首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Physiological parameters were measured under natural light conditions and needle orientation from towers and walkways erected in the canopy of a loblolly pine (Pinus taeda L.) plantation. Four silvicultural treatments were randomly assigned to the twelve plots in the fall of 1988. Plots were thinned to a density of 731 trees per hectare or left unthinned, at a density of 2990 trees per hectare. The plots were left unfertilized or fertilized with 744 kg/ha of diammonium triple superphosphate was applied. During the fifth growing season (1993) following thinning and fertilization, needle level physiology was not different with respect to the thinning treatment for fertilized or unfertilized plots. In contrast, upper crown levels within the fertilized and unfertilized plots had significantly higher light levels and photosynthetic rates than lower crown foliage. Light levels were greater in the thinned, fertilized plots than in the unthinned, fertilized plots. In contrast, no effect of thinning on canopy light levels was found in the unfertilized plots. Within crown variation in photosynthesis was strongly dependent on canopy light levels. A strong interaction of canopy level with thinning was apparent for net photosynthesis. Loblolly pine, being a shade intolerant species, showed only small physiological differences between needles from different parts of the crown. Because of the variability found in this study, more extensive sampling is needed to correctly describe the physiology of a forest canopy with adequate precision.  相似文献   

2.
The impacts of thinning, fertilization and crown position on seasonal growth of current-year shoots and foliage were studied in a 13-year-old loblolly pine (Pinus taeda L.) plantation in the sixth post-treatment year (1994). Length of new flushes, and their needle length, leaf area, and oven-dry weight were measured in the upper and lower crown from March through November. Total shoot length was the cumulative length of all flushes on a given shoot and total leaf area per shoot was the sum of leaf areas of the flushes.

By the end of June, first-flush foliage reached 70% of the November needle length (14.3 cm) and 65% of the final leaf area (15.0 cm2). Cumulative shoot length of first- and second-flush shoots achieved 95% of the annual length (30.3 cm), whereas total leaf area per shoot was 55% of the final value (75.3 dm2). Fertilization consistently stimulated fascicle needle length, dry weight, and leaf area in the upper crown. Mean leaf area of upper-crown shoots was increased by 64% six years after fertilization. A significant thinning effect was found to decrease mean leaf area per shoot in the crown. For most of the growing season, the thinned-fertilized trees produced substantially more leaf area per shoot throughout the crown than the thinned-nonfertilized trees. These thinned-fertilized trees also had greater needle length and dry weight, longer first flush shoots, and more leaf area per flush than trees in the thinned-nonfertilized plots. Needle length and leaf area of first flush shoots between April and July were linearly related to previous-month canopy air temperature (Ta). Total shoot length strongly depended on vertical light gradient (PPFD) within the canopy, whereas shoot leaf area was a function of both PPFD and Ta. Thus, trees produced larger and heavier fascicles, more and longer flush shoots, and more leaf area per shoot in the upper crown than the lower crown. We conclude that thinning, fertilization, and crown position regulate annual leaf area production of current-year shoots largely by affecting the expansion of first flush shoots and their foliage during the first half of the growing season.  相似文献   


3.
Medhurst JL  Beadle CL 《Tree physiology》2001,21(12-13):989-999
The crown structure of Eucalyptus nitens (Deane & Maiden) Maiden 6 years after thinning, and the development of stand leaf area index both immediately and 6 years after thinning, were investigated. Thinning did not alter branch angle, branching density or the relationship between branch size and branch leaf area. However, larger branches were found in the lower crown of thinned trees and the increase in leaf area as a result of thinning occurred on the northern aspect of the crown. The vertical distribution of leaf area in unthinned trees was skewed toward the top of the crown and correlated with live crown ratio. The vertical distribution of leaf area in thinned trees tended to be less skewed and was unrelated to tree size or dominance. Leaf area index, as estimated from light interception measurements, increased at a constant rate soon after thinning regardless of residual stocking. In the longer term, residual stocking had a strong influence on leaf area increase per tree and was correlated with changes in crown length.  相似文献   

4.

