首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Rice-paddy-dominated watersheds in eastern China are intensively cultivated, and lands with two crops receive as much as 550–600 kg?ha–1?year–1 of nitrogen (N), mainly through the addition of N-based fertilizers. However, stream N concentrations have been found to be relatively low. Waterways in the watersheds are assumed to be effective “sinks” for N, minimizing its downstream movement. We directly measured net sediment denitrification rates in three types of waterways (ponds, streams/rivers, and a reservoir) and determined the key factors that control net sediment denitrification. Such information is essential for evaluating the impact of the agricultural N cycle on the quality of surface water.

Materials and methods

The pond–stream–reservoir continuum was sampled every 2 months at nine sites in an agricultural watershed between November 2010 and December 2011. Net sediment N2 fluxes/net sediment denitrification rates were determined by membrane inlet mass spectrometry and the N2/Ar technique. A suite of parameters known to influence denitrification were also measured.

Results and discussion

Net denitrification rates ranged between 28.2?±?18.2 and 674.3?±?314.5 μmol N2–N?m–2?h–1 for the streams, 23.7?±?23.9 and 121.2?±?38.7 μmol N2–N?m–2?h–1 for the ponds, and 41.8?±?17.7 and 239.3?±?49.8 μmol N2–N?m–2?h–1 for the reservoir. The mean net denitrification rate of the stream sites (173.2?±?248.4 μmol N2–N?m–2?h–1) was significantly higher (p?<?0.001) than that of the pond sites (48.3?±?44.5 μmol N2–N?m–2?h–1), and the three types of waterways all had significantly higher (p?<?0.01) mean net denitrification rates in summer than in other seasons. Linear regression and linear mixed effect model analysis showed that nitrate (NO3 ?–N) concentration in surface water was the primary controlling factor for net sediment denitrification, followed by water temperature. Using monitoring data on NO3 ?–N concentrations and temperature of the surface water of waterways and an established linear mixed effect model, total N removed through net sediment denitrification in the pond–stream–reservoir continuum was estimated at 46.8?±?24.0 t?year–1 from July 2007 to June 2009, which was comparable with earlier estimates based on the mass balance method (34.3?±?12.7 t?year–1), and accounted for 83.4 % of the total aquatic N. However, the total aquatic N was only 4.4 % of the total N input to the watershed, and thus most of the surplus N in the watershed was likely to be either denitrified or stored in soil.

Conclusions

High doses of N in a rice-paddy-dominated watershed did not lead to high stream N concentrations due to limited input of N into waterways and the high efficiency of waterways in removing N through denitrification.  相似文献   

2.
This paper investigated the influence of low-intensity ultrasound in biological nitrification and denitrification. The results showed that the nitrification activity of activated sludge could not be promoted significantly by ultrasound in 5–40 min with intensities ranging from 0.1 to 1.2 W?cm?2. It suggested the fact that nitrifying bacteria were insensitive to ultrasound, possibly related with their specific structures of cell membrane and ways of metabolism. Whereas, biological denitrification was enhanced quite remarkably by ultrasound and the optimal results were achieved at the ultrasonic intensity of 0.2 W?cm?2 and the irradiation time of 10 min. Compared with the control without ultrasonic irradiation, it took 5 h for the enhancement of denitrification rates induced by the optimum ultrasound to reach its peak level (16%). Therefore, ultrasound with intensity of 0.2 W?cm?2 could be employed in the biological denitrification system for 10 min every 5 h to obtain the optimal effect theoretically.  相似文献   

3.
Nitrogen removal from wastewater is usually severely inhibited under low temperatures. The wastewater enrichment using an external carbon source has the influence on the stability and efficiency of the nitrification and denitrification processes during the biological wastewater treatment. This paper reports the results of the study where the effect of temperature and addition of an external carbon source on the efficiency of wastewater treatment process were investigated. Nitrification and denitrification rates were determined in the laboratory-scale treatment system, operating under low-temperature conditions, ranging from 6 up to 15 °C. Ethanol was used as an external carbon source. The addition of ethanol resulted in the increase during the nitrification rate at lower temperature (up to 71% at 6 °C and up to 11% at 15 °C). Similar tendency was observed during the denitrification process. Denitrification rate increased up to 81% at 6 °C and up to 10% at 15 °C, respectively. Nitrification rate was slightly higher compared to the denitrification rate. Two-variable model equations for calculation of an external carbon amount required were based on the experimental data and in order to reach desirable process rate at particular wastewater temperature were developed. The independency from wastewater temperature and the amount of loaded carbon explicit interdependence between nitrification and denitrification rates were observed.  相似文献   

