首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
《Geoderma》2005,124(3-4):375-382
This study was carried out in a Mediterranean salt marsh from semiarid Southeastern Spain, to determine the influence of eight halophytes (Asteriscus maritimus (L.) Less., Arthrocnemum macrostachyum (Moric.) Moris, Frankenia corymbosa Desf., Halimione portulacoides (L.) Aellen, Limonium cossonianum O. Kuntze, Limonium caesium (Girard) O. Kuntze, Lygeum spartum L., and Suaeda vera Forsskål ex J.F. Gmelin growing in a homogeneous area with regard to salt content, on the rhizosphere soil microbiological and biochemical properties (labile C fractions, biomass C, oxidoreductases and hydrolases) and aggregate stabilisation. Rhizosphere soil of H. portulacoides showed the highest values of water-soluble C, water-soluble carbohydrates, microbial biomass C and dehydrogenase, urease, protease-BAA and acid phosphatase activities. S. vera had the lowest microbial activity. The soil under A. maritimus, L. cossonianum, L. spartum and H. portulacoides had the highest percentages of stable aggregates (on average, about 52%) and the soil under S. vera the lowest (about 27% of stable aggregates). There was a good correlation between enzyme activities, the C-biomass, root colonisation of the eight halophytes and the levels of stable aggregates. Our results suggest that soil microbial activity and soil properties related to microbial activity, such as aggregate stability, are determined by the type of the halophytic species.  相似文献   

2.
The aim of this work was to study the influence of salinity of the fertigation solution on the vegetative growth, as well as on the osmolytes and chloride concentration of four halophytic species. Results show that the increase of salinity caused the reduction of plant fresh and dry matter in Asteriscus maritimus, while plant dry weight was unaffected by the salinity in Crithmum maritimum, Halimione. portulacoides and Limonium cossonianum. Salinity enhanced root growth of H. portulacoides. Salt-induced succulence was detected in A. maritimus. The translocation of Cl to the leaves is an important factor responsible for salt tolerance of A. maritimus and H. portulacoides. However, C. maritimum and L. cossonianum restricted the uptake of Cl and excrete salts through the leaves. Crithmum maritimum and H. portulacoides accumulated proline and soluble sugars in leaves which acts as osmoprotectant. Among the species studied, H. portulacoides has the greatest Cl phytoextraction efficiency.  相似文献   

3.
The Diep River is a major freshwater ecosystem in the Western Cape, South Africa. Although it is surrounded by many sources of metal pollution, the actual metal levels in this river system are unknown. Wetland plants are known to accumulate metals and may possibly be used as biomonitors of metal contamination in a river system. One such species, the sedge Bolboschoenus maritimus, is found in abundance along the banks of this river. The aim of this study was to investigate and monitor the degree of metal contamination in the water and sediments of the lower Diep River, as well as to study the seasonal accumulation and distribution of metals in B. maritimus, and the use thereof as biomonitor species. Two sampling sites were used: one site above the wetland section of the river, receiving runoff mainly from agricultural lands (site 1), and one site close to the river mouth (site 2), exposed to several possible pollution sources. Water, sediment, and plant (root, leaf and stem) samples were collected seasonally for 1 year and analyzed for Al, Zn, Cu, and Fe. There was greater bioaccumulation of metals by plants at site 2, due to greater bioavailability of metals. B. maritimus was shown to be a root accumulator of metals. Seasonal fluctuations in root, stem, and leaf metal concentrations did not follow seasonal sediment concentration patterns. However, using B. maritimus as test species did provide valuable additional information to sediment and water analyses. More extensive research is needed to conclude whether this species is an effective biomonitor in the lower Diep River environment.  相似文献   