Foliar responses of subalpine fir [Abies lasiocarpa (Hook.) Nutt.] to thinning were studied in a 35-yr-old mixed stand of paper birch (Betula papyrifera Marsh.) and conifers. The stand regenerated naturally after a wildfire with a canopy dominated by paper birch (average height 9.8 m) and an understorey dominated by subalpine fir (average height 1.6 m). The stand was thinned to four densities of birch: 0, 600 and 1200 stems ha-1 and control (unthinned at 2300-6400 stems ha-1) in the autumn of 1995. The understorey conifers, mainly subalpine fir, were thinned to 1200 stems ha-1. The study used a completely randomized split-plot design. Three sample trees were systematically selected from each treatment replicate and each tree stratum (upper, intermediate and lower understorey). One-year-old and older age class needles were collected from one south-facing branch within the fifth whorl from the tree top. Thinning of paper birch significantly (p <0.001) increased leaf area and dry weight per 100 needles for intermediate and short trees except in the 0 birch treatment. Understorey subalpine fir trees in 600 stems ha1 birch (T3) had the largest leaf area and leaf dry weight per 100 1-yr-old needles. Specific leaf area (SLA) decreased from unthinned (T1) to 0 birch (T4). Lower understorey trees had the largest SLA. One-year-old needles had significantly higher N, P and K concentrations in all the thinning treatments. These responses are consistent with the shade tolerance of subalpine fir. The results suggest that when managing a paper birch-conifers mixed-wood forest it may be of benefit to understorey conifers to leave a birch canopy as a nursing crop.  相似文献   

5.
To examine physiological responses to thinning, fertilization, and crown position, we measured net photosynthesis (P(n)), transpiration (E), vapor pressure difference (VPD), stomatal conductance (g(s)), and xylem pressure potential (Psi(1)) between 0930 and 1130 h under ambient conditions in the upper and lower crowns of a 13-year-old loblolly pine (Pinus taeda L.) plantation six years (1994) after the treatments were applied. Photosynthetic photon flux density (PPFD) and air temperature (T(a)) within the canopy were also recorded. Needle P(n) of thinned trees was significantly enhanced by 22-54% in the lower crown, because canopy PPFD increased by 28-52%. Lower crown foliage of thinned plots also had higher E and g(s) than foliage of unthinned plots, but thinning had no effect on needle Psi(1) and predawn xylem pressure potential (0430-0530 h; Psi(pd)). Tree water status did not limit P(n), E and g(s) during the late-morning measurements. Fertilization significantly decreased within-canopy PPFD and T(a). Needle Psi(1) was increased in fertilized stands, whereas P(n), E and g(s) were not significantly altered. Upper crown foliage had significantly greater PPFD, P(n), VPD, g(s), E, and more negative Psi(1) than lower crown foliage. In both crown positions, needle P(n) was closely related to g(s), PPFD and T(a) (R(2) = 0.77 for the upper crown and 0.82 for the lower crown). We conclude that (1) silvicultural manipulation causes microclimate changes within the crowns of large trees, and (2) needle physiology adjusts to the within-crown environmental conditions.  相似文献   

6.
Conifers and other trees are constantly adapting to changes in light conditions, water/nutrient supply and temperatures by physiological and morphological modifications of their foliage. However, the relationship between physiological processes and anatomical characteristics of foliage has been little explored in trees. In this study we evaluated needle structure and function in Norway spruce families exposed to different light conditions and transpiration regimes. We compared needle characteristics of sun-exposed and shaded current-year needles in a control plot and a thinned plot with 50% reduction in stand density. Whole-tree transpiration rates remained similar across plots, but increased transpiration of lower branches after thinning implies that sun-exposed needles in the thinned plot were subjected to higher water stress than sun-exposed needles in the control plot. In general, morphological and anatomical needle parameters increased with increasing tree height and light intensity. Needle width, needle cross-section area, needle stele area and needle flatness (the ratio of needle thickness to needle width) differed most between the upper and lower canopy. The parameters that were most sensitive to the altered needle water status of the upper canopy after thinning were needle thickness, needle flatness and percentage of stele area in needle area. These results show that studies comparing needle structure or function between tree species should consider not only tree height and light gradients, but also needle water status. Unaccounted for differences in needle water status may have contributed to the variable relationship between needle structure and irradiance that has been observed among conifers.  相似文献   