4.
Phosphorus (P) release from bottom sediments can be a significant source to the overlying water column, potentially maintaining and enhancing algal growth and eutrophic conditions in lakes and reservoirs. Thus, the objectives of this study were to: (1) measure P flux under aerobic and anaerobic conditions from intact sediment cores collected at Beaver Reservoir, northwest Arkansas, (2) evaluate the spatial variability in measured sediment P flux under aerobic and anaerobic conditions along the reservoir, and (3) compare external and internal P loads to Beaver Reservoir. Six intact sediment cores were collected at three sites representing the lacustrine, transitional, and riverine zones during June 2003, September 2003 and February 2004 and incubated for 21 days in the dark at ~22°C. Three cores from each site were incubated under aerobic conditions and anaerobic conditions. Water samples were collected from the overlying water column in each core daily for the first five days and every other day thereafter and analyzed for soluble reactive phosphorus (SRP). Water removed from the core was replaced with filtered lake water, maintaining a constant overlying water volume of 1 l. Sediment P flux under anaerobic conditions (<0.01–1.77 mg m?2 day?1) was generally greater than that measured under aerobic conditions (<0.01–0.89 mg m?2 day?1). Some spatial variability existed in sediment P flux where P flux was generally greatest at the sites in the riverine and transitional zones. Maximum sediment P flux was observed under anaerobic conditions in cores collected from the transitional zone during September 2003. Average sediment P flux under aerobic conditions (0.09 mg m?2 day?1) and anaerobic conditions (0.31 mg m?2 day?1) was greater than the external P flux (0.05 mg m?2 day?1) estimated from the Beaver Reservoir tributaries. Results showed that the annual internal P load (7 Mg year?1) from bottom sediments in Beaver Reservoir was less than 10% of the annual external P load (~81 Mg P year?1). The internal P load was significant, but it would not currently be cost effective to manage this P source given the large surface area of Beaver Reservoir.  相似文献   

5.
Hydroponics culture generates large amounts of wastewater that are highly concentrated in nitrate and phosphorus but contains almost no organic carbon. Constructed wetlands (CWs) have been proposed to treat this type of effluent, but little is known about the performance of these systems in treating hydroponic wastewater. In addition, obtaining satisfactory winter performances from CWs operated in cold climates remains a challenge, as biological pathways are often slowed down or inhibited. The main objective of this study was to assess the effect of plant species (Typha sp., Phragmites australis, and Phalaris arundinacea) and the addition of organic carbon on nutrient removal in winter. The experimental setup consisted of 16 subsurface flow CW mesocosms (1 m2, HRT of 3 days) fed with 30 L?d1 of synthetic hydroponics wastewater, with half of the mesocosms fed with an additional source of organic carbon (sucrose). Carbon addition had a significant impact on nitrate and phosphate removal, with removal means of 4.9 g m-2?d-1 of NO3-N and 0.5 g m-2 d-1 of PO4-P. Planted mesocosms were generally more efficient than unplanted controls. Furthermore, we found significant differences among plant treatments for NO3-N (highest removal with P. arundinacea) and COD (highest removal with P. australis/Typha sp.). Overall, planted wetlands with added organic carbon represent the best combination to treat hydroponics wastewater during the winter.  相似文献   

6.

Purpose

The extensive use of chemical pesticides on farmlands during the last several decades in China has led to a rapid deterioration of environmental water quality in recent years. The aims of this study were to: reconstruct the history of pesticide residues, determine the input load and residual load of dichlorodiphenyltrichloroethane (DDT) pesticides, and assess the risk of pesticide residues to aquatic ecosystem and human health.

Materials and methods

Caesium-137 was used to date sediment cores collected from ponds representing four land use types of an agricultural watershed with high-yield grain production and characterized by multipond systems in the Yangtze-Huaihe region of China. These ponds were selected to establish the historic pattern of DDT pesticide residues.

