首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
旱地棉田渗灌补水效应研究   总被引:6,自引:4,他引:6  
该文着重研究了渗灌不同补水量和渗水管道埋深对旱地土壤含水率和棉花生长发育的影响。试验结果表明,在棉花关键需水期进行渗灌补水,增产增收效果显著。丰水年每次渗水225~300 m3/hm2,皮棉产量可提高196.8~310.7 kg/hm2,增产率为17.3%~27.3%;干旱年份,每次渗水225~300 m3/hm2,比对照增产24.35%~42.55%。与大水漫灌相比,渗灌补水既避免了表层蒸发,又没有形成重力水下渗,大幅度提高了水分利用率。渗水管道埋深在13~20 cm较为合适。  相似文献   

2.
探讨干旱缺水地区果树渗灌补水效应,为提高果园灌溉水资源利用率提供科学依据。通过樱桃园渗灌和漫灌两种灌水方式与不同灌水量的补水试验,对樱桃渗灌补水效应与节水增产机理进行了研究。结果表明:(1)渗灌和漫灌的土壤容重和孔隙度指标存在着明显差异,土壤容重渗灌比漫灌降低6.71%;土壤总孔隙度、毛管孔隙度和非毛管孔隙度渗灌比漫灌分别提高11.62%,8.72%和43.84%。(2)各土层的地温渗灌均比漫灌高,且以表层差异显著,0,5,10,15,20cm土层平均地温渗灌比漫灌高1.7,1.1,0.7,0.4,0.3℃。(3)与漫灌相比,渗灌平均节水55.6%,灌溉水生产效率提高7.92~12.30kg/(m3.hm2)。(4)渗灌不同灌水量对土壤含水率的影响明显,随着渗水量的增加,各层土壤含水率随之提高,且明显高于对照,除80-110cm土层外,其他处理土壤层含水率与对照差异均显著。(5)樱桃需水关键期渗灌补水,增产效果显著,平水年份和干旱年份,每次渗水80~320m3/hm2,樱桃产量分别提高10.35%~30.72%和8.74%~34.87%。  相似文献   

3.
1989~1992年在山西省10个县市对旱地玉米和小麦可持续增产技术进行试验研究,建立了旱地玉 米免耕整秸秆覆盖技术、旱地小麦少耕覆盖技术等4种技术体系。试验结果表明,旱地玉米免耕整秸秆覆盖技术比常规耕作玉米增产32.0%,产量增加750~1500kg/hm2,约降低生产成本600元/hm2,增加纯收入1500元/hm2,产投比翻番;水分利用效率(WUE)提高1.95~7.5kg/hm2·mm,3年0~20cm土层有机质提高0.13%,地面径流减少60%,土壤侵蚀量减少50%,土壤动物、微生物量大大增加。  相似文献   

4.
黄腐酸(FA)旱地龙在苹果节水生产中的应用效果研究   总被引:10,自引:0,他引:10  
该文通过正交试验,探讨了在有限灌水条件下黄腐酸类抗旱剂FA旱地龙对果树的生长发育、保墒能力、果实品质及产量的影响。研究结果表明:果树施用FA旱地龙后,有抗旱增产效果,增产幅度可达4.88%~7.32%,平均单果质量增加4.2%~8.4%,并且使果实品质得到改善;与充分灌溉条件相比,水分利用效率也有所提高,每hm2节约灌溉水量487.5 m3。同时,该文还在分析本地区各降水年型水分盈亏特点的基础上,探讨了不同降水年型下FA旱地龙的最佳喷施次数和喷施时间。  相似文献   

5.
保护地番茄栽培渗灌灌水指标的研究   总被引:27,自引:6,他引:27  
通过对大棚番茄栽培渗灌灌水试验,从土壤水分含量、作物长势及果实产量、灌水次数及灌水量几方面进行分析研究,得出在渗灌管埋深30cm和灌水上限土壤水吸力值设定为6kPa时,其灌水下限土壤水吸力值在苗期可控制在25kPa,在开花-果实膨大期可控制在25~40kPa,而每次灌水量以0.93m3/hm2左右时,水分生产效率和番茄的产量均较高  相似文献   

