首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The chemical composition of snowmelt, groundwater, and streamwater was monitored during the spring of 1991 and 1992 in a 200-ha subalpine catchment on the western flank of the Rocky Mountains near Steamboat Springs, Colorado. Most of the snowmelt occurred during a one-month period annually that began in mid-May 1991 and mid-April 1992. The average water quality characteristics of individual sampling sites (meltwater, streamwater, and groundwater) were similar in 1991 and 1992. The major ions in meltwater were differentially eluted from the snowpack, and meltwater was dominated by Ca2+, SO 4 2? , and NO 3 ? . Groundwater and streamwater were dominated by weathering products, including Ca2+, HCO 3 ? (measured as alkalinity), and SiO2, and their concentrations decreased as snowmelt progressed. One well had extremely high NO 3 ? . concentrations, which were balanced by Ca2+ concentrations. For this well, hydrogen ion was hypothesized to be generated from nitrification in overlying soils, and subsequently exchanged with other cations, particularly Ca2+. Solute concentrations in streamwater also decreased as snowmelt progressed. Variations in groundwater levels and solute concentrations indicate that most of the meltwater traveled through the surficial materials. A mass balance for 1992 indicated that the watershed retained H+, NH 4 + , NO 3 ? , SO 4 2? and Cl? and was the primary source of base cations and other weathering products. Proportionally more SO 4 2? was deposited with the unusually high summer rainfall in 1992 compared to that released from snowmelt, whereas NO 3 ? was higher in snowmelt and Cl? was the same. The sum of snowmelt and rainfall could account for greater than 90% of the H+ and NH 4 + retained by the watershed and greater than 50% of the NO 3 ? .  相似文献   

2.
A 2 yr field study on the influence of N fertilization and rainfall on groundwater pollution was carried out in the sandy area of Belgium. The NO inf3 sup? -N and Cl? content of the groundwater at 0.5, 1.0, 1.5, and 2.0 m depths was monitored every two weeks on a field, grown with barley in 1980 and with maize in 1981. Turnips for cattle feed were grown in between the two crops. The total annual rainfall during the period under study was about 800 mm. The NO inf3 sup? -N content at all depths was at all times above 11.3 mg NO inf3 sup? -N dm?3, the WHO safe limit. Fluctuation of the NO inf3 sup? -N content occurred mainly at 0.5 and 1.0 m. The concentration at 1.5 and 2.0 m depths was higher most of the time than at 0.5 and 1.0 m. Leaching of NO inf3 sup? -N into deeper layers occurred when there was heavy rainfall. There was no important loss of NO inf3 sup? -N through denitrification at 1.5 and 2.0 m depths.  相似文献   

3.
The Nandong Underground River System (NURS) is located in Southeast Yunnan Province, China. Groundwater in NURS plays a critical role in socio-economical development of the region. However, with the rapid increase of population in recent years, groundwater quality has degraded greatly. In this study, the analysis of 36 groundwater samples collected from springs in both rain and dry seasons shows significant spatial disparities and slight seasonal variations of major element concentrations in the groundwater. In addition, results from factor analysis indicate that NO 3 ? , Cl?, SO 4 2? , Na+, K+, and EC in the groundwater are mainly from the sources related to human activities while Ca2+, Mg2+, HCO 3 ? , and pH are primarily controlled by water–rock interactions in karst system with Ca2+ and HCO 3 ? somewhat from anthropogenic inputs. With the increased anthropogenic contaminations, the groundwater chemistry changes widely from Ca-HCO3 or Ca (Mg)-HCO3 type to Ca-Cl (+NO3) or Ca (Mg)-Cl (+NO3), and Ca-Cl (+NO3+SO4) or Ca (Mg)-Cl (+NO3+SO4) type. Concentrations of NO 3 ? , Cl?, SO 4 2? , Na+, and K+ generally show an indistinct grouping with respect to land use types, with very high concentrations observed in the groundwater from residential and agricultural areas. This suggests that those ions are mainly derived from sewage effluents and fertilizers. No specific land use control on the Mg2+ ion distribution is observed, suggesting Mg2+ is originated from natural dissolution of carbonate rocks. The distribution of Ca2+ and HCO 3 ? does not show any distinct land use control either, except for the samples from residential zones, suggesting the Ca2+ and HCO 3 - mainly come from both natural dissolution of carbonate rocks and sewage effluents.  相似文献   

4.