Results and discussion

(1) The mean total concentration of DDT residues including p,?p?′-dichlorodiphenyldichloroethylene (p,p′-DDE), p,?p?′-dichlorodiphenyldichloroethane ( p,p′-DDD), o,p′-DDT, and p,p′-DDT in sediment in the watershed was 82 μg kg?1, ranging from under the detection limit to 457 μg kg?1, which was mostly contributed by p,?p′-DDE (57 μg kg?1 on average). Spatially, total concentrations of DDT residues in farmland pond sediment were the highest, reaching as high as 457 μg kg?1. Temporally, an inflection point appeared in the 1970s, prior to which DDT contents increased with time, after which concentrations showed a decreasing trend. (2) In total, 323 kg DDT pesticide was applied to the Liuchahe Watershed since 1955. The total retention of four DDT residues in the multipond system was 14 kg (~4 % of the input), and most DDT pesticide was degraded to p,?p?′-DDE. (3) More than 80 % of sediment DDT residues exceeded their interim freshwater sediment quality guidelines, and the percentages of DDT,DDD, and DDE residues exceeding probable effect limit (PEL) values were 57, 29, and 70 %, respectively, which indicated a moderate to high ecological risk of DDT in this watershed.

Conclusions

Our results clearly reveal that the extensive use of pesticides has resulted in significant pesticide residual pollution in this watershed, which could severely deteriorate water quality and threaten aquatic ecosystem and human health in the watershed and, thus, remain a cause for concern.  相似文献   

7.
Phosphorous dynamics within Lake Sirio (NW Italy) were investigated, considering both water and sediments. The total phosphorus (TP) concentration in the water is about 79 μg l?1 after the winter mixing, that is in homogeneous conditions; then TP content increases up to an average of 360 μg l?1 in late autumn in the deep hypolimnium (30–45 m). This deep lake portion accounts for only 1/12 of the water volume. Close to the water-sediment interface, TP concentrations up to 530 μg l?1 are observed. Sediment sampled at depths of 20 and 33 m contains less than 2,000 mg kg?1 of TP, whereas cores from the deepest sediments (46 m) display TP values of 2,000–4,000 mg kg?1 at the water-sediment interface, increasing with depth to 16,000 mg kg?1 at about 60–100 cm. In these deep sediments the main chemical form is the Al–Fe–Mn bound P (about 90% in the high TP cores) and Fe and Mn are also highly enriched (3 and 9 times more than in the shallow sediments respectively). The P–Fe association is confirmed by SEM-EDS and XRD analyses. The vertical distribution of the P content in the water column is consistent with its release from sediments, but in this hypothesis an unrealistic P release rate from 8.1 to 3.0 g m?2y?1 was estimated. A more complex model is therefore proposed, involving a process of P concentration in the sediments of the central (deepest) part of the lake, and a short term sediment-water exchange. The TP vertical variability and speciation in the cores suggests a change in the sediment retention capacity, connected to the lake shift to more eutrophic conditions.  相似文献   

8.
Abstract

A series of laboratory incubation experiments were conducted on soils from Maindample and Ruffy in northeast Victoria and from Whittlesea in the Plenty Valley, north of Melbourne, Victoria, Australia, to develop a technique for quantifying both autotrophic and heterotrophic nitrification in acidic pasture soils. The use of a specific inhibitor of the autotrophic ammonium oxidizers (N‐serve) did not completely inhibit autotrophic nitrification in its commonly recommended concentrations (10 and 20 µg g?1 soil) in these soils. The N‐serve concentration, which completely inhibited autotrophic nitrification, was found to be 60–80 µg g?1. Varying soil types, pHs, and organic‐matter contents affected the optimum dose of N‐serve required for complete inhibition of autotrophic nitrification. Mixing the inhibitor with the soil after application was also important for immediate inhibition of autotrophic nitrification. Using N‐serve in combination with 15N‐labeled glycine in the Maindample soil showed that heterotrophic organisms were using the organic route for nitrification, and N‐serve did not affect heterotrophic nitrification. A lag of 12 to 24 h in complete inhibition of autotrophic nitrification by N‐serve may have occurred suggesting nitrification studies using N‐serve should include pre‐incubation of the soils with N‐serve for at least 1 day.  相似文献   

