首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobiocides are attracting research interest worldwide as possible postharvest pathogen control measures to replace synthetic fungicides. In this study, the application of two essential oils as fungicides was evaluated. Initially, the in vitro antifungal effects of Lippia scaberrima essential oil and three of the major oil components, (d)-limonene, R-(−)-carvone, and 1,8-cineole, as well as that of S-(+)-carvone, were investigated against Colletotrichum gloeosporioides, Lasiodiplodia theobromae, and an Alternaria isolate. The oil and terpenoids caused significant inhibition of the mycelial growth of all the pathogens when applied at a concentration of 2000 μL L−1. The most potent volatile component of L. scaberrima essential oil, able to inhibit all the pathogens tested, proved to be R-(−)-carvone. The efficacy of the essential oil (1000 and 2000 μL L−1) incorporated into the commercial coating was confirmed on fruit inoculated with two of the pathogens. A simulated export trial was done using Lippia essential oil, in addition to Mentha spicata (spearmint) essential oil, as supplements for fruit coatings. Results indicate that essential oils rich in R-(−)-carvone could be valuable alternatives to synthetic fungicides for the postharvest management of avocado fruit. The combination of essential oils with a commercial coating, acceptable to the organic market, offers additional protection to this vulnerable commodity.  相似文献   

2.
Anthracnose caused by Colletotrichum gloeosporioides is a major postharvest disease in avocados that causes significant losses during transportation and storage. Complete inhibition of the radial mycelia growth of C. gloeosporioides in vitro was observed with citronella or peppermint oils at 8 μL plate−1 and thyme oil at 5 μL plate−1. Thyme oil at 66.7 μL L−1 significantly reduced anthracnose from 100% (untreated control) to 8.3% after 4 days, and to 13.9% after 6 days in artificially wounded and inoculated ‘Fuerte’ and ‘Hass’ fruit with C. gloeosporioides. GC/MS analysis revealed thymol (53.19% RA), menthol (41.62% RA) and citronellal (23.54% RA) as the dominant compounds in thyme, peppermint and citronella oils respectively. The activities of defence enzymes including chitinase, 1, 3-β-glucanase, phenylalanine ammonia-lyase and peroxidase were enhanced by thyme oil (66.7 μL L−1) treatment and the level of total phenolics in thyme oil treated fruit was higher than that in untreated (control) fruit. In addition, the thyme oil (66.7 μL L−1) treatment enhanced the antioxidant enzymes such as superoxide dismutase and catalase. These observations suggest that the effects of thyme oil on anthracnose in the avocado fruit are due to the elicitation of biochemical defence responses in the fruit and inducing the activities of antioxidant enzymes. Thus postharvest thyme oil treatment has positive effects on reducing anthracnose in avocados.  相似文献   

3.
Postharvest decay, caused by various fungal pathogens, is an important concern in commercial blueberry production, but current options for managing postharvest diseases are limited for this crop. Four plant essential oils (cinnamon oil, linalool, p-cymene, and peppermint leaf oil) and the plant oil-derived biofungicides Sporan (rosemary and wintergreen oils) and Sporatec (rosemary, clove, and thyme oils) were evaluated as postharvest biofumigants to manage fungal decay under refrigerated holding conditions. Hand-harvested Tifblue rabbiteye blueberry fruit were inoculated at the stem end with conidial suspensions of Alternaria alternata, Botrytis cinerea, Colletotrichum acutatum, or sterile deionized water (check inoculation) and subjected to biofumigation treatments under refrigeration (7 °C) for 1 wk. Sporatec volatiles reduced disease incidence significantly (P < 0.05) in most cases, whereas other treatments had no consistent effect on postharvest decay. Sensory analysis of uninoculated, biofumigated berries was performed utilizing a trained sensory panel, and biofumigation was found to have significant negative impacts on several sensory attributes such as sourness, astringency, juiciness, bitterness, and blueberry-like flavor. Biofumigated fruit were also analyzed for antioxidant capacity and individual anthocyanins, and no consistent effects on these antioxidant-related variables were found in treated berries. Because of limited efficacy in reducing postharvest decay, negative impacts on sensory qualities, and failure to increase antioxidant levels, the potential for postharvest biofumigation of blueberries under refrigerated holding conditions appears limited.  相似文献   