4.
《Geoderma》2001,99(1-2):81-98
Soil characteristics and plant zonation were studied in a semiarid Mediterranean salt marsh in SE Spain. According to topographic sequences and plants distribution, two transects were established from the border of La Mata lagoon to the upland vegetation limit and soils were described and analysed. Regularly spaced plots were established in these transects in accordance with the stands of vegetation and surface soil samples were taken every 2 months for 2 years. The following edaphic factors were determined: soil moisture content, pH and concentration of Cl, SO42−, Ca2+, Mg2+, Na+ and K+ in the saturation extract. In addition, the groundwater level was measured and the duration of the flooding periods established in each plot. Soil–plant relationships were studied by means of canonical correspondence analysis. Based on rainfall data for the study period, dry and wet seasons were separated and the habitats of the plant communities were compared for salt quantity and quality independently for each season. Soils were classified, according to FAO (1998), as Hypercalcic, Sodic and Mollic Solonchaks and Hypercalcic Sodic Calcisols. The most important variables which explained plant zonation were: the flooding period, total salinity, minimum Ca2+/Na+ ratio and the mean sodium adsorption ratio. When the habitats of the main plant communities were compared, differences in salt quantity, quality and seasonal variations were found. Two chenopod shrubs, Arthrocnemum macrostachyum and Sarcocornia fruticosa, predominated in the most saline areas. More pronounced seasonal variations in soil salinity were found in the A. macrostachyum zone than in the Sarcocornia fruticosa zone. The highest value for K+/Na+ and Ca2+/Na+ ratios were measured in the Suaeda vera stand. The Lygeum spartum zone was distinguished by the high Ca2+/Na+ and Ca2+/Mg2+ ratios in the wet period. Among the rushes, Schoenus nigricans predominated in the less saline areas, where the K+/Na+ ratio was higher and the Ca2+/Na+ ratio lower than where Juncus maritimus predominated. Limonium cossonianum communities occupied an intermediate position with respect to soil salinity, between the chenopod shrubs and the other communities.Our results suggest that salt marsh plant zonation is influenced by temporal and spatial edaphic gradients which must be jointly considered if soil–plant relationships in saline soils are to be fully understood.  相似文献   

5.
6.
Field studies were conducted to evaluate Sagittarialancifolia sensitivity to in-situ burning of appliedcrude oil. Twenty-four plots were constructed (2.4 × 2.4× 0.6 m) in a fresh marsh and experimental treatmentswere: 1) control (no oiling and/or burning); 2) oiling (naturalremediation); and 3) oiling plus burning. South Louisiana Crudewas applied at 2 L m-2, with a garden sprayer, on Sagittaria lancifolia stems and leaves of the oiling andoiling/burning treatment plots. Two marsh burns were conducted,one in August (Site A) and a second on separate plotsthe following April (Site B) to compare seasonal effects ofoiling and burning. Burning was initiated three days after oilapplication when the marsh was flooded to a 15–25 cm depth andwinds were calm. Live stem count, plant height growth and carbonfixation were measured up to 9 times over 52 weeks after thefirst burn (August) and 6 times over 19 weeks after the secondin-situ burn (April). Aboveground biomass was measured atthe conclusion of each study. Oil application and oil burninghad short term effects on Sagittaria lancifoliavegetation. Five to six weeks after each burn, measured Sagittaria lancifolia vegetative parameters in control, oiledand oiled/burned plots were not significantly different. Onlybiomass clipped 20 weeks after the April burn showed significanttreatment differences. Under our experimental conditions, datasuggests leaving oil to degrade and the marsh to recovernaturally may be an option to consider. Plant recovery inoiled/burned plots was as rapid as oiled plant recovery. Thissuggests burning may be a viable remediation method if a rapidresponse is needed to remove oil and control oil migration tosensitive areas.  相似文献   

