首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Little is known about the interactive effects of temperature, nitrogen (N) supply, litter quality, and decomposition time on the turnover of carbon (C) and N of forest litter. The objective of this study was to investigate the interactive effects of warming, N addition and tree species on the turnover of C and N during the early decomposition stage of litters in a temperate forest.

Materials and methods

A 12-week laboratory incubation experiment was carried out. The leaf litters including two types of broadleaf litters (Quercus mongolica and Tilia amurensis), a needle litter (Pinus koraiensis), and a mixed litter of them were collected from a broad-leaved Korean pine mixed forest ecosystem in northeastern China in September 2009. Nine treatments were conducted using three temperatures (15, 25, and 35 °C) combined with three doses of N addition (equal to 0, 75, and 150 kg?·?ha?1?a?1, respectively, as NH4NO3).

Results and discussion

After 12 weeks of incubation, the mass loss ranged between 12 and 35 %. The broadleaf litters had greater mass loss and cumulative CO2–C emission than the needle litter. Temperature and N availability interacted to affect litter mass loss and decomposition rate. The dissolved organic carbon (DOC) and nitrogen (DON) concentrations in litter leachate varied widely with litter types. DOC increased significantly with increased temperature but decreased significantly with increased N availability. DON increased significantly with increased N availability but showed a higher level at the moderate decomposition temperature. The amounts of CO2 and N2O emission were significantly higher at 25 °C than those at 15 and 35 °C, and were significantly increased by the N addition.

Conclusions

The present study indicated relatively intricate temperature and N addition effects on C and N cycling during early stages of litter decomposition, implying that future increases in temperature and N deposition will directly affect C and N cycling in broad-leaved Korean pine mixed forest ecosystem, and may indirectly influence the ecosystem composition, productivity, and functioning in NE China. It is, therefore, important to understand the interactive effects of biotic and abiotic factors on litter decomposition in field conditions in order to assess and predict future ecosystem responses to environmental changes in NE China.  相似文献   

2.
Low intensity control burns are a standard fuel reduction management tool used in pine barrens ecosystems. Periodic disturbances through fire can be an important influence on the cycling of nutrients within the ecosystem. Previous studies have shown that the inorganic chemistry of leaf litter residues differs with increasing temperature. Our study compared chemical changes in white oak (Quercus alba), pitch pine (Pinus rigida) and black huckleberry (Gaylussacia baccata), characteristic of the New Jersey pine barrens, during thermal decomposition using FT-IR spectroscopy. Three replicates of senescent leaf material were ground and separately heated for 2 h at: 100, 200, 300, 400 and 550 °C. These temperatures are representative of the range seen in fuel reducing prescribed burns in the pine barrens. Unburned litter of each species was used as a control. An optimization process using varying amounts of KBr and oak litter was performed to develop favorable FT-IR spectral conditions for a sample to KBr ratio of 0.75%. Chemometric analysis of the FT-IR spectra using principal component analysis (PCA) was used to analyze the changes in carbohydrate chemistry of each litter plant species (leaf litter species) at each temperature. In general, it appears that there is clear separation of leaf litter species at the different combustion temperatures. Infrared spectroscopy illustrated that all three species shared wavenumbers characteristic of the primary components of leaves such as cellulose, lignin and hemicellulose. Results from the PCA indicated separation of litter species and species by combustion temperature. PC axis 1 corresponds to the effects of temperature on leaf litter species and PC axis 2 separates the leaf litter species. At the low temperatures (control-200 °C), oak, pine and huckleberry litter species separated from each other. Wavenumbers that contributed to the separation of species at low temperatures belonged to functional group stretching frequencies of outer surface waxes, basic sugars, fatty acids and aldehydes. It appears that oak had more IR bands specific to suberin content. Convergence of these species occurs at 300 °C. Complexity of chemical composition decreases at this particular temperature as is shown by the decrease in wavenumber richness when compared to litters at low and high temperatures. Oak, pine and huckleberry had similar IR spectra showing bands belonging to outer surface wax content, pectin, lignin and hemicellulose. With increasing temperatures (400-550 °C), differences between litter species increased slightly. Plant material was reduced to similar composition due to thermal decomposition, which consisted of inorganic materials such as carbonate, phosphate and sulfate ions and possible fused aromatics.  相似文献   