6.
沃特和PAM保水剂对土壤水分及马铃薯生长的影响研究   总被引:17,自引:6,他引:17  
在陕北黄土丘陵沟壑区以不施为对照,开展了浸种、穴施保水剂沃特和PAM对土壤水分和马铃薯生长影响研究。结果表明:沃特、PAM不同处理10~20 cm、30~40 cm土层土壤含水率在盛花前略高于对照,茎叶衰老后略低于对照。不同处理0~100 cm土层土壤水含量苗期略高于对照;花期沃特、PAM穴施用量15和30 kg/hm2处理极显著高于对照,沃特、PAM穴施用量60 kg/hm2和1.0%浸种处理显著低于对照;收获期不同处理均低于对照。不同处理花期、收获期均表现为沃特、PAM施用量越大,生物量、块茎产量越高,块茎个数越少,最大块茎越大。从播种到花期沃特、PAM穴施用量15和30 kg/hm2处理的耗水量显著低于对照,从播种到收获期不同处理的耗水量与对照无显著差异,但花期、收获期不同处理的水分利用率和水分产出率均极显著高于对照。沃特和PAM在马铃薯生产应用中,穴施应以30 kg/hm2到45 kg/hm2为宜。用1.0%的浓度浸种,可成为沃特和PAM在马铃薯生产中利用的主要方式。  相似文献   

7.
渭北旱塬不同覆盖对冬小麦生产综合效应研究   总被引:14,自引:3,他引:14       下载免费PDF全文
为了探讨旱地有效蓄水保墒对冬小麦的综合效应,从1998~2000年在渭北旱原合阳县西北农林科技大学试验基地进行实验研究。3年的试验结果表明,冬小麦在生长期采用渗水地膜、秸秆、常规地膜及不同覆盖技术,均有显著增产效果,能显著增加土壤贮水量(除常规地膜覆盖外),使土壤上层长期保持湿润状态,提高土壤温度,降低昼夜温差,避免降雨直接冲击地面,保持良好的土壤结构。与常规地膜覆盖和秸秆覆盖比较,渗水地膜覆盖冬小麦增产分别为43.1%和40.4%。秸秆覆盖能增加土壤有机质,提高土壤肥力。渗水地膜和常规地膜具有相同的增温效果,当气温达35℃以上时,渗水地膜还具有降低极端温度的调节功能。但是,覆盖易造成有机质大量矿化物和NO-3-N的淋失。  相似文献   

8.
研究了不同灌溉方式下冬小麦田间土壤水分变化特点及对小麦产量形成的影响。结果表明,渗灌浇根不浇地,冬小麦全生育期渗灌田0~20cm土壤表层含水量较低,比喷灌0~20cm土层土壤水分消耗小,比20~120cm土层土壤水分消耗多;2种灌溉方式120cm以下土层土壤含水量为冬小麦利用较少。渗灌比喷灌增产11.6%,比少灌增产17.6%,比喷灌节水57.1%,其水分利用效率为喷灌的1.35倍。  相似文献   

9.
微孔管渗灌时土壤水分运动的有限元模拟及其应用   总被引:8,自引:7,他引:8  
为了深入了解新型微孔渗灌管的灌水性能,提供推广应用渗灌的科学理论和技术依据,建立了含有第3类边界条件的二维微孔管渗灌土壤水分运动的数学模型,采用有限单元法进行了模拟。检验结果表明模型具有较高的精度。模型的仿真应用结果表明:供水水压力、土壤初始含水率、渗管的渗水速率等对渗灌效果都有明显影响。供水压力增大渗灌后土壤湿润范围内的平均含水率增大。初始含水率越高,湿润锋越不明显,总渗水量越小。随着渗管渗水速率的增大,渗管周围将出现饱和区,并存在渗水速率临界值,该值与土壤初始含水率有关。增加渗管的渗水速率可以提高渗灌的灌水效果。  相似文献   

