首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A simple and rapid method is described for the determination of dimetridazole (DMZ) and ipronidazole (IPR) in swine feeds at various levels (0.11-110 ppm). The drugs are released from feed by prewetting with a buffer, followed by extraction with either methanol or methylene chloride, depending on the drug level; if necessary, an acid-base cleanup is used before the liquid chromatographic analysis. The analytes are separated on a C18 column and monitored at 320 nm for detection and quantitation. Recoveries of DMZ from several feed formulations averaged 108% at the 92.8 ppm level with a standard deviation (SD) of 4.00% and a coefficient of variation (CV) of 3.70%, 101% at the 11.2 ppm level with an SD of 11.9% and a CV of 11.8%, and 100% at the 0.112 ppm level with an SD of 9.27% and a CV of 9.25%. Recoveries of IPR averaged 77.1% at the 12.9 ppm level with an SD of 1.75% and a CV of 2.27%; IPR recoveries averaged 35.2% at the 0.129 ppm level with an SD of 3.39% and a CV of 9.63%.  相似文献   

2.
A liquid chromatograph was interfaced to an atomic absorption spectrometer for the detection and quantitation of maduramicin in feed matrixes at the 1-8 ppm level. Ionophores in general form strong 1:1 products with various metal cations, yielding complexes that are insoluble in water but very soluble in organic solvents. Maduramicin, a carboxylic, polyalcohol, polyether antibiotic, is labeled with the sodium cation and analyzed by atomic absorption spectroscopy (AAS). The lower limit of detection is approximately 100-200 ng maduramicin sodium salt. Feeds containing 1-8 ppm maduramicin are extracted with acetone, the extract is passed through an alumina column, the column is eluted with acetonitrile-water (90 + 10), and the eluate is analyzed for maduramicin by liquid chromatography-AAS after concentration and conversion of maduramicin to the sodium salt. Recoveries of maduramicin averaged 89.5%. Liquid chromatography with AAS detection has been shown to be a sensitive and highly specific technique for the determination of ionophores in general and maduramicin in particular.  相似文献   

3.
A substantially improved assay was developed for lincomycin A in animal feedingstuffs. The assay allows unambiguous quantitation of at least 0.1 ppm in feed. Lincomycin B did not interfere because of differences in both retention time and mass of the main fragment ion in electron impact (EI) spectra. The assay using single ion monitoring with EI detection would not discriminate between lincomycin A and clindamycin. The presence of the latter was easily confirmed by using gas chromatography-mass spectrometry in the chemical ionization mode. The assay for lincomycin A was linear in the range 0-40 ng applied to the gas chromatographic column. The recovery was 93.4 +/- 4.2% at 1 and 5 ppm and 86.2 +/- 5.5% at 0.1 ppm in feed. The coefficient of variation of the assay was 4.8% at both 1 and 5 ppm, and was 6.43% at 0.1 ppm.  相似文献   

4.
High pressure liquid chromatographic determination of arprinocid in feed.   总被引:1,自引:0,他引:1  
Arprinocid [9 - (2 - chloro - 6 - fluorophenylmethyl)-9H-purin-6-amine] is determined in feed by high pressure liquid chromatography with a silica column and ultraviolet detection. The drug is extracted from the feed into chloroform in the presence of pH 7 phosphate buffer, transferred to 0.1N HCl, and separated from interfering substances by partitioning with hexane. The acidic solution is neutralized, and the analyte is extracted into chloroform for injection into the chromatograph. This procedure has been applied to feeds containing 0.0030--0.0090% arprinocid with a precision of less than 5% relative standard deviation at the 0.0060% formulated concentration level. The results of this chromatographic procedure also correlate with those from a colorimetric analysis.  相似文献   

5.
Liquid chromatographic determination of carbadox residues in animal feed   总被引:3,自引:0,他引:3  
A liquid chromatographic (LC) method for determining residues of carbadox in the 0.01-10 ppm range in swine feed is described. Carbadox is extracted from ground feed with 25% acidified methanol-CHCl3, removed from emulsion-forming coextractables via an alumina column, separated from highly colored pigments by acid-base liquid-liquid partitioning, and finally isolated from interferences on a second alumina column. Isocratic reverse phase LC at 305 nm is used for quantitation. The average overall recovery at the 0.1, 0.5, and 1.0 ppm spike levels was 83.0% with a standard deviation of 2.04% and a coefficient of variation of 2.46%.  相似文献   

