   

16.
Variation at Glu-1 Loci in Club Wheats   总被引:1,自引:0,他引:1  
Hexaploid club wheats (Triticum aestivum L.) possess unique end-use quality characteristics and are grouped as a U.S. market subclass of soft white common wheat. Although there have been many reports on associations among high-molecular-weight glutenin storage protein (HMW-Glu) sub-units with end-use quality in hard wheats; there has been very limited work done on surveying the club wheats for these subunits. The HMW-Glu subunits, spike types and grain color were determined for 41 U.S. club wheat cultivars and 79 club accessions obtained from the National Small Grains Collection (NSGC), USDA-ARS. Accession ‘Harlan JR 35’ (PI 420948), which appears morphologically to be a hexaploid club wheat, was determined to be tetraploid. Egyptian line ‘Maya II-Tel's’ (PI 422288) was shown to have previously undescribed HMW-Glu subunits. In the U.S. club wheats the most common HMW-Glu subunits were: null, 49 % (Glu-A1); 6, 37 % (Glu-B1); and 2 + 12, 94 % (Glu-D1). In the NSGC group the most common HMW-Glu sub-units were: 2*, 52 % (Glu-A1); 7 + 8, 31 % (Glu-B1); and 2 + 12, 92 % (Glu-D1). The high frequency of subunits 2 + 12 in the club wheat groups has not been observed previously in numerous surveys of diverse wheat cultivars. The Glu-B1 subunits 6 (without subunit 8) and 20 which have not been reported in US red wheats, were shown to be common in both club wheat groups. A comparison of diversity indices, including previous studies on HMW-Glu subunit frequencies on all market classes of wheat, showed that the club groups are as diverse for the Glu-A1 and Glu-B1 loci and less diverse for the Glu-D1 locus.  相似文献   

17.
Variability of high molecular weight glutenin subunits (HMW-GS) was studied in198 accessions of Ae. Tauschii (2n=2x=14, DD) by sodium dodecyl sulphate(SDS-PAGE) and acid polyacrylamide gel electrophoresis (A-PAGE) and capillary electrophoresis (CE). A high allelic variation of HMW-GS, including some novel x- and y-type subunits and variable subunit combinations were observed. One accession(TD159) showed a x-type null form. The results by A-PAGE analysis revealed that the subunits Dx5 t and Dy10 t encoded by Glu-D t 1 locus in Ae. tauschii were different in relative mobilities in comparison with the subunits Dx5 and Dy10 found in bread wheats, whereas they had the same mobilities, respectively, when separated by SDS-PAGE. The higher resolution of Ae. tauschii HMW-GS separated by CE method showed two clear peaks in accordance with x- and y-type subunits, respectively,except the accession TD151 which possessed only subunit Dy12.1*t. The electro elution time of the x-type and y-type subunits were about 13–14 and 7–8minutes, respectively. Characterization of wheat HMW-GS was facilitated by using CE which provides high resolution and increases the speed of analysis in conjunction with the traditional gel electrophoretic methods. A total of 42HMW-GS alleles were identified, among which were several alleles not presently detected in bread wheats. Hence Ae. tauschii is potentially a valuable genetic resource for quality improvement of bread wheat. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
An unusually small y-type high molecular weight (HMW) glutenin subunit gene from Triticum tauschii was sequenced. This gene, encoded at the Glu-Dt1 locus was designated 12.4t and is the smallest HMW glutenin subunit gene described so far in Triticum species. Oligonucleotide primers based on published sequences of HMW glutenin genes were designed to amplify the encoding region and the central repetitive domain of the gene, which produced fragments of 1.4 and 0.85 kb, respectively. PCR products were cloned and sequenced. The derived amino acid sequence was compared with the amino acid sequences of the HMW glutenin subunits Dy12t, from T. tauschii, and subunits Dy10 and Dy12 of T. aestivum. The amino acid sequence deduced from the nucleotide sequence demonstrated that deletions of hexapeptides and nonapeptides were responsible for the reduction in the size of this HMW glutenin subunit. The estimated molecular weight of the Dy12.4t subunit, calculated on the basis of the deduced amino acid sequence, was 45,228 Daltons. There were also single amino acid differences in the N-, C-terminal and central repetitive domains of this gene in comparison to the three other y-type subunits encoded at the Glu-D1 locus. The Dy12.4t subunit showed the highest similarity to the Dy12 subunit present in the hexaploid wheat Chinese Spring.  相似文献   

19.
The objective of this paper was to study the differences between some prolamin variants coded at the loci Glu-3/Gli-1, Glu-1 and Gli-A2 and their relative roles in durum-wheat quality. F3 lines from four durum wheat crosses (‘Abadia’בMexicali’. ‘Oscar’בArdente’, ‘Oscar × Mexicali’ and ‘Alaga’בC. of Balazote’) were analysed for gliadin and glutenin composition by electrophoresis. Whole-grain-derived samples were analysed for SDS sedimentation (SDSS) value, mixing properties, and contents of protein and vitreousness. The glutenin patterns LMW-2. LMW-2? and LMW-2 (CB) at Glu-B3/Gli-B1 were associated with better gluten quality than were LMW-1 and LMW-2*. The glutenin subunits LMW4 and LMW3 + 15 at Glu-A3/Gli-A1 and HMW-1 showed better mixing properties than LMW7 + 12, LMW5 and the null phenotype. respectively. The HMW glutenin subunits 20 + 8 at Glu-B1 showed a negative association with gluten quality, but the rest of the HMW glutenin subunits and α-gliadins did not show any influence on gluten quality. Correlations between the results of the SDSS test and the mixograph were highly significant, but no correlation was found between these results and protein and vitreousness contents. The results are discussed in relation to the development of durum wheat varieties with improved qualities.  相似文献   

20.
基因敲除是研究高分子量谷蛋白(HMW-GS)亚基功能的重要方法。本研究以软质小麦宁麦9号野生型及其单亚基缺失系为材料,探讨了HMW-GS缺失对籽粒品质性状、谷蛋白组分含量和加工品质的影响。在29份参试品系中,野生型有3个穗系,Glu-A1x、Glu-B1x、Glu-B1y、Glu-D1x和Glu-D1y缺失型分别有5、7、5、5和4份。野生型与缺失型,以及缺失型之间的蛋白质含量、湿面筋含量、籽粒硬度和溶剂保持力无显著差异。缺失型的谷蛋白/醇溶蛋白、高分量谷蛋白/低分子量谷蛋白含量比值低于野生型,其中Glu-B1x和Glu-D1x缺失型的比值显著低于野生型(P<0.05)。缺失型的揉面仪峰值时间和8 min带宽变异范围分别为1.38~1.64 min和3.38%~3.98%,显著低于野生型的2.00 min和4.57% (P<0.05),以Glu-B1x和Glu-D1x缺失型表现最低。与野生型相比,缺失型的糖酥饼干直径均有增加,其中Glu-B1x、Glu-B1y和Glu-D1y缺失型饼干直径的增加达显著水平(P<0.05),而缺失型之间的差异不显著。在宁麦9号背景下,高分子量麦谷蛋白单亚基缺失弱化了面筋强度,改善了糖酥饼干加工品质,亚基敲除可能是进一步提高软质小麦加工品质的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号