10.
渗灌管埋深与灌溉量对枣树产量和水分利用效率的影响   总被引:1,自引:1,他引:0  
探寻适宜的地下渗灌埋深和蒸发皿蒸发量系数组合对旱区枣树根系生长、产量和水分利用效率的影响。采用作物-皿系数(Kcp)作为灌溉水量计算标准,设3种地下渗灌埋深D15(15cm)、D30(30cm)、D45(45 cm)和4种灌水量W0.6(Kcp=0.6)、W0.8(Kcp=0.8)、W1.0(Kcp=1.0)、W1.2(Kcp=1.2)水平的2因素的大田试验。结果表明:随着灌水量的增加,各处理在垂直方向0~100 cm和水平距离0~80 cm土层中含水率越高;随着地下渗灌埋深的增加,土壤含水率峰值均向下移动。灌水量和地下渗灌埋深对20~80 cm土层的根系分布影响较大,D30W0.6和D30W0.8处理较其他处理提高20~60 cm土层的根系干质量密度,D45W1.0和D45W1.2处理较其他处理提高60~80 cm土层根系干质量密度。D30W1.0处理有利于增加枣树枣吊长度、每吊开花数、每吊座果数、座果率以及提高产量;2017和2018年D30W0.8处理水分利用效率最高分别为4.68、5.32 kg/m~3,并且产量较D30W1.0处理降低了9.32%、5.94%,但水分利用效率分别提高了17.88%、16.41%,D30W0.8处理水分利用效率与其他处理均有显著差异(P0.05)。通过多元回归和空间分析方法,对产量、水分利用效率与枣树灌水方式进行优化,选择适宜的灌水量和地下渗灌埋深区间分别为:370~410mm、28~33 cm。该研究结果可为宁夏干旱地区地下渗灌枣树的高产高效管理上提供依据和技术支持。  相似文献   

11.
黄土旱塬集雨保墒措施对苹果发育和土壤水分变化的影响   总被引:3,自引:2,他引:1  
为了有效缓解黄土旱塬区苹果园深层干燥化,保证苹果产业的可持续发展,该文选取甘肃镇原盛果期苹果园,连续6 a定位测定了黑色地膜覆盖和黑色地膜覆盖+立体化入渗对苹果产量、新梢生长量和土壤含水量等指标。分析了6 a不同处理苹果产量、形态指标和不同生育期果园0~500 cm土壤相对水分亏缺指数的变化,研究结果表明:黑色地膜覆盖+立体化入渗较对照平均增产16.49%,优果率增加8.91%;300~500 cm土壤含水量较对照增加0.50~2.63百分点,降水入渗深度达到了480 cm,在60~500 cm水分相对亏缺指数为-0.05~-0.12,最大补偿区域为200~300 cm,水分补偿为春季花期和收获期。因此,黑色地膜覆盖+立体化入渗技术提高了果树产量与优果率,改善了果园深层水分状况,缓解土壤深层干燥化。  相似文献   

12.
灌水下限与毛管埋深对温室番茄生长的影响   总被引:1,自引:0,他引:1  
为探明番茄根系生长与水分分布之间的互反馈机制,通过日光温室地下滴灌试验,设置了4种毛管埋深(0 cm、10 cm、20 cm和30 cm)和3种灌水下限(保持土壤含水量为50%、60%和75%田间持水量),研究了不同灌水下限与毛管埋深对番茄根系生长及干物质分配的影响。研究结果表明,轻度、中轻度水分亏缺(灌水下限为75%和60%田间持水量)时,毛管埋深对番茄耗水量有显著影响,10~20 cm毛管埋深提高番茄耗水量。毛管埋深增加会减少0~20 cm土层根系分布,促进20~60 cm土层根系生长;毛管埋深对0~10 cm、20~30 cm、30~40 cm土层根系生长影响显著,对50~60 cm土层根系生长无显著影响。灌水下限对细根(d1 mm)、粗根(d1mm)的根长与根表面积影响显著,毛管埋深对细根的根长与根表面积有显著影响;轻度水分亏缺及20 cm毛管埋深有利于细根根长和根表面积生长,减少粗根比例。本研究结果表明,轻度水分亏缺及毛管埋深为20 cm更有利于全株干物质积累,灌水下限为75%田间持水量能够增加根系干物质分配比例,而20 cm毛管埋深则能促进干物质向茎叶转移且减少根系干物质的分配比例。  相似文献   