7.
The stand density of a forest affects the vertical distribution of foliage. Understanding the dynamics of this response is important for the study of crown structure and function, carbon-budget estimation, and forest management. We investigated the effect of tree density on the vertical distribution of foliage, branch, and stem growth, and ratio of biomass increment in aboveground tissues; by monitoring all first-order branches of five trees each from thinned and unthinned control stands of 10-year-old Chamaecyparis obtusa for four consecutive years. In the control stand, the foliage crown shifted upward with height growth but the foliage quantity of the whole crown did not increase. In addition, the vertical distribution of leaf mass shifted from lower-crown skewed to upper-crown skewed. In the thinned stand in contrast, the foliage quantity of individual crowns increased two-fold within 4 years, while the vertical distribution of leaf mass remained lower-crown skewed. The two stands had similar production rates, numbers of first-order branches per unit of tree height, and total lengths of first-order branches. However, the mortality rate of first-order branches and self-pruning within a first-order branch were significantly higher in the control stand than in the thinned stand, which resulted in a higher ratio of biomass increment in branch. Thinning induced a higher ratio of biomass increment in foliage and lower in branch. The increased foliage quantity and variation in ratio of biomass increment after thinning stimulated stem growth of residual trees. These results provide information that will be useful when considering thinning regimes and stand management.  相似文献   

8.
Several heavy wet snowfalls occurred during 2007-2009 across a broad-scale thinning and fertilization experiment to bring overstocked juvenile lodgepole pine (Pinus contorta var. latifolia) in the foothills of Alberta, Canada into an intensive management regime. We examined the bending and breakage of trees in relation to thinning and fertilization and used a multimodel information-theoretic approach to model stand and tree level predictors of snow damage. Fertilized stands suffered the greatest amount of snow damage, and this was most noteworthy when stands were also thinned; here 22% (17% broken stems) of trees were damaged compared to 8% (4% broken stems) in the thinned and unfertilized stands. At the stand level, needle weight and crown cover were reliable predictors of snow damage. At the tree level, separate models were developed for each combination of thinning and fertilization. All models used total tree volume; usually the smaller trees in the stands were more susceptible to damage but in the thinned and fertilized stands larger but slender trees with large asymmetrical crowns tended to be damaged. Also, trees with lower total stem volume were more susceptible to damage. Only in the thinned and fertilized stands were variables related to crown shape and asymmetry important predictors of snow damage. We conclude that snow damage is an important agent for self-thinning in unthinned stands and fertilization tends to exacerbate damage because of increase in foliage size. In areas with regular occurrence of heavy snow, we do not recommend fertilization at the same time as thinning, as the larger and more economically important trees in the stand are at risk.  相似文献   

9.
We tested the effects of thinning on allometry and needle-age distribution in natural stands of Abies sachalinensis Masters by comparing a thinned stand to an unthinned, control stand. Specifically, we attempted to clarify how allometry was altered after a thinning. We assumed that the needle-age distribution of trees in the thinned stand would show a younger composition than in the control stand, given the effect of improved light conditions on needle dynamics following a thinning. These investigations were conducted in dense Abies stands located in central Hokkaido, northern Japan, 19 years post-thinning. In the thinned stand, the ratio of individual needle mass to stem mass increased significantly, as compared to the control. A difference in the H–DBH relationship between the stands was probably related to this tendency. Mean needle age of trees differed significantly between the two stands, and the thinned stand showed a younger needle age than the control. Within each stand, dominant trees showed older mean needle age than codominant or suppressed trees. These tendencies may have been caused by differential needle dynamics affected by light conditions in the stands, and by different crown positions among the trees within a stand. In summary, trees in the thinned stand showed increased growth rates after thinning, which were caused by increased needle mass, younger composition of needles, and improved light conditions.  相似文献   

10.
This study considered the effects of thinning on the development of compression wood in stems of 35-year-old stand of Corsican pine (Pinus nigra L.). Part of the stand had been thinned at 5-yearly intervals and part left unthinned. Twenty trees each from the thinned and unthinned stands were randomly selected and felled. Measurements were made on tree height, stem diameter, stem slenderness and canopy depth. Wood samples were removed from the central part of the main log and cross-sectional measurements made on ring width, basic density and compression wood content. Cross-sectional area of compression wood was found to be three time higher in stems from the unthinned trees in comparison with those from the thinned trees. No significant differences in mean radial ring width or basic density were found between treatments. Correlations indicated that, with increasing in stem diameter, compression wood content increased in the unthinned trees, while a decline in compression was observed in the thinned trees. Tree height was also positively correlated with compression wood content in unthinned trees, while no equivalent relationship was observed in thinned trees. Observations from this study, while not conclusive, suggest that phototropic stimulus may be producing stem inclinations in the unthinned stand as trees compete for space in the canopy, whereas crown competition has been largely eliminated in the thinned stand; and that this is responsible for compression wood levels recorded in this study.  相似文献   

