首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
风城特稠油由于黏度高、流动性差等原因使得其开发和集输非常困难。在不改变其传统降黏工艺的基础上研制了一种新型氧化催化体系的降黏剂,并对氧化催化体系降黏剂组分评选、配方优化、性能评价等做了系统研究。试验结果表明,风城特稠油中胶质、沥青质占原油近50%,其中胶质含量达到31.58%,原油酸值低至3.14mgKOH/g;研制的氧化催化体系降黏剂在注蒸汽的过程中与原油发生氧化催化反应,促进胶质和沥青质等重组分裂解成饱和烃、芳香烃等轻组分和中间组分;降黏剂最佳配方为0.1%的活性碱+0.2%氧化剂(BOH)+0.3%催化剂(TOM)。降黏剂加量0.8%、反应时间14~24h、反应温度在150~240℃时,稠油降黏率可达98%以上,与原油相比,反应后稠油中饱和烃与芳香烃增加40%,胶质、沥青质下降22%。  相似文献   

2.
针对胜利油田现河稠油,研究了7种油溶性降黏剂(Y-1~Y-7)及其复配体系的降黏性能,考察了降黏剂加量、原油含水率对降黏效果的影响,研究了降黏剂对蒸汽驱油效果的影响。结果表明:当油溶性降黏剂质量分数小于5%时,原油降黏率随降黏剂加量的增加而迅速增大,之后增加缓慢,加量为15%时的降黏率可达90%以上(Y-4除外)。Y-3和Y-7按质量比1:1复配后的降黏效果最好,总加量5%、10%时的原油降黏率分别为76.1%和93.14%。不含降黏剂时,随原油含水率增加原油黏度先增加后降低,原油含水50%时的黏度是不含水原油的3.9倍,形成W/O型乳状液。不同含水率下,加入降黏剂后原油黏度大幅降低;随含水率增加,原油降黏率先降低后增加,含水率10%时达到最低(Y-1除外)。稠油蒸汽驱前注入0.009~0.027 PV油溶性降黏剂,采收率增幅为2.8%~6.0%。  相似文献   

3.
为了探究稠油乳状液在水浴与微波两种加热方式下的降黏特性及机理,以含水率50%的委内瑞拉稠油乳状液协同纳米降黏剂为研究对象,设计了水浴与微波两种加热方式下的降黏对比实验,包括降黏规律分析、四组分(SARA)分离、全二维气相色谱质谱(GC-MS)分析、傅立叶红外光谱分析(FT-IR)及黏度反弹实验,探究了降黏剂质量分数、加热温度及加热时间对稠油乳状液表观黏度的影响规律。实验结果表明:降黏剂质量分数对表观黏度影响最大;微波能够作用原油极性组分及水分子,其非热效应进一步降低稠油乳状液的表观黏度;微波加热可将稠环芳核、多环或杂环异构烷基的胶质及沥青质片层状分子转化为轻组分,降低杂原子基团质量分数;30天内,微波加热油样的表观黏度微小升高,但仍有87.44%降黏率。研究结果对于稠油降黏采输工艺具有重要的指导意义。  相似文献   

4.
针对稠油的管道输送问题,从降黏减阻的角度开展研究工作。采用管流实验和流变仪测试相结合的方法,探讨了升温、充气和掺混稀油对稠油降黏减阻的作用效果。结果表明:对于具有牛顿流体本构关系的稠油,升温和掺混稀油均具有明显的降黏减阻作用,其减阻效果呈指数关系衰减;充气减阻仅在大流量、低温度的条件下发生,且黏度的降低幅度不大。针对掺稀油减阻,提出了一个指数关系式对混合黏度进行预测,该公式是稠油黏度、稀油黏度及稀油体积含率的函数,通过与实验数据进行对比,证明了其预测精度较高。  相似文献   

