首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease is characterized by widespread deposition of amyloid in the central nervous system. The 4-kilodalton amyloid beta protein is derived from a larger amyloid precursor protein and forms amyloid deposits in the brain by an unknown pathological mechanism. Except for aged nonhuman primates, there is no animal model for Alzheimer's disease. Transgenic mice expressing amyloid beta protein in the brain could provide such a model. To investigate this possibility, the 4-kilodalton human amyloid beta protein was expressed under the control of the promoter of the human amyloid precursor protein in two lines of transgenic mice. Amyloid beta protein accumulated in the dendrites of some but not all hippocampal neurons in 1-year-old transgenic mice. Aggregates of the amyloid beta protein formed amyloid-like fibrils that are similar in appearance to those in the brains of patients with Alzheimer's disease.  相似文献   

2.
In situ hybridization was used to assess total amyloid protein precursor (APP) messenger RNA and the subset of APP mRNA containing the Kunitz protease inhibitor (KPI) insert in 11 Alzheimer's disease (AD) and 7 control brains. In AD, a significant twofold increase was observed in total APP mRNA in nucleus basalis and locus ceruleus neurons but not in hippocampal subicular neurons, neurons of the basis pontis, or occipital cortical neurons. The increase in total APP mRNA in locus ceruleus and nucleus basalis neurons was due exclusively to an increase in APP mRNA lacking the KPI domain. These findings suggest that increased production of APP lacking the KPI domain in nucleus basalis and locus ceruleus neurons may play an important role in the deposition of cerebral amyloid that occurs in AD.  相似文献   

3.
The amyloid beta protein is deposited in the brains of patients with Alzheimer's disease but its pathogenic role is unknown. In culture, the amyloid beta protein was neurotrophic to undifferentiated hippocampal neurons at low concentrations and neurotoxic to mature neurons at higher concentrations. In differentiated neurons, amyloid beta protein caused dendritic and axonal retraction followed by neuronal death. A portion of the amyloid beta protein (amino acids 25 to 35) mediated both the trophic and toxic effects and was homologous to the tachykinin neuropeptide family. The effects of the amyloid beta protein were mimicked by tachykinin antagonists and completely reversed by specific tachykinin agonists. Thus, the amyloid beta protein could function as a neurotrophic factor for differentiating neurons, but at high concentrations in mature neurons, as in Alzheimer's disease, could cause neuronal degeneration.  相似文献   

4.
5.
With the recently cloned complementary DNA probe, lambda Am4 for the chromosome 21 gene encoding brain amyloid polypeptide (beta amyloid protein) of Alzheimer's disease, leukocyte DNA from three patients with sporadic Alzheimer's disease and two patients with karyotypically normal Down syndrome was found to contain three copies of this gene. Because a small region of chromosome 21 containing the ets-2 gene is duplicated in patients with Alzheimer's disease, as well as in karyotypically normal Down syndrome, duplication of a subsection of the critical segment of chromosome 21 that is duplicated in Down syndrome may be the genetic defect in Alzheimer's disease.  相似文献   

6.
Four clones were isolated from an adult human brain complementary DNA library with an oligonucleotide probe corresponding to the first 20 amino acids of the beta peptide of brain amyloid from Alzheimer's disease. The open reading frame of the sequenced clone coded for 97 amino acids, including the known amino acid sequence of this polypeptide. The 3.5-kilobase messenger RNA was detected in mammalian brains and human thymus. The gene is highly conserved in evolution and has been mapped to human chromosome 21.  相似文献   

7.
Amyloid beta protein enhances the survival of hippocampal neurons in vitro   总被引:24,自引:0,他引:24  
The beta-amyloid protein is progressively deposited in Alzheimer's disease as vascular amyloid and as the amyloid cores of neuritic plaques. Contrary to its metabolically inert appearance, this peptide may have biological activity. To evaluate this possibility, a peptide ligand homologous to the first 28 residues of the beta-amyloid protein (beta 1-28) was tested in cultures of hippocampal pyramidal neurons for neurotrophic or neurotoxic effects. The beta 1-28 appeared to have neurotrophic activity because it enhanced neuronal survival under the culture conditions examined. This finding may help elucidate the sequence of events leading to plaque formation and neuronal damage in Alzheimer's disease.  相似文献   