7.
In extremely acidic mining sediments of the Lusatian mining district, the alkalinisation process relies on organic C, which can serve as electron donor for microbially induced sulfate reduction. Plant material of the pioneer plant Juncus bulbosus is an important organic matter source in lake sediments. Therefore, decomposition of the plant tissue was assessed during the exposure of litterbags for 30 months in the 0-5 cm layer of waterlogged mining sediments, which have a pH between 2.5 and 3. The ash free dry weight (AFDW) and elemental content of the plant tissue were recorded several times during the exposure. Changes in chemical structure were analyzed by solid-state 13C cross polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy and the lignin component characterized by wet-chemical CuO oxidation. The AFDW accounted for about 34% of initial biomass after field exposure for 30 months. Mass loss of biomass occurred in two phases with decomposition rates varying between 30 and 430 mg AFDW d−1. The mass loss increased considerably after 5-7 months when litterbags were invaded by fresh J. bulbosus plants. With respect to higher mass loss, 13C CPMAS NMR spectroscopy, showed slight changes of the bulk chemical composition after 11 months, indicating that microorganisms present in the sediments or in the rhizosphere degrade plant material as a whole, rather than selectively. During the second phase from about 11 months until the end of the exposure period, contribution of O-alkyl C most probably assignable to easily degradable polysaccharides decreased. In contrast, the contribution of alkyl, aromatic and carboxyl C increased. CuO oxidation showed that the lignin component of J. bulbosus is degraded oxidatively during field exposure. Our results indicate that the exposed plant material is decomposed in the sediment due to changes in sediment conditions that followed plant invasion of the litterbags. It is suggested that the rhizosphere of J. bulbosus by its influence on the redox potential, pH and the microbial component plays a crucial role in organic matter degradation in acidic mining sediments.  相似文献   

8.

Purpose

To characterise soil humic acids (HAs) extracted from Spanish marshes formed under different vegetation types (Spartina maritima (GSp), Juncus maritimus (GJc), Phragmites australis (GPh), and Scirpus maritimus (VSc)), soil depths (0–20, 20–40 and 40–60 cm), physiographic position (low and high marshes), wetland types (salt marshes and lagoons) and environmental conditions (Atlantic and Mediterranean coast).

Material and methods

Soil samples were collected in five Spanish marshes, three on the Galicia province and two on the Valencia province. Humic acids were extracted and their elemental composition, semiquinone-type free radical (SFR) content, FTIR and CPMAS 13C NMR spectra determined. Total carbon (TC), total nitrogen (TN), total sulphur (TS), CaCO3 content, and field pH and Eh (mV) in the marsh soils sampled were also measured.

Results and discussion

The field pH and Eh values were typical of coastal areas submitted to periodic inundations and the highest TC, TN and TS contents were found in the soil of lagoon marshes as an effect of physiographic position and wetland type. The HAs, in general, were highly aliphatic and exhibited a low SFR content, which suggests a low humification degree of the SOM formed in the studied areas. This is a result of the anaerobic decomposition to which SOM is submitted and the high input of plant-derived organic matter (OM) by vegetation. However, among the studied sites low salt marsh and subsurface layer of the high salt marsh showed higher SFR content, simpler FTIR spectra, higher lignin degradation and lower O-alkyl C/alkyl C ratio than the lagoon marshes, thus suggesting the presence of a more humificated SOM in these sites.

Conclusions

From the different factors analysed, only physiographic position (low versus high salt marshes) and wetland type (marshes versus lagoons) caused variations in the HAs characteristics, because as the studied soils are under anaerobic conditions, they control the exportation of plant-derived OM and the allochthonous OM contribution in the studied areas.  相似文献   

9.

Purpose

For abandoned slag heaps, the spontaneous establishment of a vegetation cover is usually considered beneficial as it represents a means of phytostabilization. However, for slag containing heavy metals, such a vegetation cover has a potential long-term effect on the fate of the metals. The objective of this study was to investigate how the long-term spontaneous revegetation of a slag heap can affect the fractionation and the leachability of Cd, Zn, and Pb.