9.
A field experiment was conducted to examine responses of soil respiration, nitrification, and denitrification to warming in a winter wheat (Triticum aestivum L.)–soybean (Glycine max (L.) Merr) rotation cropland. The results showed that seasonal variations in soil respiration were positively related to seasonal fluctuations in soil temperature. Seasonal mean soil respiration rates for the experimental warming (EW) and control (CK) plots were 3.98 ± 0.43 and 2.54 ± 0.45 μmol m?2 s?1, respectively, in the winter wheat growing season, and they were 4.59 ± 0.16 and 4.36 ± 0.08 μmol m?2 s?1, respectively, in the soybean growing season. There was a marginally significant level (p = 0.097) for mean nitrification rates between EW and CK plots. Soil temperature and moisture accounted for 58.2% and 58.1% of the seasonal variations observed in the winter wheat and soybean plots, respectively.  相似文献   

10.
For understanding the effects of nitrification ability on nitrogen (N) use efficiency and N losses via denitrification in paddy soils under flooding conditions, six paddy soils with different nitrification activities were sampled from various sites of China and a pot experiment was conducted. Rice plants at tillering stage were transplanted into pots and harvested 7.5 days after transplanting, 15N-(NH4)2SO4 was applied 2.5 days after rice transplanting under continuously flooding conditions. The N losses by denitrification were determined by the unrecovered 15N applied as 15NH4 + and the N use efficiency (NUE) was calculated by 15N taken up by rice plants. Plant height (from 33.8 to 37.3 cm) and biomass (from 1.07 g pot?1 to 1.52 g pot?1) increased significantly with the native NH4 + concentration in the studied soils (P < 0.01). The NUE decreased, whereas the N losses via denitrification increased due to the increase in the nitrification rate of soils determined at 60% water holding capacity (P < 0.05). The results implied that the nitrification activity of paddy soils is a key factor in controlling NUE and N losses via denitrification.  相似文献   

11.
Amending vegetable soils with organic materials is increasingly recommended as an agroecosystems management option to improve soil quality. However, the amounts of NO, N2O, and N2 emissions from vegetable soils treated with organic materials and frequent irrigation are not known. In laboratory-based experiments, soil from a NO 3 ? -rich (340 mg N?kg?1) vegetable field was incubated at 30°C for 30 days, with and without 10 % C2H2, at 50, 70, or 90 % water-holding capacity (WHC) and was amended at 1.19 g?C kg?1 (equivalent to 2.5 t?C ha?1) as Chinese milk vetch (CMV), ryegrass (RG), or wheat straw (WS); a soil not amended with organic material was used as a control (CK). At 50 % WHC, cumulative N2 production (398–524 μg N?kg?1) was significantly higher than N2O (84.6–190 μg N?kg?1) and NO (196–224 μg N?kg?1) production, suggesting the occurrence of denitrification under unsaturated conditions. Organic materials and soil water content significantly influenced NO emissions, but the effect was relatively weak since the cumulative NO production ranged from 124 to 261 μg N?kg?1. At 50–90 % WHC, the added organic materials did not affect the accumulated NO 3 ? in vegetable soil but enhanced N2O emissions, and the effect was greater by increasing soil water content. At 90 % WHC, N2O production reached 13,645–45,224 μg N?kg?1 from soil and could be ranked as RG?>?CMV?>?WS?>?CK. These results suggest the importance of preventing excess water in soil while simultaneously taking into account the quality of organic materials applied to vegetable soils.  相似文献   

12.
Abstract

We studied the effect of lime-nitrogen (calcium cyanamide, CaCN2) application on the emission of nitrous oxide (N2O) from a vegetable field with imperfectly-drained sandy clay-loam soil. Lime-nitrogen acts as both a pesticide and a fertilizer. During the decomposition of lime-nitrogen in the soil, dicyandiamide (DCD), a nitrification inhibitor, is formed, and as a result lime-nitrogen application may mitigate N2O emission from the soil. The study design consisted of three different nitrogen-application treatments in field plots with a randomized block design. The nitrogen application treatments were: CF (chemical fertilizer), LN (all nitrogen fertilizer applied as lime-nitrogen), and CFD (chemical fertilizer containing DCD). Soil nitrification activity was lower in the LN and CFD plots than in the CF plots, and nitrification was inhibited for a longer period in the LN plots than in the CFD plots. In the LN plots, N2O emission was lower than those of other treatments from 20 to 40 days after fertilization, a period when large peaks of N2O emission were observed after rainfall in the CF and CFD plots. Cumulative N2O emission over 63 days in the CF plots (mean ± standard deviation: 30.2 ± 14.4 mg N2O m?2) and CFD plots (24.3 ± 10.8 mg N2O m?2) was significantly higher than that in the LN plots (10.7 ± 1.2 mg N2O m?2; P < 0.05). Our results suggested that lime-nitrogen application decreased N2O emission by inhibiting both nitrification and denitrification.  相似文献   