13.
以春玉米为研究对象,通过磁化水灌溉试验,研究磁化水灌溉条件下不同灌水量(4 200,4 800,5 400 m~3/hm~2)对土壤水盐分布、玉米干物质量积累、产量及生长特性的影响,以探寻3 500 Gs磁化强度磁化水灌溉条件下适宜的灌水量,为促进塔里木盆地农业资源高效利用提供相关数据支持。结果表明:不同灌水量下磁化水灌溉均能提高土壤含水量,40—60 cm土层土壤盐分淋洗效果优于0—20 cm土层;磁化水灌溉可促进玉米植株生长及产量增加,各处理磁化水灌溉玉米产量较非磁化处理增加了2.11%~19.31%;磁化水3 500 Gs磁化强度灌溉4 800 m~3/hm~2处理产量均最佳,水分利用效率及灌溉水利用效率均达到最大,分别为2.64,2.86 kg/m~3。因此,与非磁化灌溉相比,适宜的磁化水灌溉量可改善玉米穗部干物质积累,有利于提高玉米的产量及水分利用效率。  相似文献   

14.
开沟播种是一种可显著提高地下滴灌春玉米出苗率的新型播种方式,为了优化该技术模式,该文通过两年田间试验分析了地下滴灌玉米出苗率与灌水后种子处土壤有效饱和度(effective saturation)的关系,并基于HYDRUS-2D构建了地下滴灌开沟播种土壤水分运动模型,以90%玉米出苗率为前提,研究了不同土质和土壤初始含水率条件下3个技术参数——开沟深度、滴灌带埋深和灌水量对种子处土壤有效饱和度的影响.结果表明:1)出苗率随土壤有效饱和度线性递增,土壤有效饱和度不小于0.77时,出苗率超过90%;2)地下滴灌开沟播种HYDRUS-2D模型模拟精度较高,模拟得到的土壤有效饱和度随开沟深度增大而增大,随滴灌带埋深增大而减小;3)满足土壤有效饱和度为0.77所需的出苗水灌水量随土壤黏粒含量、土壤初始含水率和开沟深度增大而减小,随滴灌带埋深增大而增大.当表层土壤初始含水率为40%田持~60%田持时,开沟深度每增加5cm,砂壤土的出苗水灌水量减小15~20mm,粉壤和粉黏土的出苗水灌水量减小6~18mm;滴灌带埋深由30cm增大到35cm时,砂壤土的出苗水灌水量增大16~21mm,粉壤和粉黏土的出苗水灌水量增大4~14mm.不同埋深和开沟深度下,当表层土壤初始含水率由40%田持增大到60%田持时,砂壤土的出苗水灌水量减小9~14mm,粉壤和粉黏土的出苗水灌水量减小9~19mm;4)综合考虑土壤质地、玉米根系分布、机械作业、耗能、耕作深度和土壤水深层渗漏以及土壤初始含水率,玉米地下滴灌适宜的滴灌带埋深为30~35cm,开沟深度为10~15cm,灌水量范围为25~67mm.农业生产者可以根据当地实际情况对以上3个技术参数进行合理配置.  相似文献   