Materials and methods

Soils from two plots covered by either Armeria maritima or Agrostis tenuis and a bare plot soil were sampled from a slag heap from a zinc smelting plant and characterized. The Community Bureau of Reference (BCR) sequential extraction scheme was adopted to determine the metal pools. The leachability of Cd, Pb, and Zn was assessed by means of a leaching column experiment.

Results and discussion

Long-term presence of a plant cover increased the proportion of Zn in the most mobile fraction and Pb in the fraction bound to organic matter. Cd distribution was relatively unaffected. Overall, the metal leachability was enhanced in the revegetated soils, notably due to higher organic anion release. However, responses of metal behavior to revegetation depended on the established plant species. The highest leachability of Cd was found in the soil covered by Agrostis tenuis, while the highest leachability of both Zn and Pb was observed in the soil below Armeria maritima.

Conclusions

Any remediation strategy for metal-rich waste dumps by phytostabilization should take into careful consideration the potential long-term mobilization effect of plant establishment on heavy metals. We conclude that, when using pioneer plants for phytostabilization purposes, preference should be given to pseudo-metallophyte over hyperaccumulator species.  相似文献   

10.
The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873–1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150–3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322–331 kg of Hg annually to Clear Lake, which represents ca. 86–99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150–300 years.  相似文献   

11.
Estuarine sediments are the repository for a wide range of contaminants. Anthropogenic impacts and variations in the belowground biomass of salt marsh plants potentially select for different sediment microbial communities with different functional capabilities, including the ability to biotransform anthropogenic contaminants. There are large differences in both root morphology and the amount of fine root biomass of Spartina alterniflora and Phragmites australis; Spartina is the species commonly used to replace Phragmites in northeastern US salt marsh restoration projects. Our study compared the effect of these two macrophyte species on sediment microbial communities responsible for the biotransformation of the halogenated flame retardant tetrabromobisphenol A (TBBPA). Sediments were obtained from contaminated and uncontaminated salt marsh field sites in New Jersey. Anaerobic methanogenic sediment microcosms were established and incubated for up to 130 days. TBBPA was reductively dehalogenated resulting in the transient formation of two intermediates, identified as tribromobisphenol A and dibromobisphenol A, and the formation and accumulation of bisphenol A (BPA) as the end product. Spartina sediments from both sites were found to dehalogenate TBBPA more rapidly than the Phragmites or unvegetated sediments, resulting in greater production of BPA. Microbial community diversity as measured by in situ sediment phospholipid fatty acid (PLFA) composition prior to TBBPA exposure, was found to be higher in the uncontaminated sediments; differences in microbial PLFA diversity were not seen in contaminated sediments associated with either the different plant species or unvegetated sediment. The results of this study demonstrate that these two plant species affected sediment microbial community function with respect to dehalogenation capabilities, even though the disturbed and undisturbed sediments varied in microbial community composition.  相似文献   

12.
Contamination of metal ions in soil and water represents more pressing threats to resources as well as human health. The present research was carried out to screen the phytosequester plants growing in industrial waste- and wastewater-affected industrial areas of Okhla, New Delhi, India. Accumulation trend of metal Fe, Zn, Cu, Cr, Pb, Cd, Hg, and As from soil and wastewater by plants were collected for study. Among aquatic plants Hydrilla verticillata, Marsilea quadrifolia, and Ipomea aquatica were found to be highest metals accumulator, Eclipta alba and Sesbania cannabina among terrestrial plant were highest accumulator of metals. Among the algal spp. Spirulina platensis and Phormidium papyraceum were the most efficient in accumulating Cd and Hg. The maximum bioconcentration factor (BCF) was recorded in Hygroryza aristata for the metals (Hg, Cd) in M. quadrifolia (Cd, Cr), in E. alba (Cr, Cu), and in S. platensis (Hg, Pb). However, the translocation factor (TF) of metals was found more in M. quadrifolia followed by I. aquatica than other plants. Among all the plants, H. verticillata showed high TF and low BCF values for toxic metals (Pb, Cr) and was suitable for phytostabilization of these metals. Our study showed that native plant species growing on contaminated sites may have a potential of phytosequestration of these metals.  相似文献   