11.
In young sugi (Cryptomeria japonica D. Don) stands, crown shape (crown length/crown diameter) ratio, average branch inclination, and spatial density of foliage in the crown increased with stand age. Within crowns, foliage distribution increased from the apex downward and, until crown closure, reached a maximum near the crown base. After crown closure, the maximum occurred near the middle of the crown. In each stand, foliage distribution in the canopy showed almost the same vertical change over time as it did in individual crowns. The vertical distribution of foliage in the canopy moved upward with stand age, accompanied by an increase in canopy depth and leaf mass. The shape of the vertical distribution was almost symmetrical between the upper and lower halves in the closed stands, although slightly skewed downward. The logarithm of average spatial density decreased linearly as cumulative leaf mass increased with distance from the top of the canopy. The total cross-sectional area of the crowns exceeded the stand area from the middle of the canopy downward in the closed stands because of crown overlap. However, partly because of changes in crown morphology and structure, the increase in leaf mass with stand age did not always cause more severe crown competition.  相似文献   

12.
Webb WL  Ungs MJ 《Tree physiology》1993,13(2):203-212
The distribution of needles and branches in the crown of a 14-m tall Douglas-fir was investigated for the purpose of developing a three-dimensional structure for use with radiation transfer models. We found a linear relationship between the basal area of main branches originating at the bole and the total one-sided planimetric surface area of the foliage attached to each branch. A similar linear relationship was found between the branch basal area and the mass of stem material on the branch. Total silhouette area (needles plus branch material) did not vary significantly horizontally along the branch length, but stem surface area declined linearly from near the bole to the branch tip. Needle surface silhouette area and leaf area index increased along the main branch from near the bole to the branch tip. Silhouette leaf area (STAR) did not vary along the main branch. The needle area density (NAD) (m(2) m(-3)) was calculated for each of the lower 11 whorls; the vertical distribution of NAD increased from the base of the bole to the top of the crown.  相似文献   

13.
We studied the effects of two types of selective thinning on beech stands formed by a shelterwood cut in 1910 — with lower number of crop trees and higher thinning intensity (T1) and higher number of crop trees with lower thinning intensity (T2). The stands were thinned in 1980, 1991 and 2001. Despite a lower stand density after thinning, the annual basal area increments of thinned stands in both thinning periods (1980–1991 and 1991–2002) were around 20% higher compared to those of the control (unthinned) stands. The mean annual basal area increment of dominant trees was 30–56% larger in the thinned plots compared to the control plots. Of 176 initial crop trees in the T1, 72% were chosen again during the last thinning. In the T2, 258 crop trees were chosen in the first thinning, and only 62% of these trees were chosen again during the last thinning. Only crown suppression and diameter classes of crop trees significantly influenced their basal area increment when diameter classes, crown size, crown suppression, and social status were tested. In the thinned stands, the dominant trees are more uniformly distributed if compared to the dominant trees in the control plots. Finally, the herbaceous cover and the species diversity were higher in the thinned plots.  相似文献   

14.
《Southern Forests》2013,75(2):93-100
In eucalypt plantations in subtropical Australia, Eucalyptus dunnii exhibits greater diameter increment after thinning than more shade-tolerant Corymbia citriodora. To elucidate the mechanism underlying this difference, we investigated relationships between tree leaf area and sapwood area following thinning in 11-year-old E. dunnii and C. citriodora plantations. There was no significant difference in specific leaf area (SLA) between thinned and unthinned stands in E. dunnii and C. citriodora, whereas crown zone significantly affected SLA in the two eucalypts. At the whole-tree level non-linear leaf area (Al)–sapwood area (As) relationships were measured in both eucalypts by thinning treatment. A significant increase in Al/As ratio was only observed at the upper crown in thinned E. dunnii. The present results suggested the plastic nature of response of leaf characteristics in both eucalypts grown in different light environments and the species-specific pattern of crown-zone leaf responses to thinning in the two species, i.e. the top of the canopy appears to be driving greater growth response to thinning in the less shade tolerant E. dunnii compared with the more shade-tolerant C. citriodora. It is concluded that different thinning regimes should be applied in shade-tolerant and shade-intolerant eucalypt forests.  相似文献   

