首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Three natural populations of pitayo (Stenocereus queretaroensis (Weber) Buxbaum), a columnar arborescent cactus, were studied in their subtropical environments in western Mexico. All of the sites were characterized by shallow, nutrient-poor soils. Percentage of colonization by arbuscular mycorrhizae (AM) fungi, stem growth, fruit mass, and percentage germination were greater in S. queretaroensis at Autlan, Jalisco (AJ) than at Zacoalco de Torres, Jalisco (ZTJ) or Santa Rosa, Zacatecas (SRZ). The onset of root colonization by arbuscular mycorrhizae during the middle of the summer wet period preceded increases in stem extension rate and stem phosphorus concentration. Based on previous studies of effects of environmental factors on photosynthesis, climatic conditions were more favorable for photosynthesis at AJ than at SRZ and ZTJ, as indicated by the amount of summer rainfall, the amount of light, and the moderate air temperatures that prevailed during the fall and winter seasons. There was a significant positive correlation between stem growth and percentage of total root length colonized by arbuscules of AM fungi for S. queretaroensis at SRZ and AJ, but not at ZTJ. A negative significant correlation was observed between stem growth and maximal and minimal air temperatures at the three study sites. Stem growth was positively related to rainfall only at SRZ, and light was statistically related to stem growth only at ZTJ. Among sites, S. queretaroensis at AJ had the highest carbon gain and greatest AM colonization, creating physiological conditions that led to the highest stem growth, fruit mass and percentage of seed germination.  相似文献   

2.
Deans JD  Ford ED 《Tree physiology》1986,1(3):241-251
Seasonal patterns of radial root growth within 1 m of tree stems were examined in Scottish plantations of Sitka spruce trees aged 9, 15 and 20 years. Results were compared with parallel measurements of shoot extension, radial growth of stems and amounts of starch stored in tissues external to root wood. Youngest trees produced the largest annual increments in root cross-sectional area and numbers of new cells along radial files of tracheids. Irrespective of tree age, new cells were present in roots before bud burst and the onset of radial growth occurred progressively later with increasing distances from the stems. At ages 15 and 20, both stem cross-sectional area and radial root growth up to 0.5 m from the stem base had a minor peak of activity preceding and a major peak following shoot elongation. Further than 0.5 m from the stem, root growth was frequently restricted to the period following shoot extension. Starch storage in the roots reached a maximum in April and May, which was greatest for 9-year-old trees and least for 20-year-old trees. At all ages, radial root growth in early spring occurred concurrently with increased starch storage. Later in the season starch reserves declined rapidly during the period of shoot elongation and root growth occurred whilst reserves were low. At all ages for positions on the root at the base of the stem and 0.25 m from it, starch depletion, at its maximum rate during June, accounted for less than the measured increment of root wood growth at that point. This indicates a substantial translocation of substrates to these zones during growth. At the same time, the reduction in starch concentrations at more distal points from the stem far exceeded that required for local root thickening.  相似文献   

3.
We studied the influence of temperature and near- and sub- optimal mineral nutrition of black spruce seedlings (Picea mariana [Mill.] B.S.P.) during their second growing period on bud set, bud development, growth, mineral content and cold tolerance. Bud break and growth after bud break were also studied. Seedlings were grown for 106 d in growth chambers under three temperature regimes in combination with three concentrations of a fertilizer. They were then cold hardened for 56 d and dehardened for 66 d.Under these near- and sub-optimal N levels, bud formation occurred during the growing season. Bud formation was accelerated with decreasing fertilization, but was not affected by temperature treatments. Needles from seedlings with 0.64% N (dry mass basis) before hardening did not harden. Those with 0.87% N showed a lesser degree of hardiness than those with 1.28% N. Stem diameter increased at the beginning of the hardening period. During this acclimation period, shoot dry mass decreased with time at a constant rate and at the same rate over time for all treatments whereas root dry mass was more variable. Total number of needle primordia was low and no difference was observed among growing conditions. Bud break was similar in all treatments. Following bud break, shoot height and stem diameter increases were small but their magnitude varied with the nutritional regimes applied during the previous growing period. During hardening, nitrogen concentration of shoot tissues first increased and then decreased; phosphorus concentration first increased and then remained stable; potassium concentration remained stable. Concentration of these three elements generally decreased in the roots during this hardening.  相似文献   