5.
稠油黏度高,开采、运输难度较大,需乳化降黏输送,研究其乳状液特性显得尤为重要。基于单因素实验,分析了表面活性剂类型及含量、油水比、乳化温度及乳化强度对稠油水包油(O/W)型乳状液稳定性及流变性的影响。结果表明:不同类型表面活性剂所稳定的乳状液,其稳定性和流变性差异较大。随着CAB-35质量分数的增加,乳状液的分水率先降低后趋于稳定,表观黏度先急剧增大后趋于稳定。随着油水比的增加,乳状液分水率降低,表观黏度逐渐增加。随着乳化温度升高,乳状液的分水率先降低后升高,表观黏度逐渐降低。随着乳化强度增大,乳状液分水率逐渐减小,表观黏度先增大后趋于稳定。综合考虑稳定性与流变性,确定了最优乳化条件,可为稠油O/W型乳状液的乳化降黏提供理论依据。  相似文献   

6.
针对薄层低渗透断块稠油油藏开采存在的油层厚度小、原油物性差、自然产能低等问题,开展了氮气在稠油中的溶解特性、微观渗流机理、氮气分散降黏吞吐效果等室内研究。研究表明,氮气的溶胀作用对稠油有一定的降黏效果,原油黏度越高降黏效果越好;降压开采中随着压力的降低,稠油会出现泡沫油流动形态,气泡为驱动稠油提供弹性能量,可以暂堵高渗通道从而产生液流转向;氮气分散降黏吞吐与氮气吞吐相比,各轮次采出程度均有提高。建立了G197断块地质模型,优化设计氮气注入量为40×10~3m~3,焖井时间为7~10d。氮气分散降黏增产技术应用于G4-11井,措施后日增油量3t,日节约掺水量7.76m~3,应用效果好。  相似文献   

7.
本文针对中原油田稠油油藏地质及稠油特征,应用正交实验设计方法,实验筛选出了耐温抗盐稠油乳化降黏剂体系,最佳配方如下:0.05%聚氧乙烯壬基苯酚醚NP-10+0.1%两性离子表面活性剂CS-B+0.1%十二烷基苯磺酸钠ABS,即在复配降黏剂体系中NP-10、CS-B、ABS的质量比为1:2:2时的降黏效果最佳。研究了pH值、含水量、水矿化度,二价阳离子浓度、温度、配伍性等稠油降黏剂性能的影响。结果表明:在油水比7:3、50℃下所筛选的最佳降黏剂体系对稠油的降黏率达99%,耐温110℃、耐盐,适用于中原油田的稠油井的降黏需要。  相似文献   

8.
熊钰王冲 《油气储运》2016,(10):1072-1077
针对超临界CO_2饱和稠油黏度计算精度不够,且涉及的参数繁杂的问题,基于经验公式建立模型。利用经验公式计算Lederer公式中的各个参数,尤其对未给出计算方法的参数(超临界CO_2黏度μs、体积系数Fo以及脱气稠油高温高压下的黏度(μo)均给出了可靠的经验公式计算方法。模型只需输入标况下的稠油密度以及脱气稠油的黏温关系,设定温度、压力即可计算得到超临界CO_2饱和稠油混合物的黏度。该模型程序简单,对于牛顿流体范围内的稠油-CO_2混合物系统黏度具有可靠的预测精度。  相似文献   

9.
针对超临界CO_2饱和稠油黏度计算精度不够,且涉及的参数繁杂的问题,基于经验公式建立模型。利用经验公式计算Lederer公式中的各个参数,尤其对未给出计算方法的参数(超临界CO_2黏度μs、体积系数Fo以及脱气稠油高温高压下的黏度(μo)均给出了可靠的经验公式计算方法。模型只需输入标况下的稠油密度以及脱气稠油的黏温关系,设定温度、压力即可计算得到超临界CO_2饱和稠油混合物的黏度。该模型程序简单,对于牛顿流体范围内的稠油-CO_2混合物系统黏度具有可靠的预测精度。  相似文献   

10.
针对典型油样进行组分分析,找出原油中影响黏度的主要因素。采用A型水溶性降黏剂进行乳化降黏实验,通过静态评价试验,研究了水溶性A型降黏剂与原油之间形成乳状液的稳定性和粒径分布、油水界面张力、降黏率及洗油率,考察了该降黏剂降黏效果。实验结果表明:原油中蜡含量达14.7%,高含蜡是影响原油黏度的主要因素;降黏剂浓度越大,乳状液分水率越低,乳状液粒径分布越集中,油水界面张力越低,乳状液越稳定;油水比越大,分水率随降黏剂浓度变化越显著;随降黏剂浓度增大和油水比降低,降黏率逐渐升高,降黏率最高可达91.5%;该降黏剂有较好的洗油效果,洗油率为61.1%。  相似文献   