3.
A 120 days’ incubation experiment was conducted to analyze the effect of temperature on the decomposition of leaf litter (Altingia obovata) in two tropical primary montane rainforests with different precipitation conditions. The results showed no difference in mass loss of leaf litter between the two forests at 20 °C, in spite that Jianfengling forest had less precipitation than Diaoluoshan forest. But higher mass loss of leaf litter was found from Jianfengling forest site (30.1%) than that from Diaoluoshan forest site (25.9%) at 30 °C at the end of incubation. Lignin exhibited higher mass loss from Jianfengling forest (29.9%) than from Diaoluoshan forest (23.3%) at 20 °C, but no difference between two forest sites at 30 °C. Total carbohydrates were decomposed faster by the decomposers from Diaoluoshan forest site (42.7%) than that from Jianfengling forest site (36.3%) at 20 °C, but 46.6% and 38.5% for Jianfengling and Diaoluoshan montane rainforests, respectively, at 30 °C. Temperature increase did not significantly lead to the difference in mass loss of leaf litter for the two forest sites. Temperature increase did not affect lignin loss for Diaoluoshan forest, but reduced lignin loss for Jianfengling forest. Temperature increase accelerated the decomposition of carbohydrate for Jianfengling forest, but opposite for Diaoluoshan forest. The response of decomposition of leaf litter to forest type and temperature was positively related to the difference in microbial activities between both montane rainforests.  相似文献   

4.
Soil temperature is a major factor affecting organic matter decomposition and thus, global warming may accelerate decomposition processes. However, it remains unclear whether the effects will be similar in climatically different regions. The effects of soil temperatures of 5, 10 and 15 °C on the decomposition of Scots pine (Pinus sylvestris L.) needles were assessed in a 1-year (360 days) growth chamber experiment. Intact peat cores from two climatically different peatland sites (southern and northern Finland) were used as the incubation environments. Needles were incubated in litter bags beneath the living moss layer, and mass loss and nitrogen (N) concentration were determined at 60-day intervals. The rate of mass loss from the needles over time was clearly lower in the 5 °C treatment than at the higher temperatures. Mass loss was strongly related to the accumulated soil temperature sum. In temperatures higher than 5 °C, mass losses were higher in the northern peat. Also, the limit value of decomposition (asymptotic maximum mass loss) was slightly higher in the northern peat (92%), than in the southern peat (87%). The N concentration increased up to a mass loss of 50–60%, whereupon it decreased, while the amount of N (as a percentage of the original amount) remained unchanged until a mass loss of 50–60%, whereupon it decreased linearly. It seems that increasing soil temperatures may result in slightly higher rates of needle litter mass loss and consequent N release in northern peat than in southern peat. The faster decomposition in higher temperatures in the northern peat, together with the slightly higher maximum mass loss value, imply that with climatic warming, susceptibility of boreal peatlands for becoming sources of carbon to the atmosphere may increase towards north.  相似文献   

5.
It is widely accepted that microarthropods influence decomposition dynamics but we know relatively little about their effects on litter chemistry, extracellular enzyme activities, and other finer-scale decomposition processes. Further, few studies have investigated the role of individual microarthropod species in litter decomposition. The oribatid mite Scheloribates moestus Banks (Acari: Oribatida) is abundant in many U.S. ecosystems. We examined the potential effects of S. moestus on litter decomposition dynamics and chemical transformations, and whether these effects are influenced by variation in initial litter quality. We collected corn and oak litter from habitats with large populations of S. moestus and in microcosms with and without mites measured respiration rates, nitrogen availability, enzyme activities, and molecular-scale changes in litter chemistry. Mites stimulated extracellular enzyme activities, enhanced microbial respiration rates by 19% in corn litter and 17% in oak litter over 62 days, and increased water-extractable organic C and N. Mites decreased the relative abundance of polysaccharides in decomposing corn litter but had no effect on oak litter chemistry, suggesting that the effects of S. moestus on litter chemistry are constrained by initial litter quality. We also compared the chemistry of mite feces to unprocessed corn litter and found that feces had a higher relative abundance of polysaccharides and phenols and a lower relative abundance of lignin. Our study establishes that S. moestus substantially changes litter chemistry during decomposition, but specific effects vary with initial litter quality. These chemical transformations, coupled with other observed changes in decomposition rates and nutrient cycling, indicate that S. moestus could play a key role in soil C cycling dynamics.  相似文献   