4.
The effect of root and shoot pruning on early growth of hybrid poplars   总被引:1,自引:0,他引:1  
Planting stock type and quality can have an important impact on early growth rates of plantations. The goal of this study was to evaluate early growth and root/shoot development of different planting materials in typical heavy clay soils of northwestern Quebec. Using one-year-old bareroot hybrid poplar dormant stock, four planting materials were compared: (1) regular bareroot stock, (2) rootstock (stem pruned before planting), (3) whips (roots pruned before planting), and (4) cuttings (30 cm stem sections taken from the basal portion of bareroot trees, i.e. roots and shoot pruned). Rooted stock types (bareroot and rootstock) produced, on average, 1.2 times larger trees than unrooted stock types (cuttings and whips). However, shoot-pruned stock types (rootstocks and cuttings) reached similar heights and basal diameters as unpruned stock types (bareroots and whips), during the first growing season. Shoot pruning reduced leaf carbon isotopic ratios, suggesting that unpruned stock types were water-stressed during the first growing season. The stress was most likely caused by early leaf development while root growth occurred later in the summer. We conclude that shoot pruning bareroot stock is a useful management option to reduce planting stress without compromising early growth rates of hybrid poplars.  相似文献   

5.
Our first objective was to link the seasonality of fine root dynamics with soil respiration in a ponderosa pine (Pinus ponderosa P. & C. Lawson) plantation located in the Sierra Nevada of California. The second objective was to examine how canopy photosynthesis influences fine root initiation, growth and mortality in this ecosystem. We compared CO2 flux measurements with aboveground and belowground root dynamics. Initiation of fine root growth coincided with tree stem thickening and shoot elongation, preceding new needle growth. In the spring, root, shoot and stem growth occurred simultaneously with the increase in canopy photosynthesis. Compared with the other tree components, initial growth rate of fine roots was the highest and their growing period was the shortest. Both above and belowground components completed 90% of their growth by the end of July and the growing season lasted approximately 80 days. The period for optimal growth is short at the study site because of low soil temperatures during winter and low soil water content during summer. High photosynthetic rates were observed following unusual late-summer rains, but tree growth did not resume. The autotrophic contribution to soil respiration was 49% over the whole season, with daily contributions ranging between 18 and 87%. Increases in soil and ecosystem respiration were observed during spring growth; however, the largest variation in soil respiration occurred during summer rain events when no growth was observed. Both the magnitude and persistence of the soil respiration pulses were positively correlated with the amount of rain. These pulses accounted for 16.5% of soil respiration between Days 130 and 329.  相似文献   

6.
The use of a simple counting method using a borescope and minirhizotron system to study the interaction of roots of wild cherry trees (Prunus avium L) and pasture in an upland silvopastoral system is described. Operator variation was greatest when distinguishing different tree root categories (e.g. white, brown, woody) but was not significant in relation to total tree or grass root counts or species differences. Analysis of covariance was used to take these differences into account in a field trial using several operators. The seasonal patterns of tree and pasture root growth were different. Tree roots peaked in May before maximal shoot growth. The peak in pasture roots occurred two weeks earlier. Tree height growth was increased by the use of herbicides to control grass growth but this effect was only apparent during August when the soil was dry and when pasture root counts were reduced.  相似文献   

7.
Big-leaf mahogany (Swietenia macrophylla) trees are often retained in agricultural fields and pastures for seed and timber production after selective logging and forest clearing in the Brazilian Amazon. At a forest management site in southeast Pará, we censused trees growing scattered across a large open clearing after forest removal and in heavily disturbed forest after selective logging and canopy thinning for survival, stem diameter growth, fruit production, and date of dry season flowering initiation annually during 1997–2003. Trees in the open clearing died at faster rates, grew more slowly, produced fewer fruit, and initiated flowering earlier, on average, than trees in logged and thinned forest during this period. The principal cause of mortality and stem damage in both environments was dry season groundfires. Mahogany trees in logged and thinned forest at the study site grew faster than mahogany trees at a selectively logged but otherwise undisturbed closed-canopy forest site in this region during the same period. This was likely due to vine elimination by groundfires, increased crown exposure after canopy thinning, and soil nutrient inputs due to groundfires. Without effective regulation and control of anthropogenic fires, attempts to manage remnant mahogany trees for future timber yields or to restore commercially viable populations in this region may prove futile.  相似文献   