11.
掺稀油输送是脱水稠油重要的输送方式之一。为了进行掺稀比的优化,降低稠油输送的能量消耗,以稠油输送动能消耗作为优化目标,建立了动能消耗与掺稀比相互关系的数学模型,并以胜利油田陈南集中处理站为例进行了分析计算。结果表明:稠油掺稀是非常有效的降黏方式,可以大幅度降低混合原油黏度;但是随着掺稀比的增大,稀油增加了混合原油的流量,输送动能消耗增加。因此,稠油掺稀输送存在最优掺稀比,掺稀比过大,反而会增加输送能耗。利用双对数模型和当量黏度的计算方法以及稠、稀油的物性,可以对最佳掺稀比进行计算分析。  相似文献   

12.
孙建刚  赵文峰  李庆杰 《油气储运》2014,(6):662-664,679
参考国内外应用成熟的稠油降粘工艺,结合克拉玛依石化公司的加工技术,提出了风城稠油掺柴降粘外输方案。重点研究了风城稠油特性,掺柴后的混油特性,掺柴工艺流程,不同输量下管道运行的水力、热力条件,以及最小启输量、最大输量及安全停输时间等。结果表明:掺柴后的混油在一定温度下表现出牛顿流体特性;掺稀工艺满足事故工况和投产初期低输量运行要求,低黏度下满足设计输量的最小掺柴质量分数为20%,高黏度下满足设计输量的最小掺柴质量分数为25%,且低黏度和高黏度下管道外输量适应范围较大。风城超稠油外输管道的顺利投产,可为我国今后设计线路更长、输量更大的稠油外输管道提供参考。  相似文献   

13.
由于石油资源需求的不断增长和常规轻质原油的快速开采及消耗,低品位的稠油油藏日益受到世界各国的重视,如何高效而又经济地开采和利用稠油资源成为国内外研究的热点之一。介绍了常规稠油的主要组成、物理性质,稠油降黏的方法理论及其研究进展,并论述了这些方法理论在现场的应用情况。基于前人关于掺稀降黏的研究成果,探讨并分析了植物油脚及其衍生物——生物柴油在稠油降黏中应用的可行性,丰富了稠油掺稀降黏方法体系,为稠油降黏相关研究和应用提供理论和实践支撑。从掺稀降黏工艺的发展趋势来看,认为采用与环境友好和可再生低成本的油脚皂脚所制备的生物柴油作为掺稀油是未来的一个重要发展方向。  相似文献   

14.
油田集输工艺中油水混合物形成的原油乳状液流变特性较为复杂,可能影响管道安全经济运行。为探究磁处理对含蜡原油乳状液的降黏效果,利用自行研制的静态永磁处理装置,调整磁场强度、磁处理温度及磁处理时间,对乳状液的黏度变化进行实验研究。对磁处理前后原油乳状液黏度与油水界面张力进行测量,观察乳状液液滴分布情况,分析乳状液降黏原因。通过磁处理实验发现,当磁处理温度为58℃、磁场强度为200 T、磁处理10 min时,乳状液黏度降低幅度最大,降黏率达到14.5%;通过界面与显微实验发现,乳状液经磁处理后油水界面张力降低,施加不同的磁处理条件后液滴分布不变,磁场作用通过降低油水界面张力与原油黏度进而降低乳状液黏度。研究成果可为含蜡原油乳状液降黏输送技术提供指导,保障原油集输安全。(图10,表4,参26)  相似文献   

15.
掺混稀油是稠油降黏的有效手段之一,能有效降低超深井井筒举升过程中井筒摩阻。评价了不同密度稀油的掺稀降黏效果,并综合运用热力学、胶体与界面化学等研究了稠油掺稀降黏过程中稀释焓、Zeta电位、掺稀比的变化以及轻质油与稠油混合溶液的稳定性。研究结果表明,密度0.91g/cm3掺稀油与稠油混合过程中溶解热焓值最低、Zeta电位最高,混合系统能最快地达到热力学平衡,形成的胶体分散系统最稳定,掺稀效果最好。该结果对明晰稠油掺稀降黏机理、提高稠油掺稀降黏效果具有指导意义。  相似文献   