6.
The temperature sensitivity of soil organic carbon (SOC) decomposition will influence the accuracy of the quantitative prediction of carbon (C) balance between ecosystem C fixation and decomposition in a warmer world. However, a consensus has not yet been reached on the temperature sensitivity of SOC decomposition with respect to SOC quality. The fundamental principles of enzyme kinetics suggest that temperature sensitivity of decomposition is inversely related to the C quality of the SOC. This “C quality-temperature” hypothesis was tested in a 170-day laboratory experiment by incubating soil samples with changing temperature (low-high-low) at a ±5 °C step every 24 h. Soil samples were collected from a long-term warming experiment in a tallgrass prairie. There were four treatments of soil samples before lab incubation: control (C), warmed (W), field incubation (FI, litter exclusion), and warmed plus field incubation (WFI). Results showed that SOC decomposition rates were influenced by labile organic C (LOC) content, which were low in the soils under field incubation and decreased with increasing lab incubation time. Field warming and field incubation increased the temperature sensitivity of SOC decomposition in the 1st two lab incubation cycles but the treatment effects diminished as decomposition proceeded, probably due to increased contribution of recalcitrant C. In line with the hypothesis, we found that the lower the SOC quality, the higher the Q10 values. This relationship held across treatments and lab incubation cycles, regardless of whether the differences in SOC quality resulted from inherent differences in SOC chemistry or from differences in the extent of SOC decomposition. Treatment effects of field warming and field incubation on SOC quality and Q10 values also negatively correlated with each other. Our results suggest that dynamics of low-quality SOC have the highest potential to impact long-term C stocks in soils. Potential decreases in SOC quality in response to warming and consequent shifting species composition may result in a positive feedback of SOC to climate change in the future.  相似文献   

7.
To verify the paradigm that organic matter (OM) quality (q) decreases with decomposition it is necessary to define q in strictly chemical, operational terms. We suggest defining q as the result of a balance between the energy stored in OM and the external supply of energy needed to release it. We apply this concept to the study of litter decomposition in four European pine forests: boreal, cool Atlantic, Mediterranean and warm Atlantic. Intact litter cores were taken and transported to the laboratory, where needles were sorted into six classes that summarize the main facts of the decomposition: melanisation, fragmentation and perforation by mesofauna. Each class was analyzed by both differential thermogravimetry and differential scanning calorimetry to obtain its spectra of weight loss and energy release.In the non-decomposed needles, two peaks of weight loss and energy release appear: a labile peak at about 350 °C, and a recalcitrant peak at about 450 °C. During decomposition, both peaks (but especially the recalcitrant one) move to lower temperatures, and their shapes change from well defined to flattened. In Mediterranean litters, a third peak appears at about 500 °C, due probably to refractory products of neoformation. There is a continuous increase in the energy stored in the remaining litter (in Joules per unit OM): this increase is concentrated in both the most thermolabile fractions (lost at temperatures <350 °C) and the most thermostable ones (>450 °C). With decomposition OM becomes more recalcitrant (i.e., it is lost at higher temperatures), but its stored energy becomes more available (i.e., it is released at lower temperatures). Overall, the energetic benefit/cost ratio increases. Thus, our results to date do not agree with the current paradigm that q decreases with decomposition; rather, they suggest that, at least in the first phases we studied, q is maintained or even increases.  相似文献   