8.
Seedling ofWisteria floribunda, which belongs to the twiner type of climbing plants, were planted in nursery and the effect of support on the growth of the seedlings was tested. The seedlings were grown with 240 cm-height and 120 cm-height supports (the culms of a dwarf bamboo), and without support. Positive effect of the supports and its length were observed for stem length ofW. floribunda at the end of the growing season. The positive effect of support was also observed for total dry weight. Total dry weight with 240 cm-height support reached more than the double of the seedlings without support. These effects of the support were attributed to die-back behavior of the twining stem, which detached from the support or did not encounter the support. Diameter of the stems without support showed a rapid decrease toward the stem tip, while that with support were relatively constant when they were twining around the support. The existence of the support also affected the dry matter allocation in this species; supported seedlings allocated larger proportion of biomass to current-year stems than unsupported seedlings, although the allocation to the roots was smaller in the supported treatments. Support availability may be critical for the establishment and further growth of the seedlings ofW. floribunda which regenerate at the forest edge and canopy gaps. A part of this report was presented at the 107th Annual Meeting of the Japanese Forestry Society, at Tsukuba, April, 1996.  相似文献   

9.
Leaf specific conductivity (LSC; the ratio of stem conductivity (K(P)) to leaf area (A(L))), a measure of the hydraulic capacity of the stem to supply leaves with water, varies with soil water content. Empirical evidence for LSC responses to drought is ambiguous, because previously published results were subject to many confounding factors. We tested how LSC of similar-sized trees of the same population, under similar climatic conditions, responds to persistently wet or dry soil. Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) trees were compared between a dry site and a wet site in the Valais, an inner alpine valley in Switzerland. Soil water strongly influenced A(L) and K(P) and the plant components affecting K(P), such as conduit radius, conduit density and functional sapwood area. Trees at the dry site had lower LSC than trees with the same stem diameter at the wet site. Low LSC in trees at the dry site was associated with a smaller functional sapwood area and narrower conduits, resulting in a stronger reduction in K(P) than in A(L). These observations support the hypothesis that trees maintain a homeostatic water pressure gradient. An alternative hypothesis is that relatively high investments in leaves compared with sapwood contribute to carbon gain over an entire season by enabling rapid whole-plant photosynthesis during periods of high water availability (e.g., in spring, after rain events and during morning hours when leaf-to-air vapor pressure deficit is small). Dynamic data and a hydraulic plant growth model are needed to test how investments in leaves versus sapwood and roots contribute to transpiration and to maximizing carbon gain throughout entire growth seasons.  相似文献   

10.
In semi-arid regions, trees often wither during the dry season. Withering is sometimes manifest as die-back, whereby whithering results in shoot death, which progresses downward from the uppermost part of the crown. In this study, we measured the relationships between height growth and diameter at breast height, die-back frequency and severity, vessel size and specific hydraulic conductivity of four evergreen (Senna siamea (Lamk) H.S. Irwin & Barneby, Jacaranda mimosifolia D. Don, Azadirachta indica A.H.L. Juss and Acacia gerrardii Benth.) and one deciduous (Melia volkensii Gürke) plantation tree species in Kenya, which has a conspicuous dry season. Die-back occurred readily in some species, but not in others. Senna siamea showed the highest specific hydraulic conductivity and the highest growth rate among the five species and was quite susceptible to die-back. Among species, height growth and specific hydraulic conductivity were positively correlated with vessel size and negatively correlated with die-back frequency, suggesting a trade-off between growth rate and drought tolerance. This implies that an adaptation to rapid growth under humid conditions leads to low drought tolerance. However, the deciduous tree Melia volkensii showed high specific hydraulic conductivity and growth, with no symptoms of die-back, implying that a mechanism associated with the deciduous habit results in drought avoidance by reducing the requirement for water during the dry season.  相似文献   