4.
Postharvest diseases limit the storage period and market life of fresh figs (Ficus carica L.). The objective of this work was to determine the effect of sulfur dioxide (SO2) applied by fumigation and/or by dual release SO2 generating pads on postharvest decay and quality retention of ‘Black Mission’ and ‘Brown Turkey’ (dark skin), and ‘Kadota’ and ‘Sierra’ (green skin) figs. A protocol for the computer-controlled application of gaseous SO2 has been developed which allows the application of very low specific concentration × time products of SO2 and simultaneous monitoring of the application progress. In vitro tests with important fungal, yeast and bacterial postharvest pathogens plated on Petri dishes and exposed to a SO2 concentration × time product (C × t) of 100 (μL/L) h at different temperatures showed fewer survived at 20 °C than at 0 °C. Therefore, fumigations were carried out at 20 °C in the rest of the experiments. The evaluation of different SO2 concentration × time products showed that a product of 25 (μL/L) h provided the best compromise between decay control and fruit injury. The performance of SO2 fumigations on warm or cold fruit, its combination with SO2 generating pads, and the use of repeated fumigations during cold storage were also evaluated. All the SO2 treatments tested reduced the percentage of decay, extending the market life of fresh figs. However, in some cases, the use of SO2 generating pads increased the incidence of skin bleaching. Fumigation of warm fruit at 25 (μL/L) h of SO2 reduced populations of Alternaria and Rhizopus spp. growing on the fig surface. The treatment was more effective against Rhizopus spp. than against Alternaria spp. Contamination of fruit by Botrytis spp. and Penicillium spp. was also reduced by SO2. In conclusion, results showed that SO2 can be a potential tool to control postharvest rots and therefore increase the market life of fresh figs.  相似文献   

5.
Control of primary postharvest diseases caused by Rhizopus stolonifer, Botrytis cinerea, and Penicillium expansum on a variety of fresh fruit was evaluated with an invert emulsion formulation of Trichoderma harzianum. Diseases evaluated were quantified by the period of protection conferred by the antagonist and the diameter of decay lesions. Treatment of the various fruit species with formulated T. harzianum conidia in an invert emulsion significantly (P  0.05) reduced the mean lesion diameters of R. stolonifer on apple, pear, peach and strawberry, B. cinerea on grape, pear, strawberry, and kiwifruit, and P. expansum on grape, pear, and kiwifruit in comparison with the control treatment. Significant differences (P  0.05) were obtained in the mean percent reduction in lesion diameter caused by the same postharvest pathogens on the same fruit species due to the treatment with the formulated T. harzianum conidia relative to control treatment. The greatest mean percent reduction (86.7%) was obtained on apple fruit for the infection with R. stolonifer. Significant differences (P  0.05) were also obtained in the mean durations of the minimum protection period due to treatment with the formulated T. harzianum against the infection with the same postharvest pathogens on the same fruit species. The longest mean duration of the minimum protection period (up to 59 days) was obtained for unwounded apple fruit against the infection with R. stolonifer. Overall, the results indicate that the treatment with the invert emulsion formulation of T. harzianum protected fruit from infection by the primary postharvest pathogens of the fruit tested for up to 2 months and reduced the diameters of decay lesion up to 86% and is a promising treatment to prolong the postharvest shelf-life of fresh fruit.  相似文献   

6.
Tomatoes, strawberries, table grapes and plums were inoculated with Botrytis cinerea (grey mould), transferred to chilled storage (13 °C) and exposed to ‘clean air’ or low-level ozone-enrichment (0.1 μmol mol−1). Ozone-enrichment resulted in a substantial decline in spore production as well as visible lesion development in all treated fruit. Exposure-response studies performed specifically on tomato fruit (exposed to concentrations ranging between 0.005 and 5.0 μmol mol−1 ozone) revealed lesion development and spore production/viability to be markedly reduced in produce exposed to ozone prior to, or following, infection with B. cinerea; higher concentrations/duration of exposure yielding greater reductions in lesion development and spore production/viability. Impacts on Botrytis colonies grown on Potato Dextrose Agar (PDA) for 5–6 days at 13 °C and 95% relative humidity (RH) revealed less effects than studies on fruit inoculated with the pathogen in vivo. Taken as a whole, the results imply that ozone-induced suppression of pathogen development is due, to some extent, to impacts on fruit–pathogen interactions. This work suggests that ozone may constitute a desirable and effective residue-free alternative to traditional postharvest fungicide practices. Data presented illustrate that optimal ozone treatment regimes are likely to be commodity-specific and require detailed investigation before such practices can be contemplated commercially.  相似文献   