6.
A relatively simple analytical method is presented for determination of oxfendazole (2-(methoxycarbonylamino)-5-phenylsulfinyl-benzimidazole) at levels as low as 0.012% in swine feeds, using cation exchange liquid chromatography (LC). The sample was extracted with a solvent mixture of methanol-glacial acetic acid (90 + 10) at 45 degrees C, using a gyrorotory shaker. Plant pigments and other feed excipients were removed using zinc acetate treatment and pH-controlled extraction. Oxfendazole was further separated from the remaining interferences and quantitatively determined by LC on a Partisil SCX column with acetonitrile-0.01M phosphate buffer as mobile phase. The method is stability-specific, linear, precise, and accurate at 80-120% labeled strength (relative standard deviation 0.9-1.7 with mean recovery of 98-99%). Supporting data at a level of 0.0135% oxfendazole in swine feed indicated that this method is capable of complete recovery of oxfendazole from medicated swine feeds.  相似文献   

7.
An analytical method has been developed for the determination of arprinocid (9-(2-chloro-6-fluorophenylmethyl)-9H-purin-6-amine) in feed, based upon measurement of the absorbance of the diazo chromophore formed from a product of zinc reduction of the drug in acidic solution. The analyte is extracted from the feed into chloroform in the presence of a pH 7 phosphate buffer and isolated by adsorption chromatography on alumina, followed by partitioning between hexane and 0.15M HCl. The reduction product in the aqueous phase is then treated for colorimetric measurement. This procedure has been applied to determining 0.0010--0.0080% arprinocid in feed with a precision of less than 5% relative standard deviation near the middle of this concentration range. Of 32 feed additives examined, only zoalene and sulfamethazine were serious interferences. A study and discussion of several factors, e.g., reaction time, pH, and amount of zinc metal, that affect the analytical reactions are also included.  相似文献   

8.
A sensitive, selective analytical method has been developed for determination of phenol in honey by liquid chromotography (LC) with amperometric detection (AMD). Phenol is extracted with benzene from the distillate of honey. The benzene extract is washed with 1% sodium bicarbonate solution and then reextracted with 0.1N sodium hydroxide followed by cleanup on a C18 cartridge. Phenol is determined by reverse-phase LC with amperometric detection. An Inertsil ODS column (150 X 4.6 mm, 5 microns) is used in the determination. The mobile phase is a mixture (20 + 80 v/v) of acetonitrile and 0.01M sodium dihydrogen phosphate containing 2mM ethylenediaminetetraacetic acid, disodium salt (EDTA) with the pH adjusted to 5.0. The flow rate is 1 mL/min under ambient conditions. The applied potential of the AMD using a glassy carbon electrode is 0.7 V vs an Ag/AgCl reference electrode. Average recoveries of phenol added to honey were 79.8% at 0.01 ppm spiking level, 90.4% at 0.1 ppm, and 91.0% at 1.0 ppm. Repeatabilities were 3.4, 1.3, and 1.8%, respectively. The detection limit of phenol in honey was 0.002 ppm. For analysis of 112 commercial honey samples, the range and average values of 32 detected samples were 0.05-5.88 ppm and 0.71 ppm, respectively.  相似文献   

9.
Levels of N-nitrosodimethylamine (NDMA) were determined in 112 samples of 2,4-dichlorophenoxyacetic acid, (2,4-D), formulated as the dimethylamine salt, collected over a 2 year period from products on the Canadian market. A sample aliquot is partitioned with dichloromethane, and the co-extracted dimethylamine is removed by cleanup on a silica gel column. The eluates containing NDMA are concentrated, an internal standard of N-nitrosodipropylamine is added, and nitrosamine levels are determined using a gas chromatograph interfaced with a thermal energy analyzer. Recoveries of NDMA and N-nitrosodiethylamine spiked into samples were 103 +/- 16 and 96.3 +/- 9.8%, respectively. Of the 112 samples analyzed, 92 were below 1 part per million (ppm) relative to the amount of 2,4-D in the samples, 16 were between 1 and 5 ppm, and 4 were greater than 5 ppm. The gas chromatographic column used is compared to a conventional packing material for volatile nitrosamine analysis. Formation of NDMA during cleanup and analysis was shown not to occur.  相似文献   