13.
Abstract

A field study evaluating the effects of gypsum and water management on the survival, yield, and protein content of selected species of marsh vegetation was conducted on an open area inundated by brackish water near Hackberry, Cameron Parish, Louisiana. The overall growth and yield response of four species of marsh vegetation: joint grass (Paspalum vaginatum SW.), marsh hay cordgrass (Spartina patens Muh L.), salt grass (Distichlis spicata L.), and American three square (Scirpus americanus Pers.) to gypsum addition (0 versus 7 Mg/ha) and water management (flooded versus non‐flooded plots) were statistically evaluated.

Soil drying was detrimental to the overall growth and yield of all marsh vegetation. There was zero plant survival in the non‐flooded plots except the marsh hay cordgrass with a survival rate of 32.8 %.

Plots receiving 7 Mg gypsum/ha had significantly higher dry matter production than the control. Gypsum application increased dry yield of joint grass (5.44 to 8.08 Mg/ha), marsh hay cordgrass (1.90 to 6.91 Mg/ha), salt grass (0.97 to 2.79 Mg/ha) and three‐square (1.55 to 2.84 Mg/ha) in flooded plots. The yield of marsh hay cordgrass, the only surviving species in the non‐flooded plots, produced a yield increase of 0.40 Mg/ha in response to gypsum. Significantly higher survival rates were observed in flooded plots treated with gypsum than in the non‐flooded plots receiving no gypsum. The mean survival rate for the gypsum‐ treated plots was 68.2%, as opposed to 21.9% for the untreated plots.  相似文献   

14.
Zhang  Min  Li  Cai  Ma  Xin  Yang  Liyuan  Ding  Shiming 《Journal of Soils and Sediments》2021,21(10):3466-3478
Purpose

Mercury (Hg) and methylmercury (MeHg) are easily released from sediments to overlying water and cause secondary contamination. In general, Hg concentrations are low in natural aquatic environments, but Hg toxicity is high. Therefore, it is important to assess the mobility and release risks of Hg and MeHg from surface sediment using in situ high-resolution sampling techniques.

Methods

The profile distribution of Hg and MeHg was obtained for samples from Weishan sub-lake (WL) and Dushan sub-lake (DL) of Nansi Lake, China, by high-resolution dialysis (HR-Peeper probes) and the diffusive gradients in thin films (DGT) technique at mm-resolution. Furthermore, Hg mobility and release risks in sediments were evaluated by combining BCR (European Community Reference Bureau) extraction and DGT-measured data.

Results

The soluble concentrations of Hg in surface sediments in WL and DL were 21.70 and 19.38 ng L?1 and the DGT-labile concentration of Hg were 8.21 and 10.30 ng L?1, respectively. The soluble and labile Hg and MeHg concentrations were higher in the surface sediments (from??40 to 0 mm) than in deep sediments. The distribution of the labile-Hg was controlled by the ferrimanganic (hydr)oxide and total nitrogen rather than organic carbon content. The non-residual components accounted for a greater proportion of the interface, which further confirmed Hg was more active on the surface layer of the sediment. The resupply ability indicated that the release of Hg from sediment was insufficient to maintain the initial concentration in the porewater before consumption. The MeHg fluxes in WL (6.18 ng m?2 day?1) were twice those in DL (2.89 ng m?2 day?1), and the risk assessment code revealed a higher risk in the surface layer (25.21–61.88%) than in the deep layer (0–27.75%).

Conclusions

Dissolved Hg and MeHg accumulated on the surface of the sediments and were more active than in the deeper sediments. The DGT-labile state can be used for a better understanding of the bioavailability and mobility of Hg. The diffusion direction of Hg and MeHg was from sediment to the overlying water. The release risks of Hg and MeHg from surface sediments (especially in WL) were found to be worthy of concern.