13.
Urine deposition by grazing livestock causes an immediate increase in nitrous oxide (N2O) emissions, but the responsible mechanisms are not well understood. A nitrogen-15 (15N) labelling study was conducted in an organic grass-clover sward to examine the initial effect of urine on the rates and N2O loss ratio of nitrification (i.e. moles of N2O-N produced per moles of nitrate produced) and denitrification (i.e. moles of N2O produced per moles of N2O+N2 produced). The effect of artificial urine (52.9 g N m−2) and ammonium solution (52.9 g N m−2) was examined in separate experiments at 45% and 35% water-filled pore space (WFPS), respectively, and in each experiment a water control was included. The N2O loss derived from nitrification or denitrification was determined in the field immediately after application of 15N-labelled solutions. During the next 24 h, gross nitrification rates were measured in the field, whereas the denitrification rates were measured in soil cores in the laboratory. Compared with the water control, urine application increased the N2O emission from 3.9 to 42.3 μg N2O-N m−2 h−1, whereas application of ammonium increased the emission from 0.9 to 6.1 μg N2O-N m−2 h−1. In the urine-affected soil, nitrification and denitrification contributed equally to the N2O emission, and the increased N2O loss resulted from a combination of higher rates and higher N2O loss ratios of the processes. In the present study, an enhanced nitrification rate seemed to be the most important factor explaining the high initial N2O emission from urine patches deposited on well-aerated soils.  相似文献   

14.
Corbicula fluminea (Asian clam) can assemble in high densities and dominate benthic communities. To evaluate the influence of this clam on sediment oxygen uptake and nutrient fluxes across the sediment–water interface, a microcosm study was conducted using a continuous-flow cultivation system with sediment, lake water, and C. fluminea specimens from Taihu Lake, China. C. fluminea destroyed the initial sediment surface, enhanced O2 penetration into the sediment partially, and increased the sediment water content, the volume of oxic sediment, and total microbial activity. Sediment O2 uptake was significantly stimulated by C. fluminea. Linear regression results for O2 uptake versus clam biomass ranged from 21.9 to 9.47 μmol h?1 g?1?DW (dry weight). The release of soluble reactive phosphorus, ammonium, and nitrate from the sediment was also increased by the clams. The increase in the amount of soluble reactive phosphorus and ammonium released into the overlying water was 0.042?~?0.091 and 2.77?~?3.03 μmol h?1 g?1?DW, respectively, and this increase was attributed to increased diffusion, enhanced advection between the pore water and the overlying water, and the excretions from C. fluminea. Enhanced nitrification was suggested as the reason for the increase in nitrate release (2.95?~?4.13 μmol h?1 g?1?DW) to the overlying water.  相似文献   

15.
A better understanding of the nitrogen (N) cycle in agricultural soils is crucial for developing sustainable and environmentally friendly N fertilizer management and to propose effective nitrous oxide (N2O) mitigation strategies. This laboratory study quantified gross nitrogen transformation rates in uncultivated and cultivated black soils in Northeast China. It also elucidated the contribution made by nitrification and denitrification to the emissions of N2O. In the laboratory, soil samples adjusted to 60 % water holding capacity (WHC) were spiked with 15NH4NO3 and NH4 15NO3 and incubated at 25 °C for 7 days. The size and 15N enrichment of the mineral N pools and the N2O emission rates were determined between 0 and 7 days. The results showed that the average N2O emission rate was 21.6 ng N2O-N kg?1 h?1 in cultivated soil, significantly higher than in the uncultivated soil (11.6 ng N2O-N kg?1 h?1). Denitrification was found to be responsible for 32.1 % of the N2O emission in uncultivated soil, and the ratio increased significantly to 43.2 % in cultivated soil, due to the decrease in soil pH. Most of the increase in net N2O-N emissions observed in the cultivated soil was resulting from the increased production of N2O through denitrification. Gross nitrification rate was significantly higher in the cultivated soil than in the uncultivated soil, and the ratio of gross nitrification rate/ammonium immobilization rate was 6.87 in cultivated soil, much larger than the uncultivated soil, indicating that nitrification was the dominant NH4 + consuming process in cultivated soil, and this will lead to the increased production of nitrate, whereas the increased contribution of denitrification to N2O emission promoted the larger emission of N2O. This double impact explains why the risk of N loss to the environment is increased by long-term cultivation and fertilization of native prairie sites, and controlling nitrification maybe effective to abate the negative environmental effects.  相似文献   