7.
The objective of this work was to preserve the postharvest quality of litchi cv Brewster by the application of Lactobacillus plantarum. A suspension of 1 × 109 CFU/mL of the bacteria was sprayed on ripe litchis and then stored at 10 °C with 75% of relative humidity. Treated fruit exhibited a significantly higher Gram positive bacteria growth on the rind (4–5 log CFU/g) than that detected in control fruit (2.5–3.75 log CFU/g). This result was corroborated by observing a high population of lactobacilli in scanning electron micrographs and by measurement of the content of lactic acid produced. Treated fruit displayed significantly (α  0.05) reduced color losses as indicated by the higher L* and C* values in comparison with the untreated ones. Additionally, cyanidin-3-rutinoside and total anthocyanin contents supported the measured color retention, since the pericarp of fruit treated with Lb. plantarum showed a significantly higher concentration of pigments than those used as control. In addition, a high concentration of phenolic compounds was found in the rind of treated fruit.  相似文献   

8.
The most common and serious diseases which affect citrus fruit after harvest in Italy are induced by Penicillium digitatum Sacc. and Penicillium italicum Weh., responsible respectively for green and blue mold rots. This paper deals with the effectiveness of hot water dipping (HWD) treatments as alternative means to control postharvest decay on Tarocco orange fruit [Citrus sinensis (L.) Osbeck], and their effect on fruit quality with special regard to peel essential oils. Selected treatments were HWD at 52 °C for 180 s and at 56 °C for 20 s. These treatments were compared with an effective fungicide standard treatment (Imazalil) and an untreated control. The results showed that HWD at 56 °C for 20 s was more effective in inhibiting P. digitatum spore germination than HWD at 52 °C for longer exposure time. In addition, HWD treatment at 56 °C significantly increased the level of alcohols, esters and aliphatic (fatty) aldehydes. Therefore, the lowest values of decay incidence recorded in HWD fruit treated at 56 °C may be due to the increase in oxygenated monoterpenes, esters and aldehydes. Finally, HWD treatments did not cause surface damage or color change and did not influence internal quality parameters.  相似文献   

9.
Brown rot caused by Monilinia spp. is the most important postharvest disease of stone fruit. Currently, no chemical fungicides are allowed in the European Union to be applied to stone fruit after harvest, which has increased the need to develop alternative methods. Radio frequency (RF) treatment at 27.12 MHz with fruit immersed in water was studied to control brown rot in peaches and nectarines artificially inoculated with M. fructicola. Additionally, RF treatment in air was also investigated to evaluate the benefit of water immersion to reduce the effect of fruit size on treatment efficacy. RF treatment with fruit immersed in water at 20 °C applied for 9 min significantly reduced brown rot incidence in both peaches and nectarines and no significant differences in RF efficacy were observed depending on fruit size. However, when RF treatment was applied in air for 18 min, brown rot reduction was significantly higher in large fruit than in small fruit. Finally, the decrease in exposure time of radio frequency treatment with fruit immersed in water with increasing water temperature was also studied. Reduction of treatment time to 6 and 4.5 min was achieved by increasing water temperature at 35 and 40 °C, respectively, to control brown rot without adverse external and internal damage in both ‘Baby Gold 9’ peaches and ‘Autumn Free’ nectarines.  相似文献   