10.
A modified method is presented to determine trace quantities of N-nitrosodiethanolamine (NDElA) and N-nitrosodiisopropanolamine (NDiPlA) in the triisopropanolamine (TiPlA) formulation of a mixture of picloram and 2,4-D. Aqueous sample is extracted with dichloromethane to remove organic interferences, and then the aqueous layer is passed sequentially through chloride anion exchange column, hydrogen cation exchange column, and Clin-Elut extraction tube. The final eluate, 10% acetone in ethyl acetate, is concentrated. The isolated nitrosamines are converted to the corresponding trimethylsilyl (TMS) derivatives and determined by gas chromatography (GC) on a DB1 column coupled with a thermal energy analyzer (GC-TEA). Eight samples of commercial TiPlA formulations are analyzed. Maximum detected levels of NDElA and NDiPlA were 0.6 and 0.9 ppm, respectively, expressed relative to total weight of active ingredients. Analysis of 13 samples of herbicide DElA formulation using a previously established method and a DB225 column gave NDElA results of 0.7-6.0 ppm. NDiPlA was not detected in those samples. Results are confirmed by GC-mass spectrometry (GC/MS) with oxygen negative chemical ionization (ONCI) detection. Detection limits for both nitrosamines are 0.05 or 0.07 ng (0.1 or 0.17 ppm) for GC-TEA detection, depending on the analytical columns used, and 20 pg (0.04 ppm) for GC/MS detection. Recoveries of NDElA are 87-109% for DElA formulation spiked at 2.6 and 3.9 ppm and 90-115% for TiPlA formulation spiked at 0.2-0.3 ppm. Similarly, recoveries of NDiPlA are 95.7-100% for the DElA formulation spiked at 0.24 and 0.48 ppm, and 82-118% for the TiPlA formulation spiked at 0.2-0.3 ppm.  相似文献   

11.
Liquid chromatographic determination of acifluorfen in soil and water   总被引:1,自引:0,他引:1  
An analytical method based on the use of a liquid chromatograph equipped with a UV detector was developed for the determination of acifluorfen in soil and water. Acifluorfen was extracted from soil in methanol-0.10N NaOH (80 + 20 v/v) and from water by partition with dichloromethane. Solvent partitioning and solid-phase extraction were used to separate acifluorfen from major interfering sample components. Average recoveries from soil at 1, 0.1, and 0.01 ppm fortification levels were 95.1 +/- 3.4, 92.6 +/- 2.9, and 73.9 +/- 3.0%, respectively. Recoveries from water spiked at levels from 0.01 to 1 ppm averaged 96.5 +/- 5.4%. Method limits of detection were 0.006 ppm in soil and 0.003 ppm in water.  相似文献   

12.
A convenient method for the determination of the N-methyl,N-methoxy-phenylurea herbicide (linuron) in potatoes has been developed. The herbicide is extracted from potatoes using a slightly modified Luke multiresidue procedure. The extract is analyzed directly by gas chromatography with cold on-column injection, using an ion trap mass spectrometer in the chemical ionization mode as the detector. Quantitation is performed using p-bromonitrobenzene as the internal standard. The limit of detection is 0.1 ppm. Recoveries of linuron in potatoes averaged 112 +/- 6% at the 0.5 ppm level, and 110 +/- 2% at the 0.2 ppm level. No linuron residues were found in 25 potato samples that were analyzed by this method. Two other N-methyl,N-methoxy-phenylurea herbicides, metobromuron and chlorbromuron, are also sufficiently stable to be determined by this method, but the N,N-dialkyl-phenylurea herbicides neburon, diuron, and monuron are too thermally unstable and degrade in the gas chromatograph.  相似文献   