16.
Simultaneous power generation and fecal wastewater treatment were investigated using a combined ABR-MFC-MEC system (anaerobic baffled reactor-microbial fuel cell-microbial electrolysis cell). The installation of multi-stage baffles can benefit retaining the suspended solids in the system and help separate the hydrolysis-acidification and the methanogen processes. The efficiencies of the nitrification-denitrification process were improved because of the weak current generation by coupling the microbial electrochemical device (MFC-MEC) with the ABR unit. Maximum removal rates for chemical oxygen demand (COD) and ammonia nitrogen (NH4 +-N) were 1.35 ± 0.05 kg COD/m3/day and 85.0 ± 0.4 g NH4 +-N/m3/day, respectively, while 45% of methane (CH4), 9% of carbon dioxide (CO2), and 45% of nitrogen gas (N2) contents in volume ratio were found in the collected gas phase. An average surplus output voltage of 452.5 ± 10.5 mV could be achieved from the combined system, when the initial COD concentration was 1500.0 ± 20.0 mg/L and the initial NH4 +-N concentration was 110.0 ± 5.0 mg/L, while the effluent COD could reach 50.0 mg/L with an HRT of 48 h. The combined process has the potential to treat fecal wastewater efficiently with nearly zero energy input and a fair bio-fuel production.  相似文献   

17.
One pot experiment was conducted to study the effects of a new polymeric slow release fertilizer (PRF) on Chinese cabbage growth and soil nutrients. The experiment comprised three kinds of fertilizer (common compound fertilizer, 21% and 45% solubility of PRF in 25°C water, all fertilizers with N:P2O5:K2O = 10:5.7:20) and three fertilizer levels (0, 21.6 and 43.2 g m?2). Results showed that the high water-soluble PRFs (PRFHH and PRFHL) fit nutrient requirements of Chinese cabbage, and the high fertilization level significantly increased yield and improved quality of Chinese cabbage. Although the PRFHL treatment at 21.6 g fertilizer m?2 had one-half less supplied nutrient than that of common compound fertilizer treatment (43.2 g fertilizer m?2), the yield of Chinese cabbage with PRFHH and PRFHL was 8.0% more. The soluble sugar, vitamin C and leaf chlorophyll contents of Chinese cabbage can be effectively improved with PRFHH (43.2 g m?2), PRFHL (21.6 g m?2) and PRFLH (low water-soluble PRF, 43.2 g m?2). The PRF treatment reduced the nitrate content and improved soil capacity of supplying nutrient effectively, and there were no changes in values of pH and electrical conductivity of soil.  相似文献   

18.
To date, occurrence and stimulation of different nitrification pathways in acidic soils remains unclear. Laboratory incubation experiments, using the acetylene inhibition and 15N tracing methods, were conducted to study the relative importance of heterotrophic and autotrophic nitrification in two acid soils (arable (AR) and coniferous forest) in subtropical China, and to verify the reliability of the 15N tracing model. The gross rate of autotrophic nitrification was 2.28 mg?kg?1?day?1, while that of the heterotrophic nitrification (0.01 mg?kg?1?day?1) was negligible in the AR soil. On the contrary, the gross rate of autotrophic nitrification was very low (0.05 mg?kg?1?day?1) and the heterotrophic nitrification (0.98 mg?kg?1?day?1) was the predominant NO3 ? production pathway accounting for more than 95 % of the total nitrification in the coniferous forest soil. Our results showed that the 15N tracing model was reliable when used to study soil N transformation in acid subtropical soils.  相似文献   

19.