Purpose

Nitrate (NO 3 ? ) is often considered to be removed mainly through microbial respiratory denitrification coupled with carbon oxidation. Alternatively, NO 3 ? may be reduced by chemolithoautotrophic bacteria using sulfide as an electron donor. The aim of this study was to quantify the NO 3 ? reduction process with sulfide oxidation under different NO 3 ? input concentrations in river sediment.

Materials and methods

Under NO 3 ? input concentrations of 0.2 to 30?mM, flow-through reactors filled with river sediment from the Pearl River, China, were used to measure the processes of potential NO 3 ? reduction and sulfate (SO 4 2? ) production. Molecular biology analyses were conducted to study the microbial mechanisms involved.

Results and discussion

Simultaneous NO3 ? removal and SO4 2? production were observed with the different NO 3 ? concentrations in the sediment samples collected at different depths. Potentially, NO 3 ? removal reached 72 to 91?% and SO 4 2? production rates ranged from 0.196 to 0.903?mM?h?1. The potential NO 3 ? removal rates were linearly correlated to the NO 3 ? input concentrations. While the SO 4 2? production process became stable, the NO 3 ? reduction process was still a first-order reaction within the range of NO 3 ? input concentrations. With low NO 3 ? input concentrations, the NO 3 ? removal was mainly through the pathway of dissimilatory NO 3 ? reduction to NH 4 + , while with higher NO 3 ? concentrations the NO 3 ? removal was through the denitrification pathway.

Conclusions

While most of NO 3 ? in the sediment was reduced by denitrifying heterotrophs, sulfide-driven NO 3 ? reduction accounted for up to 26?% of the total NO 3 ? removal under lower NO 3 ? concentrations. The vertical distributions of NO 3 ? reduction and SO 4 2? production processes were different because of the variable bacterial communities with depth.  相似文献   

5.
High As groundwater normally contained high concentrations of Cl? and HCO 3 ? . This study examined the effects of Cl?, HCO 3 ? , and As species on As uptake by hyperaccumulator Pteris vittata. Plants were exposed hydroponically to 5.0?mg/L As(III) or As(V) in the presence of 0, 0.5, 1, 2, 5, 10, and 20?mM of Cl? or HCO 3 ? for 10?days. Addition of high Cl? concentrations (>10?mM) slightly inhibited P. vittata growth (biomass), while generally had no significant effect on plant As uptake. High solution pH resulted in reduced plant growth and As uptake, which attributed to the inhibitory effects in HCO 3 ? treatments with the high pH of the high HCO 3 ? concentration. It was speculated that addition of HCO 3 ? (<20?mM) would have no significant effect on plant growth and As uptake. The inhibitory effect of HCO 3 ? on As translocation was less apparent in the As(III) solutions than the As(V) solutions. For the high As groundwater with As(III) as the predominant species, high pH, instead of high concentrations HCO 3 ? and Cl?, was expected to inhibit As uptake. The results suggested that optimum plant growth and maximum As hyperaccumulation could be achieved by adjusting solution pH in the growth media (around 7.2).  相似文献   

6.
The effect of different anions on the balance of heavy metal cations in the soil-solution system has been assessed under model laboratory conditions. It has been found that the uptake of the Cu, Zn, and Pb cations by an ordinary chernozem from solutions of different salts is accompanied by the displacement of the exchangeable cations to the solution in the following order: Ca2+ > Mg2+ > Na+ > K+. The sum of the displaced exchangeable cations in most cases exceeds the amount of the adsorbed heavy metal cations. According to the effect of the anions on the displacing capacity of the metal cations, the following series are formed: for copper, SO 4 2? ? Cl? > OAc? > NO 3 ? ; for lead, Cl? ? NO 3 ? > OAc?; and, for zinc, SO 4 2? ? Cl? ? OAc? > NO 3 ? .  相似文献   