8.
Complementary DNAs (cDNAs) encoding portions of the amyloid beta protein were used to investigate possible amyloid gene duplication in sporadic Alzheimer's disease. A strategy employing two Eco RI restriction fragment length polymorphisms (RFLPs) detected by the amyloid cDNAs was used. RFLPs allow the detection of a 2:1 gene dosage in the DNA of any individual who is heterozygous for a particular RFLP. The amyloid gene regions homologous to the cDNAs used were not duplicated in the DNA from brains of individuals with sporadic Alzheimer's disease. Similar results were also obtained with a strategy employing a test for 3:2 gene dosage.  相似文献   

9.
The amyloid beta peptide (A beta P) is a small fragment of the much larger, broadly distributed amyloid precursor protein (APP). Abundant A beta P deposition in the brains of patients with Alzheimer's disease suggests that altered APP processing may represent a key pathogenic event. Direct protein structural analyses showed that constitutive processing in human embryonic kidney 293 cells cleaves APP in the interior of the A beta P, thus preventing A beta P deposition. A deficiency of this processing event may ultimately prove to be the etiological event in Alzheimer's disease that gives rise to senile plaque formation.  相似文献   

10.
11.
Human hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D), an autosomal dominant form of cerebral amyloid angiopathy (CAA), is characterized by extensive amyloid deposition in the small leptomeningeal arteries and cortical arterioles, which lead to an early death of those afflicted in their fifth or sixth decade. Immunohistochemical and biochemical studies have indicated that the amyloid subunit in HCHWA-D is antigenically related to and homologous in sequence with the amyloid beta protein isolated from brains of patients with Alzheimer's disease and Down syndrome. The amyloid beta protein is encoded by the amyloid beta protein precursor (APP) gene located on chromosome 21. Restriction fragment length polymorphisms detected by the APP gene were used to examine whether this gene is a candidate for the genetic defect in HCHWA-D. The data indicate that the APP gene is tightly linked to HCHWA-D and therefore, in contrast to familial Alzheimer's disease, cannot be excluded as the site of mutation in HCHWA-D.  相似文献   

12.
Gene dosage of the amyloid beta precursor protein in Alzheimer's disease   总被引:16,自引:0,他引:16  
The progressive deposition in the human brain of amyloid filaments composed of the amyloid beta protein is a principal feature of Alzheimer's disease (AD). Densitometric analysis of Southern blots probed with a complementary DNA for the amyloid protein has been carried out to determine the relative dosage of this gene in genomic DNA of 14 patients with AD, 12 aged normal subjects, and 10 patients with trisomy 21 (Down syndrome). Whereas patients in the last group showed the expected 1.5-fold increase in dosage of this gene, none of the patients with AD had a gene dosage higher than that of the normal controls. These results do not support the hypothesis that the genetic defect in AD involves duplication of a segment of chromosome 21 containing the amyloid gene. Alternative mechanisms for the brain-specific increase in amyloid protein deposition in AD should be considered.  相似文献   

13.
Viruses frequently persist in neurons, suggesting that these cells can evade immune surveillance. In a mouse model, 5 x 10(6) cytotoxic T lymphocytes (CTLs), specific for lymphocytic choriomeningitis virus (LCMV), did not lyse infected neurons or cause immunopathologic injury. In contrast, intracerebral injection of less than 10(3) CTL caused disease and death when viral antigens were expressed on leptomeningeal and choroid plexus cells of the nervous system. The neuronal cell line OBL21 expresses little or no major histocompatibility (MHC) class I surface glycoproteins and when infected with LCMV, resisted lysis by virus-specific CTLs. Expression of MHC heavy chain messenger RNA was limited, but beta 2-microglobulin messenger RNA and protein was made normally. OBL21 cells were made sensitive to CTL lysis by transfection with a fusion gene encoding another MHC class I molecule. Hence, neuronal cells probably evade immune surveillance by failing to express MHC class I molecules.  相似文献   

14.
A neuronal antigen in the brains of Alzheimer patients   总被引:44,自引:0,他引:44  
A monoclonal antibody was prepared against pooled homogenates of brain tissue from patients with Alzheimer's disease. This antibody recognizes an antigen present in much higher concentration in certain brain regions of Alzheimer patients than in normal brain. The antigen appears to be a protein present in neurons involved in the formation of neuritic plaques and neurofibrillary tangles, and in some morphologically normal neurons in sections from Alzheimer brains. Partial purification and Western blot analysis revealed the antigen from Alzheimer brain to be a single protein with a molecular weight of 68,000. Application of the same purification procedure to normal brain tissue results in the detection of small amounts of a protein of lower molecular weight.  相似文献   