10.
Anthracnose is the main postharvest disease in papaya fruit. Today, there is considerable interest on alternative methods of control to promote resistance against pathogens and supplement or replace the use of fungicides. The goal of this work was to evaluate the effects of gamma and UV-C irradiation on Colletotrichum gloeosporioides, the causal agent of anthracnose. Mycelial growth, sporulation, and conidial germination were evaluated in vitro after fungal exposition to different irradiation doses. In the in vivo assays, ‘Golden’ papaya fruit were inoculated through subcuticular injections of a conidial suspension or mycelium discs. Next, fruit were submitted to different irradiation doses (0, 0.12, 0.25, 0.5, 0.75, and 1 kGy), using Co60 as source, or UV-C (0, 0.2, 0.4, 0.84, 1.3, and 2.4 kJ m−2). To check the possibility of resistance induction by irradiation, papayas were also inoculated 24, 48, or 72 h after the treatments. The fruit were stored at 25 °C/80% RH for 7 days and evaluated for incidence and rot severity. The results showed that the 0.75 and 1 kGy doses inhibited conidial germination and mycelial growth in vitro. All doses increased fungal sporulation. The 0.75 and 1 kGy doses reduced anthracnose incidence and severity, but did not reduce them when the fruit were inoculated after irradiation. All UV-C doses inhibited conidial germination and those higher than 0.84 kJ m−2 inhibited mycelial growth. The 0.4, 0.84, and 1.3 kJ m−2 UV-C doses reduced fungal sporulation in vitro. There was no effect of UV-C doses and time intervals between treatment and inoculation on anthracnose control and fungal sporulation in fruit lesions. Moreover, all UV-C doses caused scald on the fruit. Thus, gamma irradiation can contribute for the reduction of postharvest losses caused by anthracnose and reduce the use or doses of fungicides on disease control.  相似文献   

11.
The effect of carvacrol and methyl cinnamate vapors incorporated into strawberry puree edible films on the postharvest quality of strawberry fruit (Fragaria × ananassa) was investigated. Fresh strawberries were packed in clamshells and kept at 10 °C for 10 days with 90% RH. Strawberry puree edible films, applied in the clamshell, served as carriers for the controlled release of natural antimicrobial compounds without direct contact with the fruit. Changes in weight loss, visible decay, firmness, surface color, total soluble solids content, total soluble phenolics content and antioxidant capacity of strawberries during storage were evaluated. A significant delay and reduction in the severity of visible decay was observed in fruit exposed to antimicrobial vapors. Carvacrol and methyl cinnamate vapors released from the films helped to maintain firmness and brightness of strawberries as compare to the untreated strawberries. The natural antimicrobial vapors also increased the total soluble phenolics content and antioxidant activity of fruit at the end of the storage period.  相似文献   

12.
Common food additives (sodium bicarbonate (SB), sodium carbonate (SC), and potassium sorbate (PS)) were compared to the fungicide fludioxonil for the control of gray mold on California-grown ‘Wonderful’ pomegranates artificially inoculated with Botrytis cinerea and stored at 7.2 °C in either air or controlled atmosphere (CA, 5 kPa O2 + 15 kPa CO2) conditions. Fludioxonil was superior to other treatments. PS was the most effective additive. Synergistic effects between antifungal treatments and CA storage were observed. After 15 weeks of storage at 7.2 °C, the combination of PS treatment (3 min dip in 3% solution at 21 °C) and CA storage was as effective as the combination of heated fludioxonil (30 s dip in 0.6 g L−1 of active ingredient at 49 °C) and air storage. Mixtures of PS with SB or SC did not improve the efficacy of either treatment alone. In tests conducted in commercial facilities, decay development and external and internal fruit quality were assessed on naturally infected pomegranates stored in either air or CA after application of a selected postharvest antifungal combined treatment (CTrt) integrating PS, SB + chlorine, and fludioxonil. CTrt was effective in controlling natural gray mold after 6 weeks of storage at 8.9 °C, but lacked persistence and it was not effective after 14 weeks. CA storage greatly enhanced decay control ability of CTrt. Skin red color was better maintained in CA-stored than in air-stored fruit. Juice color and properties (SSC, TA, and pH) were not practically affected by either postharvest treatment or storage condition. The integration of PS treatments with CA storage could provide an alternative to synthetic fungicides for the management of pomegranate postharvest decay.  相似文献   