7.
Nitrification is a process in which ammonia is oxidized to nitrite (NO 2 ? ) that is further oxidized to nitrate (NO 3 ? ). The relations between these two steps and ambient ammonia concentrations were studied in surface water of Chinese shallow lakes with different trophic status. For the oxidations of both ammonia and NO 2 ? , more eutrophic lakes generally showed significantly higher potential and actual rates, which was linked with excessive ammonia concentrations. Additionally, both potential and actual rates for ammonia oxidation were higher than those for NO 2 ? oxidation in the more eutrophic lakes, while in the lakes with lower trophic status, both potential and actual rates for ammonia oxidation were almost equivalent to those for NO 2 ? oxidation. This can be explained by the excessive unionized ammonia (NH3) concentration that inhibits nitrite-oxidizing bacteria in the more eutrophic lakes. The laboratory experiment with different ammonia concentrations, using the surface water in a eutrophic lake, showed that ammonia oxidation rates were proportional to the ammonia concentrations, but NO 2 ? oxidation rates did not increase in parallel. Furthermore, NO 2 ? oxidation was less associated with particles in natural water of the studied lakes. Without effective protection, it would be selectively inhibited by the excessive ammonia in hypereutrophic lakes, resulting in NO 2 ? accumulation. Shortly, the increased concentrations of ammonia cause a misbalance between the NO 2 ? -producing and the NO 2 ? -consuming processes, thereby exacerbating the lake eutrophication.  相似文献   

8.
The study aimed to determine the influence of catchment characteristics and flood type on the relationship between streamflow and a number of chemical characteristics of streamwater. These were specific electrical conductivity (SC), pH, the concentrations of main ions (Ca2+, Mg2+, Na+, K+, HCO 3 ? , SO 4 2? , and Cl?), and nutrients (NH 4 + , NO 2 ? , NO 3 ? , and PO 4 3? ). These relationships were studied in three small catchments with different geological structure and land use. Several flood types were distinguished based on the factors that initiate flooding and specific conditions during events. Geological factors led to a lower SC and main ion concentrations at a given specific runoff in catchments built of resistant sandstone versus those built of less resistant sediments. A lower concentration of nutrients was detected in the semi-natural woodland catchment versus agricultural and mixed-use catchments, which are strongly impacted by human activity. The strongest correlation between streamflow and the chemical characteristics of water was found in the woodland catchment. Different types of floods were characterized by different ion concentrations. In the woodland catchment, higher SC and higher concentrations of most main ions were noted during storm-induced floods than during floods induced by prolonged rainfall. The opposite was true for the agricultural and mixed-use catchments. During snowmelt floods, SC, NO 3 ? , and most main ion concentrations were higher when the soil was unfrozen in the agricultural and mixed-use catchments versus when the soil was frozen. In the case of the remaining nutrients, lower concentrations of NH 4 + were detected during rain-induced floods than during snowmelt floods. The opposite was true of PO 4 3? .  相似文献   

9.
This study assessed the foliar uptake of 15N-labelled nitrogen (N) originating from wet deposition along with leaf surface conditions, measured by wettability and water storage capacity. Foliar 15N uptake was measured on saplings of silver birch, European beech, pedunculate oak and Scots pine and the effect of nitrogen form (NH 4 + or NO 3 ? ), NH 4 + to NO 3 ? ratio and leaf phenology on this N uptake was assessed. Next to this, leaf wettability and water storage capacity were determined for each tree species and phenological stage, and the relationship with 15NH 4 + and 15NO 3 ? uptake was examined. Uptake rates were on average five times higher (p?<?0.05) for NH 4 + than for NO 3 ? and four times higher for deciduous species than for Scots pine. Developing leaves showed lower uptake than fully developed and senescent leaves, but this effect was tree species dependent. The applied NH 4 + to NO 3 ? ratio did only affect the amount of N uptake by senescent leaves. The negative correlation between measured leaf contact angles and foliar N uptake demonstrates that the observed effects of tree species and phenological stage are related to differences in leaf wettability and not to water storage capacity.  相似文献   