15.
The formation of clusters of altered axons and dendrites surrounding extracellular deposits of amyloid filaments (neuritic plaques) is a major feature of the human brain in both aging and Alzheimer's disease. A panel of antibodies against amyloid filaments and their constituent proteins from humans with Alzheimer's disease cross-reacted with neuritic plaque and cerebrovascular amyloid deposits in five other species of aged mammals, including monkey, orangutan, polar bear, and dog. Antibodies to a 28-amino acid peptide representing the partial protein sequence of the human amyloid filaments recognized the cortical and microvascular amyloid of all of the aged mammals examined. Plaque amyloid, plaque neurites, and neuronal cell bodies in the aged animals showed no reaction with antibodies to human paired helical filaments. Thus, with age, the amyloid proteins associated with progressive cortical degeneration in Alzheimer's disease are also deposited in the brains of other mammals. Aged primates can provide biochemically relevant models for principal features of Alzheimer's disease: cerebrovascular amyloidosis and neuritic plaque formation.  相似文献   

16.
The amyloid beta protein peptide is a major constituent of amyloid plaque cores in Alzheimer's disease and is apparently derived from a higher molecular weight precursor. It is now shown that the core protein of a heparan sulfate proteoglycan secreted from a nerve cell line (PC12) has an amino acid sequence and a size very similar to those of the amyloid beta protein precursor and that these molecules are antigenically related. This amyloid beta protein precursor-related protein is not found in the conditioned medium of a variant cell line (F3 PC12) that does not secrete heparan sulfate proteoglycan. The synaptic localization and metabolism of this class of proteoglycans are consistent with its potential involvement in central nervous system dysfunction.  相似文献   

17.
18.
The secondary structures in solution of the synthetic, naturally occurring, amyloid beta peptides, residues 1 to 42 [beta (1-42)] and beta (1-39), and related fragments, beta (1-28) and beta (29-42), have been studied by circular dichroism and two-dimensional nuclear magnetic resonance spectroscopy. In patients with Alzheimer's disease, extracellular amyloid plaque core is primarily composed of beta (1-42), whereas cerebrovascular amyloid contains the more soluble beta (1-39). In aqueous trifluoroethanol solution, the beta (1-28), beta (1-39), and beta (1-42) peptides adopt monomeric alpha-helical structures at both low and high pH, whereas at intermediate pH (4 to 7) an oligomeric beta structure (the probable structure in plaques) predominates. Thus, beta peptide is not by itself an insoluble protein (as originally thought), and localized or normal age-related alterations of pH may be necessary for the self-assembly and deposition of beta peptide. The hydrophobic carboxyl-terminal segment, beta(29-42), exists exclusively as an oligomeric beta sheet in solution, regardless of differences in solvent, pH, or temperature, suggesting that this segment directs the folding of the complete beta (1-42) peptide to produce the beta-pleated sheet found in amyloid plaques.  相似文献   

19.
An oocyte expression system was used to test the relation between a complementary DNA (cDNA) clone encoding the liver gap junction protein and cell-cell channels. Total liver polyadenylated messenger RNA injected into oocytes induced cell-cell channels between paired oocytes. This induction was blocked by simultaneous injection of antisense RNA transcribed from the gap junction cDNA. Messenger RNA selected by hybridization to the cDNA clone and translated in oocyte pairs yielded a higher junctional conductance than unselected liver messenger RNA. Cell-cell channels between oocytes were also formed when the cloned cDNA was expressed under the control of a heat-shock promoter. A concentration-dependent induction of channels was observed in response to injection with in vitro transcribed gap junction messenger RNA. Thus, the liver gap junction cDNA encodes a protein that is essential for the formation of functional cell-cell channels.  相似文献   

20.
Alzheimer's disease is a form of localized amyloidosis characterized by cerebral cortical amyloid plaques, neurofibrillary tangles, and amyloid deposits within the walls of leptomeningeal vessels. Although most cases of Alzheimer's disease are sporadic, kindreds with autosomal-dominant inheritance of the syndrome suggest that a single mutation may be important in pathogenesis. Direct sequencing of DNA from a family with autopsy-proven Alzheimer's disease revealed a single amino acid substitution (Phe for Val) in the transmembrane domain of the amyloid precursor protein. This mutation correlates with the presence of Alzheimer's disease in all patients in this study, and may be the inherited factor causing both amyloid fibril formation and dementia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号