8.
Microbial activity has been highlighted as one of the main unknowns controlling the fate and turnover of soil organic matter (SOM) in response to climate change. How microbial community structure and function may (or may not) interact with increasing temperature to impact the fate and turnover of SOM, in particular when combined with changes in litter chemistry, is not well understood. The primary aim of this study was to determine if litter chemistry impacted the decomposition of soil and litter-derived carbon (C), and its interaction with temperature, and whether this response was controlled by microbial community structure and function. Fresh or pre-incubated eucalyptus leaf litter (13C enriched) was added to a woodland soil and incubated at 12, 22, or 32 °C. We tracked the movement of litter and soil-derived C into CO2, water-extractable organic carbon (WEOC), and microbial phospholipids (PLFA). The litter additions produced significant changes in every parameter measured, while temperature, interacting with litter chemistry, predominately affected soil C respiration (priming and temperature sensitivity), microbial community structure, and the metabolic quotient (a proxy for microbial carbon use efficiency [CUE]). The direction of priming varied with the litter additions (negative with fresh litter, positive with pre-incubated litter) and was related to differences in the composition of microbial communities degrading soil-C, particularly gram-positive and gram-negative bacteria, resulting from litter addition. Soil-C decomposition in both litter treatments was more temperature sensitive (higher Q10) than in the soil-only control, and soil-C priming became increasingly positive with temperature. However, microbes utilizing soil-C in the litter treatments had higher CUE, suggesting the longer-term stability of soil-C may be increased at higher temperature with litter addition. Our results show that in the same soil, the growth of distinct microbial communities can alter the turnover and fate of SOM and, in the context of global change, its response to temperature.  相似文献   

9.
Adsorption of cellulase components by leaf litter   总被引:2,自引:0,他引:2  
The competitive adsorption of Trichoderma viride cellulase components to leaf litter was investigated to further elucidate the role of extracellular enzymes as mediators of decomposition processes. Litter analogs were prepared by acid-detergent digestion of senescent Pinus strobus (white pine), Quercus prinus (chestnut oak) and Cornus florida (flowering dogwood) leaves. Enzymatic cellulose digestion was used to produce litter analogs of higher lignin content. The white pine litter analogs had a high affinity for exocellulase and β-glucosidase. Chestnut oak litter preferentially bound endocellulase components and flowering dogwood litter displayed intermediate trends. Natural mixed-deciduous and white pine litters and humus had less capacity for immobilizing cellulase components. The adsorption data are consistent with available information on the binding of cellulase components to purified cellulose and with information on the cellulase activity patterns of decomposing leaf litter.  相似文献   

10.
Decomposition of unpolluted Scots pine needle litter was studied in two heavy-metal-pollution gradients in Sweden; one near a brass mill and the other around a primary smelter. In the latter area locally collected polluted Scots pine needle litter was also incubated. Decomposition rates were strongly influenced by the metal pollution and a decrease in the rate of mass-loss occurred. In the brass-mill gradient this occurred until about 1 km from the pollution source which corresponded to about 500 µg Cu and 1 000 µg Zn g?1 soil. Data are presented to indicate that lignin decomposition was more sensitive to pollution than decomposition of whole litter and affected further away from the pollution sources. At the smelter sites, the metal-polluted needle litter decomposed more slowly than the unpolluted needle litter, and this difference was enhanced close to the smelter. The results indicate that heavy metals accumulated in needles prior to shedding have a long-term impact on the subsequent decomposition of the litter. Both litter quality and soil factors thus contribute to the reduced litter decomposition rate in metal-polluted forests. A new non-linear model with decreasing decay rate was used in the statistical evaluation. The model can be used to characterize the effects of pollution on decomposition rate.  相似文献   

11.
The mineralization and humification of leaf litter collected in a mixed forest of the Prioksko-Terrasny Reserve depending on temperature (2, 12, and 22°C) and moisture (15, 30, 70, 100, and 150% of water holding capacity ( WHC)) has been studied in long-term incubation experiments. Mineralization is the most sensitive to temperature changes at the early stage of decomposition; the Q 10 value at the beginning of the experiment (1.5–2.7) is higher than at the later decomposition stages (0.3–1.3). Carbon losses usually exceed nitrogen losses during decomposition. Intensive nitrogen losses are observed only at the high temperature and moisture of litter (22°C and 100% WHC). Humification determined from the accumulation of humic substances in the end of incubation decreases from 34 to 9% with increasing moisture and temperature. The degree of humification CHA/CFA is maximum (1.14) at 12°C and 15% WHC; therefore, these temperature and moisture conditions are considered optimal for humification. Humification calculated from the limit value of litter mineralization is almost independent of temperature, but it significantly decreases from 70 to 3% with increasing moisture. A possible reason for the difference between the humification values measured by two methods is the conservation of a significant part of hemicelluloses, cellulose, and lignin during the transformation of litter and the formation of a complex of humic substances with plant residues, where HSs fulfill a protectoral role and decrease the decomposition rate of plant biopolymers.  相似文献   