10.
The atmospheric deposition of air pollutants at a forest edge was studied by means of monitoring canopy throughfall at the edge and at five different parallel lines in the forest behind the edge. The investigation was carried out at a pine forest on the Swedish west coast. Throughfall and bulk deposition samples were analyzed for volume, SO 4 2? , NO 3 ? , Cl?, NH 4 + , Na+, K+, Mg2+, Ca2+, and for pH. The results show that the throughfall flow at the edge was increased substantially for most ions. The ratios in throughfall flows between the edge and the line 50 m into the forest were for SO 4 2? , 1.5, NO 3 ? 2.9, NH 4 + 2.7, and Na+ 3.1. Since this effect is not only valid for forest edges but also for hillsides, hilltops, and edges between stands of different age, etc., there might be substantial areas which get much larger total deposition than the normally considered closed forest.  相似文献   

11.
Hydrochemical data have been collected for between 6 and 9 years from forest harvesting experiments in small catchments (>10 ha) at Plynlimon and Beddgelert, Wales, UK. Felling resulted in rapid increases in NO 3 ? and K+ concentrations at both sites. A maximum of 3.2 mg N L?1 was observed at Plynlimon about one year after the start of felling. Concentrations declined to control stream values (0.5 mg N L?1) after 5 years. At Beddgelert, NO 3 ? concentrations in the manipulated catchments remained above those in the unfelled control catchment for three years, before declining below control values. The NO 3 ? pulse was related to increased rates of mineralization and nitrification in the soil after felling. The initial increase in K+ concentration after felling at Plynlimon was followed by a slow decline, but concentrations were still above those in the control stream after 5 years. From 4 to 8 years after felling at Beddgelert, K+ concentrations fell below and then generally remained lower than control values. The NO 3 ? pulse after felling at Plynlimon sustained inorganic anion concentrations above those in the control stream for the first 18 months after felling. As the NO 3 ? pulse declined, inorganic anion concentrations decreased to below those in the control stream about 4 years after felling. At Beddgelert, the smaller increase in NO 3 ? concentrations had less of an effect on inorganic anion concentrations which decreased after felling relative to values in the control stream. The increase in NO 3 ? was associated with temporary streamwater acidification in the felled catchments due to the increased rates of nitrification and nitrate leaching. At Plynlimon, streamwater filterable Al concentrations declined after felling, but controls on Al behaviour are complex and not explained by simple equilibrium relationships with Al(OH)3 or by variations in inorganic anion concentrations. At Beddgelert, felling had no effect on stream water filterable Al concentrations. Felling at Plynlimon led to a large reduction in streamwater Cl?, Na+ and SO 4 2? concentrations. At Beddgelert reductions in SO 4 2? and ‘sea salt’ ion concentrations were less clear, reflecting the smaller proportions of the catchments which were harvested. Felling had no deleterious effects on water quality, apart from a temporary slight further decline in stream pH at Beddgelert. Increases in NO 3 ? concentrations were short-lived and concentrations were well below drinking water standards. Filterable Al concentrations were already higher than statutory standards, but were not increased or decreased through felling.  相似文献   