15.
To quantify the effects of crown thinning on the water balance and growth of the stand and to analyze the ecophysiological modifications induced by canopy opening on individual tree water relations, we conducted a thinning experiment in a 43-year-old Quercus petraea stand by removing trees from the upper canopy level. Soil water content, rainfall interception, sap flow, leaf water potential and stomatal conductance were monitored for two seasons following thinning. Seasonal time courses of leaf area index (LAI) and girth increment were also measured. Predawn leaf water potential was significantly higher in trees in the thinned stand than in the closed stand, as a consequence of higher relative extractable water in the soil. The improvement in water availability in the thinned stand resulted from decreases in both interception and transpiration. From Year 1 to Year 2, an increase in transpiration was observed in the thinned stand without any modification in LAI, whereas changes in transpiration in the closed stand were accompanied by variations in LAI. The different behaviors of the closed and open canopies were interpreted in terms of coupling to the atmosphere. Thinning increased inter-tree variability in sap flow density, which was closely related to a leaf area competition index. Stomatal conductance varied little inside the crown and differences in stomatal conductance between the treatments appeared only during a water shortage and affected mainly the closed stand. Thinning enhanced tree growth as a result of a longer growing period due to the absence of summer drought and higher rates of growth. Suppressed and dominant trees benefited more from thinning than trees in the codominant classes.  相似文献   

16.
We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 micromol mol-1) carbon dioxide concentration ([CO2]) for 28 months. Branch growth and morphology, foliar chemistry and gas exchange characteristics were measured periodically in the upper, middle and lower crown during the 2 years of exposure. Fertilization and elevated [CO2] increased branch leaf area by 38 and 13%, respectively, and the combined effects were additive. Fertilization and elevated [CO2] differentially altered needle lengths, number of fascicles and flush length such that flush density (leaf area/flush length) increased with improved nutrition but decreased in response to elevated [CO2]. These results suggest that changes in nitrogen availability and atmospheric [CO2] may alter canopy structure, resulting in greater foliage retention and deeper crowns in loblolly pine forests. Fertilization increased foliar nitrogen concentration (N(M)), but had no consistent effect on foliar leaf mass (W(A)) or light-saturated net photosynthesis (A(sat)). However, the correlation between A(sat) and leaf nitrogen per unit area (N(A) = W(A)N(M)) ranged from strong to weak depending on the time of year, possibly reflecting seasonal shifts in the form and pools of leaf nitrogen. Elevated [CO2] had no effect on W(A), N(M) or N(A), but increased A(sat) on average by 82%. Elevated [CO2] also increased photosynthetic quantum efficiency and lowered the light compensation point, but had no effect on the photosynthetic response to intercellular [CO2], hence there was no acclimation to elevated [CO2]. Daily photosynthetic photon flux density at the upper, middle and lower canopy position was 60, 54 and 33%, respectively, of full sun incident to the top of the canopy. Despite the relatively high light penetration, W(A), N(A), A(sat) and R(d) decreased with crown depth. Although growth enhancement in response to elevated [CO2] was dependent on fertilization, [CO2] by fertilization interactions and treatment by canopy position interactions generally had little effect on the physiological parameters measured.  相似文献   

17.
Ponderosa pine (Pinus ponderosa Dougl. ex P. Laws) forest stand density has increased significantly over the last century (Covington et al. 1997). To understand the effect of increased intraspecific competition, tree size (height and diameter at breast height (DBH)) and leaf area to sapwood area ratio (A(L):A(S)) on water relations, we compared hydraulic conductance from soil to leaf (kl) and transpiration per unit leaf area (Q(L)) of ponderosa pine trees in an unthinned plot to trees in a thinned plot in the first and second years after thinning in a dense Arizona forest. We calculated kl and Q(L) based on whole- tree sap flux measured with heat dissipation sensors. Thinning increased tree predawn water potential within two weeks of treatment. Effects of thinning on kl and Q(L) depended on DBH, A(L):A(S) and drought severity. During severe drought in the first growing season after thinning, kl and Q(L) of trees with low A(L):A(S) (160-250 mm DBH; 9-11 m height) were lower in the thinned plot than the unthinned plot, suggesting a reduction in stomatal conductance (g(s)) or reduced sapwood specific conductivity (K(S)), or both, in response to thinning. In contrast kl and Q(L) were similar in the thinned plot and unthinned plot for trees with high A(L):A(S) (260-360 mm DBH; 13-16 m height). During non-drought periods, kl and Q(L) were greater in the thinned plot than in the unthinned plot for all but the largest trees. Contrary to previous studies of ponderosa pine, A(L):A(S) was positively correlated with tree height and DBH. Furthermore, kl and Q(L) showed a weak negative correlation with tree height and a strong negative correlation with A(S) and thus A(L):A(S) in both the thinned and unthinned plots, suggesting that trees with high A(L):A(S) had lower g(s). Our results highlight the important influence of stand competitive environment on tree-size-related variation in A(L):A(S) and the roles of A(L):A(S) and drought on whole-tree water relations in response to thinning.  相似文献   