11.
Three controlled water supply treatments were applied to 1-year-old peach trees grown in root observation boxes. The treatments were: I(0), growth medium maintained at 50% field capacity; I(1), water supplied when daily net tree stem diameter change was negative or zero for 1 day; I(3) as for I(1) except that water was applied after net daily stem diameter change was negative or zero for 3 consecutive days. Trees in treatment I(0) had the greatest mean daily first-order shoot growth rates, and trees in treatment I(3) had the lowest shoot growth rates. Because leaf production rate (apparent plastochron) of first-order shoots was unaffected by treatment, differences in shoot length were due to differences in internode extension and not to the number of internodes. Trees in treatment I(0) had a greater number of second-order shoot axes than trees in treatment I(1) or I(3). Furthermore, an increase in the rate of growth of the first-order shoot axis was associated with an increased tendency for branching (i.e., the development of sylleptic second-order shoots). Increased leaf length was also associated with more frequent watering. Trees in treatment I(0) had the greatest root lengths and dry weights, and this was attributed to a greater number of first-and second-order (lateral) root axes compared with trees in the I(1) and I(3) treatments. The extension rate and apical diameter of first-order roots were reduced by the I(3) treatment. The density of second-order roots along primary root axes was not affected by any of the treatments.  相似文献   

12.
We studied effects of soil temperature on shoot and root extension growth and biomass and carbohydrate allocation in Scots pine (Pinus sylvestris L.) seedlings at the beginning of the growing season. One-year-old Scots pine seedlings were grown for 9 weeks at soil temperatures of 5, 9, 13 and 17 degrees C and an air temperature of 17 degrees C. Date of bud burst, and the elongation of shoots and roots were monitored. Biomass of current and previous season roots, stem and needles was determined at 3-week intervals. Starch, sucrose, glucose, fructose, sorbitol and inositol concentrations were determined in all plant parts except new roots. The timing of both bud burst and the onset of root elongation were unaffected by soil temperature. At Week 9, height growth was reduced and root extension growth was much less at a soil temperature of 5 degrees C than at higher soil temperatures. Total seedling biomass was lowest in the 5 degrees C soil temperature treatment and highest in the 13 degrees C treatment, but there was no statistically significant difference in total biomass between seedlings grown at 13 and 17 degrees C. In response to increasing soil temperature, below-ground biomass increased markedly, resulting in a slightly higher allocation of biomass to below-ground parts. Among treatments, root length was greatest at a soil temperature of 17 degrees C. The sugar content of old roots was unaffected by soil temperature, but the sugar content of new needles increased with increasing soil temperature. The starch content of all seedling parts was lowest in seedlings grown at 17 degrees C. Otherwise, soil temperature had no effect on seedling starch content.  相似文献   

13.
The objectives of this study were to assess the range of genotypic variation in the vulnerability of the shoot and root xylem of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings to water-stress-induced cavitation, and to assess the trade-off between vulnerability to cavitation and conductivity per unit of stem cross-sectional area (k(s)), both within a species and within an individual tree. Douglas-fir occupies a broad range of environments and exhibits considerable genetic variation for growth, morphology, and drought hardiness. We chose two populations from each of two varieties (the coastal var. menziesii and the interior var. glauca) to represent environmental extremes of the species. Vulnerability curves were constructed for shoots and roots by plotting the percentage loss in conductivity versus water potential. Vulnerability in shoot and root xylem varied genetically with source climate. Stem xylem differed in vulnerability to cavitation between populations; the most mesic population, coastal wet (CW), was the most susceptible of the four populations. In the roots, the most vulnerable population was again CW; the interior wet (IW) population was moderately susceptible compared with the two dry populations, coastal dry (CD) and interior dry (ID). Root xylem was more susceptible to cavitation than stem xylem and had significantly greater k(s). The trade-off between vulnerability to cavitation and k(s), however, was not evident across populations. The most vulnerable population (CW) had a shoot k(s) of 0.534 +/- 0.067 &mgr;mol m(-2) s(-1) MPa(-1), compared with 0.734 +/- 0.067 &mgr;mol m(-2) s(-1) MPa(-1) for the less vulnerable CD stems. In the roots, IW was more vulnerable than ID, but had the same k(s).  相似文献   