12.
A long-term hydrological and water chemistry research was conducted in three experimental microbasins differing in land cover: (1) a purely agricultural fertilized microbasin, (2) a forested microbasin dominated by Carpinus betulus (European hornbeam), and (3) a forested microbasin dominated by Picea abies (L.) (Norway spruce). The dissolved inorganic nitrogen (DIN: NH 4 + , NO 2 ? , NO 3 ? ) budget was examined for a period of 3 years (1991–1993). Mean annual loads of DIN along with sulfate SO 4 2? and base cations Ca2+, Mg2+, Na+, K+, and HCO 3 ? were calculated from ion concentrations measured in stream water, open-area rainfall, throughfall (under tree canopy), and streamwater at the outlets from the microbasins. Comparison of the net imported/exported loads showed that the amount of NO 3 ? leached from the agricultural microbasin is ~3.7 times higher (43.57 kg ha?1?a?1) than that from the spruce dominated microbasin (11.86 kg ha?1?a?1), which is a markedly higher export of NO 3 ? compared to the hornbeam dominated site. Our analyses showed that land cover (tree species) and land use practices (fertilization in agriculture) may actively affect the retention and export of nutrients from the microbasins, and have a pronounce impact on the quality of streamwater. Sulfate export exceeded atmospheric rainfall inputs (measured as wet deposition) in all three microbasins, suggesting an additional dry depositions of SO 4 2? and geologic weathering.  相似文献   

13.
A constructed wetland composed of a pond- and a marsh-type wetland was employed to remove nitrogen (N) and phosphorus (P) from effluent of a secondary wastewater treatment plant in Korea. Nutrient concentrations in inflow water and outflow water were monitored around 50 times over a 1-year period. To simulate N and P dynamics in a pond- and a marsh-type wetland, mesocosm experiments were conducted. In the field monitoring, ammonium (NH 4 + ) decreased from 4.6 to 1.7 mg L?1, nitrate (NO 3 ? ) decreased from 6.8 to 5.3 mg L?1, total N (TN) decreased from 14.6 to 10.1 mg L?1, and total P (TP) decreased from 1.6 to 1.1 mg L?1. Average removal efficiencies (loading basis) for NO 3 ? , NH 4 + , TN, and TP were over 70%. Of the environmental variables we considered, water temperature exhibited significant positive correlations with removal rates for the nutrients except for NH 4 + . Results from mesocosm experiments indicated that NH 4 + was removed similarly in both pond- and marsh-type mesocosms within 1 day, but that NO 3 ? was removed more efficiently in marsh-type mesocosms, which required a longer retention time (2?C4 days). Phosphorus was significantly removed similarly in both pond- and marsh-type mesocosms within 1 day. Based on the results, we infer that wetland system composed of a pond- and a marsh-type wetland consecutively can enhance nutrient removal efficiency compared with mono-type wetland. The reason is that removal of NH 4 + and P can be maximized in the pond while NO 3 ? requiring longer retention time can be removed through both pond and marsh. Overall results of this study suggest that a constructed wetland composed of a pond- and a marsh-type wetland is highly effective for the removal of N and P from effluents of a secondary wastewater treatment plant.  相似文献   

14.
The effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N transformations and composition of ammonia-oxidizing bacteria (AOB) communities was investigated at the centimeter scale in a microcosm experiment under laboratory conditions. After 28 days, samples were collected from soil treated with urea or urea and DMPP at increasing distance from the fertilizer zone; this distance ranged from 0 to 5 cm in both horizontal and vertical directions. The results showed that DMPP application significantly increased soil pH and NH 4 + -N and mineral N (NH 4 + -N, NO 3 ? -N, and NO 2 ? -N) concentrations but decreased (NO 3 ? + NO 2 ? )-N concentration, and such effect was decreased by increasing the distance from the fertilizer zone. Fingerprint profiles of denaturing gradient gel electrophoresis showed that the number of bands decreased by increasing the distance from the fertilizer zone due to decreasing NH 4 + -N concentrations in the urea treatment. Compared to urea applied alone, DMPP application increased NH 4 + -N concentrations and decreased AOB diversity from 0 to 3 cm but promoted diversity from 3 to 5 cm distance from the fertilizer zone. A phylogenetic analysis showed that AOB communities were dominated by Nitrosospira cluster 3. Therefore, the nitrification inhibitor DMPP modified the composition of AOB communities by increasing the distance from the fertilizer zone and this probably was related to the changes in soil pH and inorganic N concentration.  相似文献   