12.
To understand why excrements of soil macrofauna often decompose more slowly than leaf litter, we fed Bibio marci larvae the litter of tree species differing in litter quality (Alnus glutinosa, Salix caprea, and Quercus robur) and then measured respiration induced by litter and excrements. We also measured respiration induced by the same litter artificially modified to mimic faunal effects; the litter was modified by grinding, grinding with alkalinization to pH = 11, grinding with coating by kaolinite, and grinding with both alkalinization and coating. Decomposition of excrements tended to be slower for willow and was significantly slower for oak and alder than for the corresponding litter. With oak, decomposition was slower for all artificially modified litter than for non-modified litter. The reduction in the decomposition was similar for excrements and for alder and willow litter that was ground, coated, and alkalinized. In alder, a similar reduction was found in ground and alkalinized litter. 13C NMR indicated that gut passage increases aliphatic components and decreases polysaccharides. Pyrolysis indicated that gut passage increases the ratio of guaiacyl to hydroxymethyl derivatives in lignin. Our findings indicate that the decreased decomposition rate of excrements might result from the removal of easily available polysaccharides, the increase in aliphatic components, an increase in the resistant components of lignin, the accumulation of microbial cell walls, and the binding of nitrogen into complexes with aromatic components. Several of these mechanisms are supported or determined by litter alkalinization during gut passage.  相似文献   

13.
Laboratory experiments were conducted to (i) study the influence of chemical composition of organic substrates (green manure, rice straw, wheat straw, and farmyard manure) and temperature on carbon (C) mineralization under flooded and nonflooded moisture conditions, (ii) study the relationship between C mineralization and chemical composition of organic materials, and (iii) model C mineralization kinetics under different temperature and moisture conditions. The proportion of added C mineralized under nonflooded conditions ranged between 45 and 66% at 35 °C compared to 18 to 42% at 15 °C. Flooding the soil reduced the proportion of added C mineralized, which ranged between 25 to 47% at 35 °C and 6 to 20% at 15 °C. Water-soluble components, cellulose, lignin, and nitrogen content of the organic source significantly influenced C mineralization. Temperature sensitivity of decomposition depended on the quality of the organic substrate with relatively less decomposable farmyard manure (FYM) being more sensitive (Q10 ?3.0) than the easily decomposable green manure (Q10 ?2.5). A first-order monocomponent model that is based on relative rate of mineralization and includes a parameter for speed of aging best described C mineralization under both the temperature and moisture conditions. It was concluded that FYM with preponderance of recalcitrant components and low decomposability provides greater C sequestration potential than green manure and crop residues.  相似文献   

14.
Soil organic matter(SOM)in boreal forests is an important carbon sink.The aim of this study was to assess and to detect factors controlling the temperature sensitivity of SOM decomposition.Soils were collected from Scots pine,Norway spruce,silver birch,and mixed forests(O horizon)in northern Finland,and their basal respiration rates at five different temperatures(from 4 to 28℃)were measured.The Q_(10) values,showing the respiration rate changes with a 10℃ increase,were calculated using a Gaussian function and were based on temperature-dependent changes.Several soil physicochemical parameters were measured,and the functional diversity of the soil microbial communities was assessed using the MicroResp?method.The temperature sensitivity of SOM decomposition differed under the studied forest stands.Pine forests had the highest temperature sensitivity for SOM decomposition at the low temperature range(0–12℃).Within this temperature range,the Q_(10) values were positively correlated with the microbial functional diversity index(H'_(mic))and the soil C-to-P ratio.This suggested that the metabolic abilities of the soil microbial communities and the soil nutrient content were important controls of temperature sensitivity in taiga soils.  相似文献   