14.
【目的】量化认识旱季尾巨桉的径向生长动态及其影响因素,为提高桉树林的木材产量及其科学经营提供数据支持及理论指导。【方法】应用DC3型径向变化记录仪对5.5年生尾巨桉旱季径向生长进行连续监测,同步观测林内外各环境因子,分析旱季径向变化与各个因子之间的相关关系。【结果】受树干水分平衡因素的影响,旱季晴天尾巨桉的树干径向日变化呈现出规律的周期性波动,其日最大值出现在9:00—10:00,而最小值出现在16:00—18:00;雨天树干呈持续膨胀后保持不变,最大值较晴天晚约2h。旱季尾巨桉树干径向累积增长为波动性上升过程,可分为相对稳定期、快速增长期及失水收缩期3个阶段。在整个旱季内,各个时期径向生长的主导影响因子不同,其中土壤含水量、土壤温度和大气温度是影响尾巨桉旱季径向生长的主要因素。【结论】土壤水分和温度是影响尾巨桉旱季径向生长的主要因素,若旱季能够通过采取提高土壤温度和土壤含水量(灌溉等)等有效的经营措施,将对尾巨桉树干的径向生长起到促进作用。  相似文献   

15.
Seasonal changes in starch were studied at the tissue and cellular levels in roots and stems of Salix viminalis L. cuttings. Cuttings were planted in pots containing sand and grown in a controlled environment chamber in which seasons were artificially induced by changes in temperature and photoperiod. Nitrogen was supplied at optimum and low rates, and during dormancy, one-half of the plants were decapitated. Starch concentrations in root and stem tissues were determined regularly during shoot extension growth, dormancy and resprouting after dormancy. We used light microscopy (LM) combined with image analysis (IA) to determine the cellular localization and amount of starch in different cell types of stem and root tissues. Chemical analysis confirmed that starch concentrations were lower in plants receiving a high-N supply rate than in plants receiving a low-N supply rate. In all plants, the highest concentration of starch was in the roots. Light microscopy and IA showed that starch accumulated mainly in the phloem and cortical cells of both root and stem tissues. Starch grains were also regularly found in ray parenchyma cells. The amount of starch as well as the size of the grains showed strong seasonal fluctuations. In both roots and stems, starch concentrations were highest during predormancy and lowest during periods of shoot extension growth. At the time of resprouting, root cells of decapitated plants were more depleted of starch than root cells of intact plants, supporting the hypothesis that starch reserves in roots are important during the early phase of resprouting in coppice systems.  相似文献   

16.
One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.  相似文献   

17.
Above- and belowground phenology and water relations of Enterolobium cyclocarpum Jacq. trees in the dry forest of Santa Rosa National Park, Costa Rica were studied during two consecutive phenological cycles, from November 1998 to June 2000. Aboveground phenological activity, including leaf shedding, growth and maturation of dormant fruits, new leaf flushing and flowering, occurred during the dry season. Measurements of leaf water potential, stomatal conductance and sap flow indicated that stomata of newly flushed leaves remained essentially closed until the onset of the first rains, suggesting that the main factor accounting for the favorable water balance of dry-season flushed leaves was their capacity to restrict water loss. Evidence of a contribution from stem and root water stores to shoot expansion was mixed because only the first dry-season flushing episode monitored was accompanied by a marked decrease in stem and root water potentials. Fine root production did not precede leaf flushing, occurred only after the onset of the rainy season and stopped under drought conditions, suggesting that soil water content was the most important variable controlling fine root dynamics in this species.  相似文献   