15.
We evaluated the differences in the use of a quartz filter and a polytetrafluoroethylene (PTFE) filter as a first (F0)-stage filter in a four-stage filter-pack method. A four-stage filter-pack method can completely collect sulfur species (SO2 and SO 4 2? ), nitrate species (HNO3 and NO 3 ? ), and ammonium species (NH3 and NH 4 + ) with little or no leakage irrespectively of the first-stage filter used. On the other hand, a seasonal variation was observed in the efficiency of collection between the quartz filter and the PTFE filter depending on the material to be collected. There was no seasonal variation in the efficiency of collection in sulfur species; in contrast, a clear seasonal variation was observed for the nitrate and ammonium species. As for NO 3 ? , the PTFE filter was more vulnerable than the quartz filter at air temperatures below 21°C, while the quartz filter was more vulnerable than the PTFE filter at air temperatures exceeding 21°C. A similar vulnerability for air temperature was observed for NH 4 + , although the threshold air temperature was 23°C for NH 4 + . Consequently, the evaporation loss of NO 3 ? would be mainly attributable to the volatilization of NH4NO3, although it is also partially due to the volatilization of NH4Cl.  相似文献   

16.
In the Vosges Mountains (NE of France), integrated plot-catchment studies have been carried out since 1985 in the Strengbach basin to study the influence of acid atmospheric inputs on surface water quality and element budgets. In this paper, available mid-term time series (1985–1991) have been considered to detect obvious trends, if any, in surface water chemistry and element budgets. Air quality data showed a slight decline for SO2, whereas NO2 slightly increased over the period, but these trends are not very significant. This is in agreement with increased N concentration (mainly as NH 4 + ) and with the stability of SO 4 2? in open field precipitation. Because of a significant decrease in rainfall amount over the period, only inputs of NH 4 + increased significantly whereas H+ and SO 4 2+ inputs declined. In spring and streamwaters, pH and dissolved Si concentration increased mainly as a result of a reduced flow. Na+, K+, Cl? and HCO-3~? concentrations remained stable whereas Ca2+, Mg2+ and SO 4 2+ concentrations declined significantly. Only NO 3 ? concentration increased significantly in springwaters. The catchment budgets revealed significant losses of base cations, Si and SO 4 2? . These losses decreased over the period. Nitrogen was retained in the ecosystem. However, a longer record is needed to determine whether or not changes in surface water chemistry have resulted from short-term flow reductions or long-term changes in input-output ion budgets. This is specially true with N because the decline in SO 4 2? output was accompanied by N accumulation.  相似文献   

17.
Nitrogen emissions have grown in Spain during the last 15 years. As precipitation scavenges gases and aerosols from the atmosphere, an effect on rainwater concentrations can be expected. However, time-series studies on wet N concentrations in the Iberian Peninsula are very scarce. This paper aims to fill this gap by analysing weekly rainfall N concentrations at a set of rural sites in Catalonia (NE Spain) from 1995/1996 to 2007 and a forest site monitored from 1983 to 2007. The sites encompass a range of rural environments and climate conditions, from the inland pre-Pyrenees (Sort) to the Mediterranean coast (Begur) and from north (Sort and Begur) to central (Palautordera and La Castanya) and south Catalonia (La Senia). We found a 1-year cycle for concentrations of NH 4 + and NO 3 ? whereby higher values were reached at the end of spring–early summer, except at the easternmost coastal site of Begur. Weekly NH 4 + concentrations decreased with time at all sites (except at La Senia) whilst NO 3 ? concentrations increased at all sites during the same period. Rainfall SO 4 2? concentrations decreased with time at all sites. The opposite trends in NO 3 ? and SO 4 2? concentrations determined a shift in the relative acid contribution of those anions during the 12–13-year period. To interpret the increasing trend, mean annual NO 3 ? concentrations were regressed against NO2 Spanish emissions and to some indicators of local anthropogenic activity. The increase at Sort and Palautordera showed good correlation with local anthropogenic indicators. Wet inorganic N deposition ranged between 4.2 and 6.7 kg ha?1 year?1. When including estimates of dry deposition, total annual deposition rose up to 10–20 kg ha?1 year?1, values that have been found to initiate adverse effects on Mediterranean-type forest ecosystems.  相似文献   