13.
Separate assay methods have been developed for the 2 components of an 80 + 20 drug blend of bevantolol and hydrochlorothiazide (HCT) in admixtures with animal feed. Drug/diet admixtures are extracted with methanol for reverse phase ion-pair liquid chromatographic (LC) assay of bevantolol, and with acetonitrile for ultraviolet spectrophotometric assay of HCT. Bevantolol, a cardioselective beta blocker, is separated from soluble feed components with an RP-18 column, using methanol-water-acetic acid (60 + 40 + 1) containing 0. 005M octane-sulfonic acid, sodium salt, as ion-pairing reagent. HCT is determined spectrophotometrically in acetonitrile extracts, using a suitable blank extract as reference. Average recovery of HCT from an admixture of 0.5 mg blend/g diet is 94.5% +/- 4.3 RSD and at 2.0 mg/g, 101.5% +/- 3.5 RSD. Bevantolol recovery from the same admixtures is 101.8% +/- 2.7 RSD and 99.0% +/- 3.5 RSD, respectively, using the method as described.  相似文献   

14.
Sulfonamides are widely used as a feed additive in animal production in Japan. The present paper is a determination of 3 sulfonamides: sulfamethazine (SMZ), sulfamonomethoxine [SMX, 4-amino-N-(3-methoxypyrazinyl)-benzenesulfonamide], and sulfadimethoxine (SDX) in animal tissue and egg by liquid chromatography (LC). Tissues were extracted with acetonitrile and fat was removed by liquid/liquid partition. The sulfonamides were purified by an ODS cartridge column; then each compound was separated by an ODS LC column and detected at 268 nm. Quantification levels were 0.02 ppm for SMZ and SMX, and 0.04 ppm for SDX; detection limits were 0.01 ppm for SMZ and SMX, and 0.02 ppm for SDX. Calibration curves were linear between 2 and 40 ng for SMZ and SMX, and between 4 and 80 ng for SDX. Recoveries from muscle and egg samples spiked with 1-2 micrograms/10 g were 81-98%.  相似文献   

15.
A high-speed liquid chromatographic (LC) method using post-column derivatization is described for the determination of monensin, narasin, and salinomycin in a variety of animal feeds. The ionophores are extracted with hexane-ethyl acetate (90 + 10). A portion of the sample is evaporated, diluted to a known volume, and analyzed using a 6 cm 3 microns C18 column and an absorbance detector after post-column reaction with vanillin. The method has been applied to poultry and swine feeds with levels of 3-100 ppm added antibiotic. A comparison was also carried out with medicated poultry feed and beef feed lot supplement samples previously analyzed by 2 separate bioassay methods for monensin and salinomycin, respectively. Recoveries for the LC method ranged from 92.1 to 103% with an average recovery of 98.1% and a coefficient of variation of 3.65%.  相似文献   

16.
A new method is described to determine trace quantities of N-nitrosodiethanolamine (NDElA) in aqueous diethanolamine (DElA) formulations and in oil solutions of dinoseb. A formate anion-exchange column is used in series with a cation-exchange column if there is DElA in the formulation. The eluate is then passed through a Clin Elut column. Depending on the concentration of NDElA in the sample, a packed silica-gel column is used to purify the extract further. This extract is analyzed on a liquid chromatograph coupled with a thermal energy analyzer (LC/TEA), using a mixture of methanol-hexane-methylene chloride containing 0.1% acetic acid (8 + 56 + 35) as the mobile phase. This solvent system gives good separation of NDElA from trace quantities of dinoseb remaining in the extract. The NDElA is also converted to the trimethylsilyl derivative and analyzed by gas chromatograph coupled with a mass spectrometer (GC/MS). Analyses of 11 commercial samples of dinoseb diethanolamine salt showed NDElA levels of 116-2409 ppm expressed relative to the weight of dinoseb. In contrast, analyses of 2 samples of organic solutions of technical dinoseb showed NDElA levels to be nondetectable and 0.3 ppm, respectively. Limit of detection by LC/TEA is 6.5 ng (0.5 ppm), and by GC/MS it is 0.02 ng (0.15 ppm). Recoveries from samples spiked at 0.514-1664 ppm range from 92.2 to 105.2%.  相似文献   