16.
为了在常温条件下有效输送高黏稠油,以分水率和降黏率为主要评价指标,开展稠油乳化实验,系统分析了表面活性剂类型与质量分数、有机碱类型与质量分数对稠油水包油(O/W)型乳状液的稳定性和流变性的影响规律和作用机理。结果表明:不同类型表面活性剂由于其结构不同,在油水界面上的吸附能力也不同,造成对稠油的乳化能力各异;表面活性剂OP-10与有机碱(EDA、TEOA、TIPA)复配时均可以产生协同效应,且OP-10与TEOA复配体系存在最佳质量分数,超过此质量分数,乳状液反而变得不稳定;综合分水率、降黏率、经济性、安全环保等特点,确定质量分数为0.75%OP-10与质量分数为0.25%TEOA为优选二元体系,该体系制备的乳状液具有很好的长效稳定性和抗硬水能力,乳状液24 h的分水率仅为29.8%,Ca2+摩尔浓度为0.02 mol/L时,乳状液6 h的分水率为19.4%,研究结果将为稠油乳化降黏输送技术的应用实践提供理论依据和技术指导。(图6,表3,参22)  相似文献   

17.
昌吉油田所辖区块油藏具有原油黏度高,储层中低渗的特点,采取管网远距离集输工艺,存在井口高回压甚至凝管等问题,而采取井口单罐生产收油车倒油至集中处理站的集输方式,存在收油车卸油困难、单罐电伴热能耗高、收倒油运费高、巡检管理不便、影响原油连续生产等问题。为此,采用回掺热水降黏集输工艺,使昌吉油田实现了稠油的管网集输,吨油运行成本降低46%。探讨了该工艺在实际运行过程中暴露的问题,提出了停加降黏剂、在各回掺水配水站增加燃气水浴炉、使用伴生气代替CNG作为相变加热炉燃料等解决方法,取得了显著的经济效益和社会效益。(图8,表1,参11)  相似文献   

18.
以稠油中的沥青质组分作为唯一碳源,利用选择性富集方法,从油田采出水筛选得到一株能够降解沥青质的菌株S,分子生物学分析表明,菌株S与Genbank中Bacillus subtilis Bsn5的序列相似度达99%.利用菌株S对富含沥青质的稠油进行了微生物降解评价实验,分析了其对稠油物理化学性质的影响.结果表明,经菌株S作用后,稠油外观及组成结构都发生了明显变化,其中烷烃含量增加,沥青质组分降低,沥青质降解率达到34%;稠油黏度和密度也相应降低,降低程度分别为34.11%和4.57%;菌株S对稠油的作用,改善了稠油的物化性质.  相似文献   

19.
塔河油田稠油具有超深超稠的特点,黏温拐点深度普遍大于2000m,常规电加热工艺由于下深及加热效率问题导致节约稀油效果有限。矿物绝缘加热电缆以连续高品质铜线为发热导体、矿物氧化镁材料为绝缘层、优质不锈钢为护套组合而成,抗拉强度520MPa,耐温-30~600℃,重量0.27kg/m,具有耐温高、发热量大、质量轻、强度高的特点,能更好地适应产液量高、加热深度及发热量要求较高的稠油井降黏需要。该工艺在塔河油田开展现场试验3井次,下深2200~2500m,加热功率250kW,平均井口温度提高37.8℃,节约稀油率66.8%,取得了较好的节约稀油效果。  相似文献   

20.
孟江  郑猛 《油气储运》2006,25(9):48-52
针对稠油开采和管输过程中存在的高粘度,高密度等问题,对坨5井原油乳化降凝降粘进行了试验,结果表明,高凝稠油乳化成的O/W乳状液可以使稠油凝点总体降低10℃以上,降粘率达到90%,乳化降凝降粘是可行的.试验结果还显示,温度和降温速率对乳化降凝降粘效果有很大影响;乳化剂中加入强碱有利于稠油O/W乳状液的形成和O/W乳状液稳定性的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号