  相似文献   

15.
The interaction between the salt marsh plant Spartina patens, arbuscular mycorrhizal fungi (AMF) and bacteria in salt marsh sediment was examined in a long-term arbuscular mycorrhizas (AM) suppression study by applying the systemic fungicide benomyl to field-collected sediment cores with and without S. patens plants. Microbial populations were sampled four times corresponding to major plant phenological stages (dormancy, vegetative growth, reproduction, and senescence) previously linked to changes in microbial populations under field conditions. Benomyl-treatment of soil cores significantly suppressed AM colonization on S. patens, keeping values relatively consistent throughout the growing season (11.5%) whereas plants in non-treated cores experienced seasonal increases and declines in AM colonization (26.6% during vegetative growth to 11.5% during dormancy). Soil physicochemical parameters were not affected by benomyl application. In unvegetated cores, no benomyl- or seasonal effects were displayed by cell numbers and specific biomass of DAPI-stained organisms, members of the domain bacteria and here especially members of the α-, β-, γ- and δ-subdivisions of proteobacteria that were the most abundant bacterial groups. In vegetated cores, the microbial community as well as specific bacterial populations were at least twice as large in terms of number and biomass than in samples from unvegetated cores with significant seasonal changes for DAPI-stained cells, for members of the domain bacteria and for members of the α- and γ-subdivisions of proteobacteria. In benomyl-treated cores, the population of γ-subdivision of proteobacteria was significantly smaller than in non-treated cores, and a positive association was found between this bacterial group and root length colonized by AM suggesting that AM-suppression can affect populations of specific soil bacterial populations in salt marsh sediment. Benomyl-treatment had no effect on the diversity of N-fixing bacteria as evidenced by PCR-RFLP analysis, but seasonal changes were noted in vegetated cores with populations during active plant growth substantially different from populations during dormancy and senescence.  相似文献   

16.
Rapid expansion of Juncus bulbosus L. and the concomitant suppression of isoetid plant species has often been observed in acidifying soft water lakes in Western Europe. Experimental studies have shown that this mass development of J.bulbosus was caused by changes in the carbon and nitrogen budgets in these ecosystems. Acidification leads to temporarily strongly increased carbon dioxide (CO2) levels in the slightly calcareous sediment and to accumulation of ammonium as a result of a reduced nitrification rate in acidifying waters. Many acidifying Scandinavian soft water lakes, however, have a well developed macrophyte vegetation. It is suggested that this is related with the non-calcareous sediments of these lakes. After liming, however, mass development of J. bulbosus and/or Sphagnum spec. has been observed in Swedish and S.W. Norwegian lakes. From field experiments it has become clear that part of the lime is deposited on the sediments leading to an increase of mineralisation rates, CO2 production, sediment pore water levels of phosphate and ammonium and to a decrease of the nitrate concentrations in the sediment. These changes have been earlier observed in acidifying West European waters. Rooted species like J.bulbosus can only benefit from the higher nutrient levels in the sediment when the CO2 level of the water layer is relatively high as this species is adapted to leaf carbon uptake. It is demonstrated that gradual reacidification by the acid water from the catchments and the increased flux of carbonic acid from the limed sediments to the overlying water leads to increased CO2 levels in the water layer of the limed lakes already a few months after liming.  相似文献   