18.
Modification of foliage exposition and morphology by seasonal average integrated quantum flux density (Qint) was investigated in the canopies of the shade-tolerant late-successional deciduous tree species Fagus orientalis Lipsky and Fagus sylvatica L. Because the leaves were not entirely flat anywhere in the canopy, the leaf lamina was considered to be three-dimensional and characterized by the cross-sectional angle between the leaf halves (theta). Both branch and lamina inclination angles with respect to the horizontal scaled positively with irradiance in the canopy, allowing light to penetrate to deeper canopy horizons. Lamina cross-sectional angle varied from 170 degrees in the most shaded leaves to 90-100 degrees in leaves in the top of the canopy. Thus, the degree of leaf rolling increased with increasing Qint, further reducing the light-interception efficiency of the upper-canopy leaves. Simulations of the dependence of foliage light-interception efficiency on theta demonstrated that decreases in theta primarily reduce the interception efficiency of direct irradiance, but that diffuse irradiance was equally efficiently intercepted over the entire range of theta values in our study. Despite strong alteration in foliage light-harvesting capacity within the canopy and greater transmittance of the upper crown compared with the lower canopy, mean incident irradiances varied more than 20-fold within the canopy, indicating inherent limitations in light partitioning within the canopy. This extensive canopy light gradient was paralleled by plastic changes in foliar structure and chemistry. Leaf dry mass per unit area varied 3-4-fold between the canopy top and bottom, providing an important means of scaling foliage nitrogen contents and photosynthetic capacity per unit area with Qint. Although leaf structure versus light relationships were qualitatively similar in all cases, there were important tree-to-tree and species-to-species variations, as well as evidence of differences in investments in structural compounds within the leaf lamina, possibly in response to contrasting leaf water availability in different trees.  相似文献   

19.
FORD  E. D. 《Forestry》1982,55(1):1-17
  1. The net annual above ground dry matter production of a 17 yearplantation of Sitka spruce in Scotland was 26.7 t ha–1y–1.Total annual production which includes estimates for roots,was 35 t ha–1y–1, one of the highest values reportedfor coniferous forest in the temperate zone.
  2. When comparedwith other forests with high rates of net productionthis standhad the highest foliage and branch biomass and lowestrate ofproduction per unit of foliage.
  3. Gross foliage increment tothe canopy declined following thetime of maximum stand basalarea increment, which coincidedwith the onset of competitionbetween individual trees. Thesechanges in canopy and standstructure are discussed in relationto the decline in net productionwhich has been observed inpolestage conifer plantations.
  4. Foliageand branch production were greatest in the top 6 whorlsof thecanopy; over the period studied new foliage became concentratednearer to the top of the trees. Significant branch wood incrementceased below the height where needle death balances needle production.
  5. New needles produced at increasing depth in a canopy weighedless per unit needle area. Generally needles lost weight asthey aged. All needles survived for three years, the greatestmortality was of 5-year-old needles but some survived for 8years.
  6. Needle area index was 10–11 at age 16, 7–8at age18. Branch area index was 3.6 and the ratio of main stembarksurface area to ground area was 0.4 at age 16.
  相似文献   

20.
We compared the range and variation in shoot silhouette area to projected leaf area ratio (SPAR) in fertilized and unfertilized (control) Norway spruce (Picea abies (L.) Karst.) trees. We measured SPAR for several view directions of 169 shoots at different depths in the crown of fertilized and control trees. There was an increase in SPAR with depth in the crown in both control and fertilized trees. In the fertilized trees, however, mean SPAR was larger overall, the increase with depth in the crown was steeper, and there was a larger variation in SPAR with inclination and rotation angle of the shoot (relative to the view direction). In particular, shoots in the lower crown of fertilized trees were rotationally asymmetrical ("flat") and had high values of the maximum ratio of shoot silhouette area to projected leaf area (SPAR(max)). Differences in SPAR between fertilized and control trees were explained by changes in shoot structure in response to fertilization and shading. Shoots of fertilized trees were larger and had more needle area than shoots of control trees. However, the ratio of needle area to shoot size was smaller in fertilized trees than in control trees, implying less within-shoot shading and, consequently, a larger SPAR. Also, the increase in SPAR with increased shading (depth in the crown) could be explained by a decrease in the ratio of needle area to shoot size. In addition, because fertilized trees had more needle area than control trees, the effect of shading at a given depth in the crown was more pronounced in fertilized trees than in control trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号