17.
Twenty g sample, to which sulfamerazine has been added as internal standard, is extracted with 0.3N HCl + 1.5% diethylamine in 25% methanol. The sample extract is chilled (to aid clarification), centrifuged, and filtered. The sulfonamides are separated from each other and from co-extracted materials on a C-18 reverse-phase column and detected at 450 nm following post-column derivatization with dimethylaminobenzaldehyde. Two isocratic mobile phases have been tested: (1) acetonitrile-2% acetic acid (17 + 83), with an analysis time of 13 min; and (2) acetonitrile-methanol-2% acetic acid (4 + 16 + 80), with an analysis time of 20 min but an improved analysis for some samples. As many as 40 samples have been analyzed at one time unattended with the aid of an autosampler. A total of about 1500 field samples have been assayed using the method. Method sensitivity is 0.1 ppm for either analyte in a hog finishing fed. Linearity for each of the analytes is satisfactory over a range of 0.4-25 ppm in spiked feeds. Coefficients of variation range from 13% at 0.5 ppm to 2% at 13 ppm as tested over a period of time in naturally contaminated samples. The absolute recovery of sulfamerazine varies with sample matrix, but, in the presence of sulfamerazine as internal standard, recovery has been 96.7-99.7% over the range of 0.1-10 ppm. Sulfamerazine and sulfamoxole were tested for their suitability as internal standards. Sulfamerazine is a good internal standard for sulfamethazine; neither is ideal for sulfathiazole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Eleven collaborators participated in this study of a gas chromatographic method for the determination of pentachlorophenol (PCP) in gelatin. Following acid hydrolysis of a 2 g sample, PCP is extracted with hexane and partitioned into KOH solution. After reacidification, PCP is again extracted with hexane for determination by electron capture gas chromatography on a 1% SP-1240DA column. Three duplicate practice samples (0.0, 0.5, and 1.5 ppm) and 5 blind duplicate collaborative samples (0.0, 0.02, 0.1, 0.5, and 2.0 ppm) were analyzed by each collaborator. Mean recoveries of PCP in the collaborative samples ranged from 88% at the 0.02 ppm fortification level to 102% at the 0.1 ppm level; the overall mean recovery was 96%. Interlaboratory coefficients of variation ranged from 16.4% for the 0.1 ppm fortification level to 22.9% for the 0.5 ppm level; the overall interlaboratory coefficient of variation was 19.5%. The method has been adopted official first action.  相似文献   

19.
A turbidimetric method is described for determination of tylosin in animal feeds containing urea. This method includes several modified or new steps to existing turbidimetric and AOAC plate assays that improve the extraction of tylosin, remove interferences from feeds, free tylosin activity, concentrate tylosin from low-level feeds, and reduce variability of assay results. A larger analytical sample size has been incorporated into the assay to decrease variability of assay results. A methanol-phosphate buffer extraction solution has replaced the hot buffer and methanol extraction solution. A hydrolysis step, which is not contained in the AOAC plate assay, was developed to free tylosin from the tylosin urea adduct that forms over time in feeds containing urea. A disposable C18 column was used to concentrate tylosin from feeds at levels less than 15 ppm. By increasing the analytical sample size from 25 to 100 g, the coefficient of variation for 12 weighings of cattle feed was reduced from 28.4 to 9.3%. Average recoveries from cattle rations containing tylosin at levels of 8, 10, and 100 ppm were 94, 94, and 91%, respectively.  相似文献   

20.
A method has been developed for the determination of beta-propiolactone by derivatizing it to the volatile N-hexyl-3-heptafluorobutanoyloxypropanamide, which can be separated and identified by a capillary CP-Sil 8 column, and detected by an electron capture detector (ECD). First, beta-propiolactone is reacted with N-hexylamine to yield N-hexyl-3-hydroxypropanamide. The fluorobutanoyl ester derivative is next prepared by using heptafluorobutyric acid anhydride in the presence of trimethylamine. The method is very sensitive, simple, and specific, and can be used to detect and quantitate residual beta-propiolactone in lyophilized biological materials. The limit of detection is 0.2 ppm beta-propiolactone in a 50 mg sample; however, because of variability at low levels, the limit of quantitation is 1 ppm. Detector response was linear for 2-500 mg beta-propiolactone. Recoveries were 98% or greater from lyophilized vaccines spiked at the 2-20 ppm level. No side products or interference peaks were observed in the derivatization reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号