15.
黄土高原苹果园深层土壤干燥化特征   总被引:12,自引:3,他引:9  
为了评价黄土高原苹果产区深层土壤干燥化特征及其区域分布规律,测定了其半湿润黄土台塬区(Ⅰ)、半湿润易旱黄土旱塬区(Ⅱ)、半湿润偏旱和半干旱黄土丘陵区(Ⅲ)等不同气候和地貌类型区32块苹果园地0~1500cm土层土壤湿度,定量比较和分析了各类型区苹果园地深层土壤含水率、土壤湿度剖面分布及其土壤干燥化特征。结果表明:1)Ⅰ、Ⅱ、Ⅲ区苹果园地0~1500cm土层土壤含水率依次为17.53%、13.44%和10.29%,土壤有效贮水量依次为1273.70、973.98和864.05mm,土壤水分过耗量依次为199.93、465.10和362.70mm,年均土壤干燥化速率依次为8.47、26.29和23.44mm/a。人工补灌、树龄、种植密度和地貌类型等因素影响果园土壤湿度和土壤干燥化程度。2)各区有补充灌溉的果园土壤剖面湿度显著高于旱作果园,不存在或部分土层存在干燥化现象;旱作果园土壤剖面均存在深厚的干燥化土层。3)Ⅰ、Ⅱ和Ⅲ区有补充灌溉的苹果园地土壤干燥化指数(SDI)分别为-8%、-11%和-34%;旱作果园土壤干燥化指数(SDI)分别为32%、50%和46%,各类型干层厚度分别达到或超过790、1297和910cm。研究结果为黄土高原苹果园地深层土壤水分可持续利用和苹果生产基地可持续发展提供参考。  相似文献   

16.
为探求适于晋西黄土区果农间作系统的水分调控措施,选取该地区典型的苹果×大豆间作系统为研究对象,结合覆盖与调亏灌溉2种节水措施,分析了不同水分调控措施对苹果和大豆根系空间分布、耗水量与水分利用等指标的影响。试验设置灌溉上限3个水平:田间持水量的55%(W1,低水),70%(W2,中水)和85%(W3,高水),2种覆盖材料:秸秆覆盖(M1)和地膜覆盖(M2)。结果表明:水分调控措施增加了苹果和大豆总根长密度,且扩大了苹果在水平和垂直方向上的根长分布。苹果根长密度与距树行距离呈负相关,而大豆则呈正相关,且均与垂直深度存在负相关关系。大豆鼓粒期土壤水分随距树行距离的增加先减后增,最小值为距树行1.5~2.0m,与清耕(CK0)和单一覆盖(CK1和CK2)相比,水分调控措施能显著提高0—60cm土层内的土壤水分。聚类分析表明水分调控下苹果和大豆主要水分竞争区域为距树行0.5~1.5m、垂直方向0—40cm土层范围内。M2W2处理苹果细根集中分布在20—40cm土层,大豆细根主要在0—20cm土层,根系错位分布缓解了种间水分竞争,其耗水量可较W3组减少40~50mm,且其产量和水分利用可分别较其他水分调控措施提高29.37%~41.92%,12.29%~53.35%,同时可使间作系统净收益最大,可达2 976.5元/hm~2。由此建议在未坐果的幼龄苹果树行间间作大豆时采用地膜覆盖措施,同时在分枝期灌水150m~3/hm~2,结荚期灌水400m~3/hm~2,鼓粒期灌水300m~3/hm~2,可显著提高间作系统水分利用水平和经济效益。  相似文献   

17.
根据元谋干热河谷气候特点,2010年初步研究了旱坡地辣木人工林地灌溉后地表盖草和覆膜的土壤水分及其变化状况,研究结果得出:(1)在地面覆盖物作用下,无论是沙土、沙壤土还是黏土样地,耕作层0-20cm、20-40cm土壤水分高于未覆盖样株的土壤水分,辣木生育期比未覆盖提前。总体表明,盖膜土壤水分增加最多,在0-20cm土层,2龄辣木树10d的土壤水分高于对照1.2%~4.6%,幼龄辣木树(栽植8个月)10d的土壤水分高于对照1.8%~4.7%。其次是草覆盖,在0-20cm土层,2龄辣木树10d的土壤水分高于对照2.6%~3.4%,幼龄辣木树(栽植8个月)10d的土壤水分高于对照1.8%~4.6%。土层20-40cm下土壤水分变化较小。(2)由于土壤质地差异,无论是灌水量的多少与处理的不同,沙土蒸发均高于沙壤土,而且变化较大,沙壤土变化均匀,黏土较保水。深层土壤水分总体趋势是随土壤深度增加而增加,增加幅度随之减少。  相似文献   