13.
The phenolic compounds in blueberry (Vaccinium spp.) fruit and leaf extracts (BLE) were determined based on HPLC analysis. Antimicrobial assays against Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium and Escherichia coli, as well as fungi isolated from the rotting blueberry fruit were conducted. The effects of chitosan coating incorporating different concentrations of BLE on the quality of fresh fruit during postharvest storage at 2 ± 1 °C and 95 ± 2% relative humidity (RH) for 35 d and then at room conditions for 3 d were also investigated. Five different coating treatments were applied including 2% (w/v) chitosan coating (T1), 2% (w/v) chitosan coating containing 4% (w/v, T2), 8% (w/v, T3), or 12% (w/v, T4) BLE, and 2% (w/v) chitosan coating containing 12% BLE plus modified atmosphere packaging (MAP at 3 kPa O2 + 12 kPa CO2) (T5). A sample of blueberries dipped into distilled water was used as control (T0). BLE had a greater variety of phenolic compounds than fruit extracts with syringic acid the highest concentration (0.259 ± 0.003 g kg−1), but the total phenolic content in BLE was lower (P < 0.05) than in fruit extracts. BLE showed good antimicrobial activity against all tested microorganisms, with a minimum inhibition concentration from 25 to 50 g L−1. The 2% chitosan coating that incorporated 8% or 12% BLE showed some degree of decreasing decay rate of fruit compared with the control, and the coating with BLE plus MAP had more effective control of fruit decay. All treated samples maintained higher total phenolic content and radical scavenging activity than the control. This study suggested that chitosan coating incorporating BLE can be employed to extend shelf-life and maintain high nutritional value of fresh blueberries during postharvest storage.  相似文献   

14.
Fungal decay is a major cause of postharvest losses in strawberries. The traditional approach for controlling fungal decay is the use of fungicides. However, the use of fungicides has been questioned as a sustainable and safe method, and is also prohibited in many countries. One potential physical method for reducing fungal decay is application of a short-term hypobaric treatment prior to storage. In this study efficacy of postharvest hypobaric treatments to control natural rot development in strawberries was evaluated. Strawberries were treated with hypobaric pressures (25 kPaa, 50 kPaa and 75 kPaa) for 4 h at 20 °C and subsequently stored at 20 °C or 5 °C. A 50 kPaa treatment consistently delayed rot development in samples stored at either temperature confirming that the technique has potential as a non-chemical treatment. Moreover 50 kPaa treatments did not affect weight loss and firmness at either 20 °C or 5 °C. An initial increase in respiration rate was observed in 50 kPaa treated samples potentially indicating mild stress due to hypobaric treatment. An in vitro fungal study found that 50 kPaa treatment for 4 h did not affect the rate of radial growth of colonies of Botrytis cinerea and Rhizopus stolonifer, providing further evidence that the potential mechanism of hypobaric treatment is induction of the defence system within the fruit rather than a direct effect on fungal viability. Further molecular and biochemical research is required to evaluate the possible stimulation of resistance in fruit through short-term hypobaric treatments.  相似文献   

15.
16.
The antifungal activity of citral against Penicillium digitatum, the causal agent of citrus green mold, was tested by in vitro and in vivo experiments. In vitro assays showed that the minimum inhibitory concentration and the minimum fungicidal concentration (MFC) were both 4000 μL L−1. Results of in vivo tests demonstrated that wax + citral (1× MFC) treatment did not effectively inhibit the growth of P. digitatum in Ponkan mandarin fruit, whereas wax + citral (10× MFC) treatment significantly decreased the incidence of green mold after 6 days of storage at 25 ± 2 °C. Wax + citral (10× MFC) treatment remarkably increased the content of vitamin C and antioxidant enzyme activities such as catalase, superoxidase dismutase, and peroxidase but decreased the activities of phenylalanine ammonia lyase, polyphenol oxidase, and malonaldehyde. The treatment had minor effects on the pH, coloration index, and total soluble solids. This study provided theoretical data for the practical application of citral on citrus fruit quality during postharvest storage.  相似文献   

17.
In this work Aloe vera gel (AV) alone or with the addition of 10 or 2% rosehip oil was used as fruit edible coatings in a wide range of Prunus species and cultivars: peaches (‘Roma’ and ‘B-424-16’ flat type), plums (‘Red Beauty’ and ‘Songria’), nectarine (‘Garofa’) and sweet cherry (‘Brooks’). Following treatments, fruit were stored at 20 °C for 6 days and analysed for the effect of treatments on fruit ripening and quality parameters compared with uncoated fruit (control). The addition of the rosehip oil to AV gel reduced respiration rate in all fruit, and ethylene production in the climacteric ones (peaches, plums and nectarine). In addition, all the parameters related with fruit ripening and quality, such as weight loss, softening, colour change and ripening index, were also delayed in treated compared with control fruit, the effect being generally higher when rosehip oil was added to AV, and especially in those fruit that exhibited the highest ethylene production rates (‘Roma’ and flat type peaches). Although the highest effect was obtained with AV + rosehip oil at 10%, the sensory panel detected an excess of gloss and oiliness on the fruit surface, which was considered as a negative attribute. Thus, 2% rosehip oil added to AV could be used as an innovative postharvest tool to increase the beneficial effect of AV as an edible coating, especially in climacteric fruit showing high ethylene production rates.  相似文献   