17.
Oil spills may detrimentally damage sensitive coastal habitats, such as coastal wetlands. Successful restoration of oiled habitats primarily depends on the tolerance of vegetation transplants to oil. In this study, tolerance limits of the dominant coastal brackish marsh plant Spartina patens to South Louisiana crude (SLC) oil and its phytoremediation effectiveness on petroleum hydrocarbons in wetland sediments were investigated in the greenhouse environment. Spartina patens was transplanted into brackish marsh sediments contaminated with SLC oil at concentrations of 0, 40, 80, 160, 320, 640 and 800 mg SLC oil g?1 dry sediment. High oil concentrations adversely affected plant stem density, aboveground biomass and belowground biomass even one year after transplantation. At the 320 mg g?1 oil dosage, plant belowground biomass was significantly lower than the control although aboveground variables were not significantly different from the control. All plant parameters mentioned above at the 640 mg g?1 oil dosage were less than 50% of the control. Spartina patens did not survive the 800 mg g?1 oil dosage. The tolerance limit of S. patens to SLC was estimated about 320 mg oil g?1 dry sediment. In addition, S. patens transplants enhanced oil degradation in the sediment; concentrations of residual total petroleum hydrocarbons (TPH) in the sediments vegetated by S. patens were significantly lower than those of un-vegetated sediments for both the surface and subsurface sediment at the 40 and 160 mg g?1 SLC oil dosages. Decreases in the concentrations of polycyclic aromatic hydrocarbons (PAHs) further demonstrated the capacity of S. patens to phytoremediate residual oil; residual total targeted PAHs in the phytoremediation treatment were less than 20% of the un-vegetated treatment at the 40 mg g?1 oil dosage. These results demonstrated the potential of phytoremediation with S. patens to simultaneously restore and remediate petroleum-contaminated coastal marsh habitats.  相似文献   

18.

Background, aim, and scope

Bahía Blanca estuary is characterized by the occurrence of large intertidal areas, including both naked tidal flats and salt marshes densely vegetated with Spartina alterniflora. The estuary is strongly affected by human activities, including industrial and municipal discharges, harbor maintenance, cargo vessels and boat navigation, oil storage and processing, etc. Even numerous studies have reported the occurrence and distribution of heavy metals in sediments and biota from this estuary, although the function of the halophyte vegetation on metals distribution was at present not studied. The main objective of the present study was to understand the potential role of the salt marshes as a sink or source of metals to the estuary, considering both the obtained data on metal levels within sediments and plants from the studied areas at naked tidal as well as vegetated flats.

Materials and methods

The selected study area, named Villa del Mar, was located in the middle estuary coast. The sampling was carried out under low tide conditions, and the sampling area was divided into two parts: A (close to Villa del Mar) and B (north-westerly of Villa del Mar). In each part, two integrated samples of S. alterniflora (the first in the medium-salt marsh and the second in the higher one) were collected. Also sediments associated with the roots of S. alterniflora were taken at the same locations, in addition to another sediment sample from the naked zones of the tidal flats (without any vegetation). After corresponding treatment at the laboratory, plant and sediment samples were mineralized according to Marcovecchio and Ferrer, J Coast Res 21:826–834, 2005), in order to measure their metal concentrations by atomic absorption spectroscopy (AAS). Analytical quality (AQ) was checked against certified reference materials from NIES, Tsukuba (Japan).

Results

Most of the Spartina samples have shown highest Cd and Mn concentrations in the aerated parts of the plants, indicating an allocation process from the roots up to the leaves. Most of the samples have presented non-detectable Pb and Cr values. Cu, Fe, Ni, and Zn have presented highest concentrations in the underground parts of the plant, suggesting an accumulation process in the roots and rhizomes. In the case of sediments, samples from those sites located far away from Villa del Mar have presented greater concentrations on the sediments associated with underground parts of Spartina than those from the naked tidal flat, for almost all of the metals studied. Unlike this, the samples from the site close to Villa del Mar have shown the higher concentrations in sediments from the naked tidal flat.