18.
In many forested wetlands of Louisiana, surface water quality is being deteriorated by nutrient input from adjacent agricultural production areas. This field study assesses the input of fertilizer N, applied to sugarcane fields, to forested wetlands. The potential use of natural abundance variations in 15N14N ratios for identification and tracing surface water N sources (NH 4 + - and NO3 --N) was evaluated. Runoff and surface water samples were collected from sugarcane fields and bordering forested wetlands (6 stations) over a 16 month period and analyzed for NH 4 + -N, NO 3 - -N, and associated NH 4 + 15N and NO 3 - 15N ratios. Fertilizer N draining into adjacent forested wetland was estimated to be only a small fraction of the amount applied. Concentrations of NH 4 + - and NO 3 - -N in the collected water samples were low and ranged from 0.02 to 1.79 mg L-1. Isotopic analysis revealed NH 4 + 15N and NO 3 - 15N means were distinctive and may have the potential to be used as tracers of N contamination. The mean NH 4 + 15N value was +18.6 ± 7.1‰ and the NO 3 - 15N mean was +8.3 ± 3.1‰. Anomalously high NO 3 - 15N values (>30‰) were attributed to denitrification.  相似文献   

19.
Precipitation chemistry data were collected at 8 sites in the western part of the Netherlands over a period of 151/2 yr. Using specially-designed wind direction-dependent rain collectors, it is demonstrated that levels of ion constituents in rain water vary with wind direction, which can be assigned to different sources of contamination. The strongest variation was measured for Na+. As expected, trajectories over sea contributed most. Continental sources slightly reduced the variation for Cl? and Mg2+. For both NH inf4 sup+ and excess SO inf4 sup2? , maxima were found in southeasterly rainfall. It is assumed that polluted air from the large industrial Ruhr Area crosses a region with strong NH3 emissions in the Southeast of the Netherlands. The presence of ammonium sulfate was suggested. Minor variations were measured for NO inf3 sup? (due to diffusely-spread emissions and possible sampling artefact) and for H+ and Ca2+ (dry-deposition effects). Over the period 1973–1987 excess-SO inf4 sup2? levels decreased significantly (?3.3% yr?1, p<0.01) which is consistent with reduced S emission in Western Europe. Over the last decade an upward trend in NO inf3 sup? levels has been observed (3.2% yr?1, p<0.05) which is possibly related to the increased usage of cars.  相似文献   

20.
The present work discusses the startup and operation of different biotrickling filters during the simultaneous removal of NH3, H2S, and ethyl mercaptan (EM) for odor control, focusing on (a) the impact of pH control in the stability of the nitrification processes during reactor startup and (b) the crossed effects among selected pollutants and their by-products. Two biotrickling filters were packed with poplar wood chips (R1 and R2A), while a third reactor was packed with polyurethane foam (R2B). R2A and R2B presented a pH control system, whereas R1 did not. Loads of 2?C10?g N?CNH3 m?3?h?1, 5?C16?g S?CH2S m?3?h?1, and 1?C6?g EM m?3?h?1 were supplied to the bioreactors. The presence of a pH control loop in R2A and R2B proved to be crucial to avoid long startup periods and bioreactors malfunctioning due to biological activity inhibition. In addition, the impact of the presence of different concentrations of a series of N species (NH 4 + , NO 2 ? , and NO 3 ? ) and S species (SO 4 2? and S2?) on the performance of the two biotrickling filters was studied by increasing their load to the reactors. Sulfide oxidation proved to be the most resilient process, since it was not affected in any of the experiments, while nitrification and EM removal were severely affected. In particular, the latter was affected by SO 4 2? and NO 2 ? , while nitrification was significantly affected by NH 4 + . The biotrickling filter packed with polyurethane foam was more sensitive to crossed effects than the biotrickling filter packed with poplar wood chips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号