18.
Hydraulic redistribution of soil water by neotropical savanna trees   总被引:1,自引:0,他引:1  
The magnitude and direction of water transport by the roots of eight dominant Brazilian savanna (Cerrado) woody species were determined with a heat pulse system that allowed bidirectional measurements of sap flow. The patterns of sap flow observed during the dry season in species with dimorphic root systems were consistent with the occurrence of hydraulic redistribution of soil water, the movement of water from moist to drier regions of the soil profile via plant roots. In these species, shallow roots exhibited positive sap flow (from the soil into the plant) during the day and negative sap flow (from the plant into the soil) during the night. Sap flow in the taproots was positive throughout the 24-h period. Diel fluctuations in soil water potential, with maximum values occurring at night, provided evidence for partial rewetting of upper soil layers by water released from shallow roots. In other species, shallow roots exhibited negative sap flow during both the day and night, indicating that hydraulic redistribution was occurring continuously. A third sap flow pattern was observed at the end of the dry season after a heavy rainfall event when sap flow became negative in the taproot, and positive in the small roots, indicating movement of water from upper soil layers into shallow roots, and then into taproots and deeper soil layers. Experimental manipulations employed to evaluate the response of hydraulic redistribution to changes in plant and environmental conditions included watering the soil surface above shallow roots, decreasing transpiration by covering the plant and cutting roots where probes were inserted. Natural and manipulated patterns of sap flow in roots and stems were consistent with passive movement of water toward competing sinks in the soil and plant. Because dry shallow soil layers were often a stronger sink than the shoot, we suggest that the presence of a dimorphic root system in deciduous species may play a role in facilitating leaf expansion near the end of the dry season when the soil surrounding shallow lateral roots is still dry.  相似文献   

19.
We examined the following hypotheses: (i) seeds of dry forest trees have high pre- and post-germination mortality by desiccation due to the time between seed dispersal and germination and to irregular rains at the onset of the rainy season; (ii) seedlings from seeds dispersed in the dry season which survive the dry spells are larger at the end of the first rainy season than those dispersed in the rainy season because the former have more time to grow. We evaluated the possible trade-off between few large seedlings (resulting from natural dispersal) × many small seedlings (resulting from delayed dispersal) on seedling survival during the dry season. We sowed eight tree species in a greenhouse in September, simulating the natural dispersal timing (before the rains), and in November, when rains are more constant. Because shading can counteract the effects of desiccation, we applied three levels of shade (10%, 40% and 72% of PPFD). From September 2005 to December 2006, we provided the daily precipitation of a median year from a major patch of dry forest in Central Brazil. At the end of the rainy season, a subset of seedlings was collected for growth measurements (dry mass) and the remainder was left to follow the dry season survivorship. The lower germination expected for seeds dispersed in the dry season and in full sun was not confirmed for species that had some dormancy. The delayed dispersal was advantageous for the initial establishment of fast germinating species, but it was irrelevant or even disadvantageous for others. Also, the greenhouse weather was certainly milder than the natural environment, reducing the potential for mortality by desiccation. The growth of the four species of higher dormancy were not affected by timing of seed dispersal, while three out of four fast germinating species had higher root biomass when dispersed in the dry season. The growth during the rainy season did not affect seedling survival during the dry season. Keeping seeds to sow when rain is constant might be a good strategy to increase the establishment of fast-germinating tree species.  相似文献   

20.
The browse shrub Gliricidia sepium, introduced into the subhumid zone of Nigeria to serve as a supplementary-forage source for ruminant during the dry season, has the undesirable characteristic of shedding its leaves during its flowering phase which coincides with the early dry season. This report relates a management practice undertaken to maintain G. sepium in vegetative growth through the dry season. Evaluation was undertaken on the influence of cutting to different heights and defoliation at different frequencies. Eight different accessions of the species were involved in the study. Cutting generally ensured vegetative growth during the early dry season, with greater shoot development observed at a cutting height of 0.7 m than at two lower heights. Under the double harvest regime, dry matter yield was generally highest at first harvest and significantly (P < 0.05) so at a cutting height of 0.3 m than at 0.5 or 0.7 m. Accession HYB yielded more dry matter than three other accessions harvested once. Cutting to 0.7 m yielded more leaves than cutting at lower heights. The foliage contained adequate levels of organic matter, crude protein and the minerals, Ca and P while the accession HYB consistently maintained a higher dry matter yield than the other accessions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号