15.
Understanding the temperature sensitivity of soil organic matter (SOM) decomposition is important to predict the response of soil carbon (C) dynamics to projected global warming. There is no consensus, however, as to whether or not the decomposition of recalcitrant soil C is as sensitive to temperature as is that of labile soil C. Soil C is stabilized by three mechanisms: chemical recalcitrance, mineral interaction and physical accessibility. We used artificial soils with controlled compositions to assess the effects of chemical recalcitrance (cellulose compared with lignin) and clay‐mineral composition with montmorillonite (M) or kaolinite (K) on the decomposition of model organic compounds at 2, 12, 22 and 32°C. When only substrate composition was varied, the presence of cellulose enhanced the decomposition rate of lignin. Treatments with relatively large amounts of cellulose were very sensitive to temperature only at low temperatures (2–12°C), whereas treatments with relatively large amounts of lignin had similar temperature sensitivities at all temperatures. When only clay‐mineral composition was varied, CO2 production rates were greatest in soils containing kaolinite‐montmorillonite mixtures (10% K:20% M) and least in soils containing kaolinite only at temperatures ≥12°C. Clay mixtures and pure montmorillonite treatments had their greatest temperature sensitivities at 2–12°C, whereas pure kaolinite treatments had the greatest temperature sensitivities at 12–22°C. Temperature sensitivities at the highest temperatures (22–32°C) were all small (Q10 < 1.1 on days 30 and 140). Artificial soils with controlled but flexible compositions may serve as simple and useful models for evaluating SOM dynamics with a minimum of confounding factors.  相似文献   

16.
Through their effects on microbial metabolism, temperature and moisture affect the rate of decomposition of soil organic matter. Plant roots play an important role in SOM mineralization and nutrient cycling. There are reports that rhizosphere soil exhibits higher sensitivity to temperature than root-free soil, and this can have implications for how soil CO2 efflux may be affected in a warmer world. We tested the effects of 1-week incubation under different combinations of temperature (5, 15, 30 °C) and moisture (15, 50, 100% WHC) on the respiration rate of soil planted with Scots pine and of unplanted soil. Soil respiration in both soils was the highest at moderate moisture (p < 0.0001) and, increased with temperature (p < 0.0001). There was also marginally significant effect of soil kind on respiration rate (p < 0.055), but the significant interaction of temperature effect with soil kind effect, indicated, that soil respiration of planted soil was higher than unplanted soil only at 5 °C (p < 0.05). The soil kind effect was compared also as Q10 coefficients for respiration rate, showing the relative change in microbial activity with increased temperature. However, there was no difference in the thermal sensitivity of soil respiration between planted and unplanted soils (p = 0.99), irrespective of the level of soil moisture. These findings were similar to the latest studies and confirmed, that in various models, being useful tools in studying of soil carbon cycling, there is no need to distinguish between planted and unplanted soil as different soil carbon pools.  相似文献   

17.
Oat straw, hay, and alfalfa litter, differing in microbial colonization and recalcitrance, were added to organic matter–free quartz sand (5 mg C [g material]–1) and incubated in the laboratory at 5°C, 10°C, 15°C, 20°C, and 25°C. Different incubation periods were chosen so that theoretically the same amounts of CO2 would be produced and the same amounts of O2 would be consumed for each litter type. It was investigated whether Q10 values (change in respiration rate between two temperatures) increase with decreasing temperature and how much these Q10 values and also the respiratory quotient (RQ: mol CO2/mol O2) depend on the litter type. The sums of CO2‐C evolved and O2 consumed, but also the contents of microbial biomass C and microbial biomass N showed a nearly 7‐fold increase in the order oat straw < hay < alfalfa litter. In contrast, the ratio of the fungal cell‐membrane component ergosterol to microbial biomass C was highest in the oat straw (4.1‰) and lowest in the alfalfa litter (0.2‰). This ratio reached a similar level between 5°C and 15°C (1.9‰), significantly higher (p = 0.01) than the level at 20°C (0.9‰). Respiration was similar between 20°C and 25°C, with a mean Q10 value of 1.9. The use of temperature rate‐modifying factors suggested by the carbon‐turnover model ROTHC revealed that the incubation period for similar respiration rates was underestimated at 5°C and overestimated at 25°C. The lignin‐poor and protein‐rich alfalfa litter showed the highest Q10 values of the three litter types in the medium temperature range of 10°C to 20°C. In contrast, the lignin‐rich and protein‐poor oat straw showed significantly highest Q10 values at 5°C and 25°C in comparison with the other two litter types. The RQ was significantly highest in the hay litter (1.05) and in comparison with alfalfa litter (0.97) and oat straw (0.92). Strong temperature‐dependent variations in Q10 values and respiratory quotients suggest interactions between litter quality, microbial colonization of litter, and temperature, which warrants further investigation.  相似文献   