Purpose

Approximately 74 % of agricultural soils in Tunisia are affected by water erosion, leading to the siltation of numerous human-made reservoirs and therefore a loss of water storage capacity. The objective of this study was to propose a methodology for estimating the relative contributions of gully/channel bank erosion and surface topsoil erosion to the sediment accumulated in small reservoirs.

Materials and methods

We tested an approach based on the sediment fingerprinting technique for sediments collected from a reservoir (which has been in operation since 1994) at the outlet of a catchment (Kamech, 2.63 km2). Sampling concentrated on the soil surface (in both cropland and grassland), gullies and channel banks. A total of 17 sediment cores were collected along a longitudinal transect of the Kamech reservoir to investigate the origin of the sediment throughout the reservoir. Radionuclides (particularly caesium-137, 137Cs) and nutrients (total phosphorus, total nitrogen and total organic carbon (TOC)) were analysed as potential tracers.

Results and discussion

The applications of a mixing model with 137Cs alone or 137Cs and TOC provided very similar results: The dominant source of sediment was surface erosion, which was responsible for 80 % of the total erosion within the Kamech catchment. Additionally, we showed that the analysis of a single composite core provided information on the sediment origin that was consistent with the analysis of all sediment layers in the core. We demonstrated the importance of the core sampling location within the reservoir for obtaining reliable information regarding sediment sources and the dominant erosion processes.

Conclusions

The dominance of surface erosion processes indicates that conservation farming practices are required to mitigate erosion in the agricultural Kamech catchment. Based on the results from 17 sediment cores, guidelines regarding the number and location of sampling cores to be collected for sediment fingerprinting are proposed. We showed that the collection of two cores limited the sediment source apportionment uncertainty due to the core sampling scheme to <10 %.  相似文献   

20.

Purpose

Ichkeul National Park, NW Tunisia, is a UNESCO Biosphere Reserve. Garaet El Ichkeul Lake is known for its seasonal variability in water level and salinity. In recent decades, the waterbody has been affected by the construction of new hydraulic structures. To reduce the impacts of dams and to maintain the sustainability of the ecosystem, a sluice was built at the outlet of the lake, and it operated for the first time in 1996. This paper describes an investigation of recent sedimentation dynamics in Ichkeul Lake, determined by radiometric dating of sediment cores.

Materials and methods

A sediment core was collected with a UWITEC gravity corer at the deepest, central part of the lake in August 2009. Specific activities of unsupported lead-210 (210Pb) and caesium-137 (137Cs) were measured in the core, enabling calculation of recent sediment accumulation rates (SAR). Published radiometric data from nearby sediment cores, collected in 1997 and 1982, provide a comparison.

Results and discussion

The measured excess 210Pb inventory was 5300?±?500?Bq?m?2, leading to an estimation of constant flux of 165?±?16?Bq?m?2?yr?1, a value higher than the best estimate for local atmospheric fluxes (123?±?12?Bq?m?2?yr?1) and the flux estimated from the core collected in 1982 (48?Bq?m?2?yr?1). The 137Cs inventory was 3550?±?120?Bq?m?2, two times higher than the historical 137Cs atmospheric deposition in the area. The 137Cs profile displayed a distinct peak, but the 137Cs depth-distribution did not follow the pattern expected from atmospheric deposition. Application of the constant rate of supply (CRS) model, with the reference point method, produced a chronology and SAR values comparable to those found in previous work. The whole 137Cs profile was quantitatively reconstructed from the historical records of atmospheric deposition, using the system-time-averaged (STA) model.

Conclusions

The CRS and STA models provide consistent sediment accumulation results for the whole data set, considering the time resolution of the chronology (~6?years) and analytical uncertainties. Results from cores sampled in 1982, 1997 and 2009 reveal an increasing SAR trend, from ~0.25?g?cm?2?yr?1 in the early 1940s to ~0.67?g?cm?2?yr?1 at present. In the 13?years since installation of sluice gates at Tinja, SAR in the central Ichkeul Lake has not declined. Thus, if siltation continues at the present rate, shallowing of the lake will seriously affect the hydromorphology and ecology of this important lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号