Discussion

Marsh plants are known to absorb and accumulate metals from contaminated sediment, and this is one reason that allows wetlands to be used for wastewater treatment. It was observed that those sets of samples from the same salt marsh levels (e.g., A.1 and B.1, or A.3 and B.3) have shown similar heavy metal distribution trends, although even their corresponding concentrations could be different. Thus, the concentrations of Cu, Zn, Ni, and Fe in the medium-salt marshes were higher in the underground tissues (roots plus rhizomes), with the exception of Mn, which was seen to be higher in the aboveground parts. The same tendency occurs at high-salt marshes for these heavy metals, with the exception of Ni. This fact was sustained regarding the fact that the levels mentioned (medium-salt marsh and high-salt marshes) must have the same exposition to heavy metal sources, similar physical-chemical conditions regulating metal distribution within the compartments on the salt marshes or, simultaneously, both mentioned processes. Moreover, metals in this macrophyte can remain after the leaves have died and turned into detritus. The metals present in the detritus can be passed on to consumers (Quan et al., Mar Environ Res 64:21–37, 2007)). Keeping in mind that Bahía Blanca estuary’s salt marshes are inundated twice each day by tidal water for 3–4 h, macrophytes may act as a conduit for the movement of metals from the sediment to the estuarine body and near-coastal system.

Conclusions and recommendations

Considering the comments on the previous paragraphs, salt marshes from Bahía Blanca estuary are sources or sinks for metals? It can be sustained that both are the case, even if it is often stated that wetlands serve as sinks for pollutants, reducing contamination of surrounding ecosystems (Weis and Weis, Environ Int 30:685–700, 2004)). In the present study case, the sediments (which tend to be anoxic and reduced) act as sinks, while the salt marshes can become a source of metal contaminants. This is very important for this system because the macrophytes have been shown to retain the majority of metals in the underground tissues, and particularly in their associated sediments. This fact agreed well with previous reports, such as that from Leendertse et al., Environ Pollut 94:19–29, 1996) who found that about 50% of the absorbed metals were retained in salt marshes and 50% was exported. Thus, keeping in mind the large spreading of S. alterniflora salt marshes within Bahía Blanca estuary, it must be carefully considered as a re-distributor of metals within the system.  相似文献   

19.
The plant, Salvinia natans L., was found effective in the removal of Hg(H) from wastewater. Maximum accumulation was noted within a day and maximum removal (about 90%) was recorded below 5 ppm of Hg(II). Accumulation of the metal occurred mainly in the roots. The senescence of the plant started at and above 5 ppm of Hg(H). The biochemical constituents like chlorophyll, Hill-activity, Protein, RNA, dry weight, and activities of catalase and protease decreased while free amino acid content, peroxidase activity and the ratio of acid to alkaline pyrophosphatase activity increased over control values at and above 5 ppm of Hg(H).  相似文献   

20.
Seasonal changes of the soil CO2 concentration and the rate of CO2 fluxes emission from the soil formed on the sediments of the former Lake Texcoco, which occupied a significant part of the Mexico Valley until the mid-17th century, were studied. The soils (Fluvic Endogleyic Phaeozems) were characterized by a low CO2 fluxes rate, which is related to their high alkalinity. The mean values of soil respiration were 6.0–14.1 mg C/(m2 h) depending on vegetation type, which corresponds to 60–157 g C/(m2 yr). The contribution of plants to the CO2 fluxes insignificantly varied by seasons and depended on the species composition of vegetation. The soil CO2 concentration and soil respiration in eucalypt (Eucalyptus globulus Labill.) plantation were two times higher than those in the grass–subshrub area, the ground cover of which consisted of Distichlis spicata (L.) Greene and Suaeda nigra (Raf.) J.F. Macbr. species. This can be related to the significant volumes of gas production during the respiration of eucalypt roots and associated rhizosphere community. The contribution of the root systems of grass cover to the soil CO2 fluxes in eucalypt plantation slightly varied within the year and was equal to 24% on the average. In the grass–subshrub area, its value varied from 41% in the cold season to 60% in the warm season. The spatial variability of soil CO2 concentration and its flux rate to the atmosphere was due to the differences in plant species composition and hydrothermal conditions, and their temporal trend was closely related to the seasonal accumulation of plant biomass and soil temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号