18.
土壤微生物群落结构对凋落物组成变化的响应   总被引:9,自引:0,他引:9  
凋落物分解是陆地生态系统养分循环的关键过程,明确凋落物多样性如何影响土壤微生物群落构成和多度,继而潜在地改变凋落物分解的微生物学机制有助于认识生物多样性和森林生态系统功能的关系。通过小盆模拟试验,应用磷脂脂肪酸谱图的方法研究了我国南方红壤丘陵区典型物种马尾松和湿地松的凋落物分别与白栎和青冈的凋落物混合,与单一针叶凋落物分解时相比,针阔混合凋落物分解过程中土壤微生物群落结构的变化,结果显示:(1)针阔混合凋落物分解时土壤微生物群落磷脂脂肪酸(Phospholipidfatty acids,PLFA)总量低于单一针叶处理,细菌和放线菌的相对多度高于单一针叶处理,真菌则相反,群落真菌/细菌低于单一针叶处理,土壤微生物生物量的差异主要来自于真菌;(2)主成分分析表明:针阔混合凋落物分解与单一针叶凋落物分解的土壤微生物群落结构差异显著,两个时期(分解9个月和18个月)主成分一分别可以解释65.74%和89.63%的变异,第一主成分主要包括18∶2ω6,9、18∶1ω9c、17∶0和10Me18∶0等磷脂脂肪酸;(3)土壤微生物群落结构受凋落物初始C/N和木质素/N调控,土壤微生物群落细菌的相对多度与凋落物初始C/N和木质素/N显著负相关,真菌则与凋落物初始C/N和木质素/N显著正相关,群落真菌/细菌与凋落物初始C/N和木质素/N显著正相关。针阔凋落物混合分解通过改变凋落物C/N和木质素/N,提供了对分解者更为有利的微环境。  相似文献   

19.
We examined whether the decomposition rate of trembling aspen (Populus tremuloides) leaf litter differed when decomposed for one year in litter bags placed within adjacent monotypic stands of trembling aspen, Engelmann spruce, and lodgepole pine trees in four replicate blocks in the San Juan mountains of Colorado, and whether they were metabolized into different metabolic byproducts. Mass loss was 6-8% lower in pine stands than in spruce or aspen stands, but this trend was not significant (p = 0.27). Water-soluble leaf litter metabolites were characterized using ultra-performance liquid chromatography coupled to a quadrapole time-of-flight mass spectrometer (UPLC-MS). Aspen leaf litter metabolomes were highly chemically complex; thousands of unique molecular features were identified in each sample. Although many of the molecular features were common to litter decomposed in all three forest types, we identified a subset of features that differed in abundance among the forest types. Our results suggest that the decomposer communities associated with each forest type not only affected the overall decomposition rate, but also produced many compounds in the diverse suite of metabolic byproducts at different rates, which could be an important control on the long-term sequestration of C in soil organic matter.  相似文献   

20.
Recent studies have demonstrated that mass loss, nutrient dynamics, and decomposer associations in leaf litter from a given plant species can differ when leaves of that species decay alone compared to when they decay mixed with other species’ leaves. Results of litter-mix experiments have been variable, however, making predictions of decomposition in mixtures difficult. It is not known, for example, whether interactions among litter types in litter mixes are similar across sites, even for litter mixtures containing the same plant species. To address this issue, we used reciprocal transplants of litter in compartmentalized litterbags to study decomposition of equal-mass litter mixtures of sugar maple (Acer saccharum Marshall) and red oak (Quercus rubra L.) at four forest sites in northwestern Connecticut. These species differ significantly in litter quality. Red oak always has higher lignin concentrations than maple, and here C:N is lower in oak leaves and litter, a pattern often observed when oak coexists with maple. Overall, we observed less mass loss and lower N accumulation in sugar maple and red oak litter mixtures than we predicted from observed dynamics in single-species litterbags. Whether these differences were significant or not depended on the site of origin of the leaves (P<0.02), but there was no significant interaction between sites of decay and the differences in observed and predicted decomposition (P>0.2) . Mixing of leaf litter types could have significant impacts on nutrient cycling in forests, but the extent of the impacts can vary among sites and depends on the origin of mixed leaves even when the species composition of mixes is constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号