18.
The vapours of allyl-isothiocyanate (AITC) were evaluated in in vitro and in vivo trials against Botrytis cinerea, a severe pathogen of strawberries. In in vitro trials AITC activity was assayed on conidial germination and mycelial growth of the fungus. The mycelium appeared less sensitive to AITC than conidia (EC50 values of 1.35 mg L−1 and 0.62 mg L−1, respectively). In addition, AITC had a fungistatic effect against the pathogen, since the values of EC50, for both parameters, increased by around 30% after AITC removal. In in vivo trials, ‘Tecla’ and ‘Monterey’ strawberries (spring-bearing and day-neutral cultivars, respectively) obtained from organic production and naturally infected by B. Cinerea, were exposed for 4 h in an atmosphere enriched by pure AITC or derived from defatted seed meals of Brassica carinata (0.1 mg L−1, in a 0.1 m3 treatment cabinet). After 2 days at 0 °C and another 3–4 days at 20 °C, the fruit were evaluated for grey mould infections. The AITC treatment reduced the decay caused by the pathogen by over 47.4% up to 91.5%, significantly different from the untreated fruit. No significant differences were found between synthetic and glucosinolate-derived AITC. Residue analysis performed on fruit at the end of storage (7 d after treatment) showed values lower than 1 mg kg−1. Total phenolic content and antioxidant capacity estimated in treated and untreated strawberries showed no significant difference between control and AITC treated fruit. Our results show it is possible to reduce the incidence of postharvest grey mould on strawberries with a treatment of AITC (0.1 mg L−1) for 4 h, opening a potential application of biofumigation in the postharvest control of B. cinerea in strawberry.  相似文献   

19.
Monilinia spp. are the most important causes of brown rot in stone fruit and no chemical fungicides are allowed in the European Union to be applied to stone fruit after harvest. From preliminary studies, microwave (MW) treatments at 17.5 kW for 50 s and 10 kW for 95 s were selected as effective conditions to control brown rot. Both treatments were investigated to control Monilinia fructicola in fruit with different weights and maturity levels and in naturally infected fruit. Fruit weight only had a significant effect on microwave efficacy in ‘Placido’ peaches treated by MW at 10 kW for 95 s in which better brown rot control was observed in small than large fruit. Maturity level did not have a significant effect on efficacy of MW treatments in any of the varieties evaluated. When both MW treatments were studied in naturally infected peaches and nectarines, brown rot incidence was significantly reduced to less than 14% compared with untreated fruit where brown rot incidence was higher than 45%. The effect of both treatments on fruit quality was also evaluated. Fruit firmness was not negatively affected in the varieties tested and even a delay of fruit softening was observed. However, internal damage around the stone was observed, especially in the smallest fruit in which high temperature is achieved at the end of both MW treatments.  相似文献   

20.
Peel yellowing is a major postharvest problem of lime fruit. Research was conducted to control peel yellowing by UV-B irradiation. Mature green lime fruit were irradiated with UV-B doses at 0 (control), 8.8, and 13.2 kJ m?2 and then stored at 25 °C in darkness. UV-B treatment at 8.8 kJ m?2 efficiently delayed the decrease of chlorophyll content. A high level of chlorophyllide a accumulated in mature green fruit and then gradually decreased with the progress of peel yellowing. The chlorophyllide a level was higher in 8.8 kJ m?2 UV-B-treated fruit than it was in the controls. The pheophorbide a level declined in lime fruit treated with 8.8 kJ m?2 UV-B, especially during the development of yellowing. In addition, the pheophytin a level increased by 8.8 kJ m?2 UV-B treatment at the late period of storage. We concluded that UV-B treatment effectively suppressed chlorophyll degradation in mature green lime during storage, which suggests that UV-B irradiation is a usable method for prolonging the postharvest life of lime fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号