18.
滴灌苜蓿田间土壤水盐及苜蓿细根的空间分布   总被引:3,自引:2,他引:1  
为了明确滴灌苜蓿土壤水、盐运移,细根分布及细根生物量动态,该文对苜蓿进行滴灌和漫灌试验,结果表明,漫灌水分集中在15 cm浅层土壤内且分布均匀,含水率在19.5%~20.5%之间。滴灌水分高值区集中在水平方向距滴头15 cm,深度为40 cm的土层中,含水率达到18.0%~20.0%。漫灌对0~25 cm深度土层盐分淋洗作用明显,土水比1:5土壤水提液的电导率由灌前的0.4~0.5 m S/cm下降到0.3 m S/cm以下;滴灌可使根区盐分下降至0.2 m S/cm,显著低于灌溉初始的盐分含量(P0.05)。与漫灌比较,滴灌苜蓿细根集中分布在水平方向距滴头0~30 cm,垂直深度0~50 cm范围内。生长季各时间节点滴灌细根总量高于漫灌,其平均值分别为211.6和198.3 g/m2。滴灌和漫灌各时间节点细根量表现出明显的波动,其范围分别在193.2~243.6和182.7~219.1 g/m2之间。在整个生长期内,滴灌活根量高于漫灌,且生长前期滴灌死根量变化较漫灌平稳。活细根和死细根之间的周转使得两者呈现出此消彼涨的状态,表明细根具有生长-凋亡-再生长的周期性。该研究可为滴灌技术在苜蓿栽培上的应用提供参考。  相似文献   

19.
为探究适于晋西黄土区果农间作系统滴灌水肥一体化管理制度,以典型的苹果-大豆间作系统为研究对象,设置灌水和施肥两因素,分析不同水肥调控措施对土壤含水量分布、苹果和大豆光合生理特征、大豆生长和产量以及间作系统水分利用等指标的影响。试验在大豆4个关键需水期进行灌水,肥料随灌溉水施入,每次设置不同灌水上限和施肥水平,4个灌水量上限水平分别为:田间持水量(Fc)的60%(W1),70%(W2),80%(W3)和90%(W4),3个施氮水平:纯N 59.40 kg/hm^2(F1),92.00 kg/hm^2(F2),124.32 kg/hm^2(F3),对照处理(CK)整个生育期不灌水不施肥,仅在播种前施入基肥。结果表明:各水肥处理土壤含水量在水平和垂直方向上具有显著差异,灌水量对土壤含水量的影响程度高于施肥量和水肥交互作用。苹果和大豆的净光合速率(Pn)和蒸腾速率(Tr)的日变化特征相似,均为单峰型曲线,最大值均为W3F2处理。各处理大豆株高、茎粗和叶面积指数(LAI)分别较对照组提高了1.3%~32.3%,2.8%~33.9%和3.4%~125.9%,其中最大值均出现在W3F2处理,该处理大豆产量和间作系统水分利用效率(WUE)也最优,较其他处理分别提高了10.9%~99.3%和8.0%~70.0%。在播种至出苗期、幼苗期至分枝期、开花结荚期和鼓粒期可以设置80%Fc的灌水上限,同时在大豆幼苗期至分枝期、结荚期和鼓粒期分别施加92.00 kg/hm^2的氮肥,该水肥管理方式使苹果—大豆间作系统获得较高的作物产量及水分利用效率,可为该地区间作系统滴灌水肥一体化管理提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号