首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. C. Zeven  J. Waninge 《Euphytica》1986,35(3):677-685
Summary The degree of similarity of a BC line with its recurrent parent is not related to the presence of expressions for morphological characters originating from the donor like purple coleoptile, purple anther and waxy leaf. BC lines derived from one donor do not resemble each other more than they do other BC lines. The absence of characters conditioned by dominant or co-dominant genes may be caused by the presence of inhibitor genes.  相似文献   

2.
A. Thiele    E. Schumann    A. Peil  W. E. Weber 《Plant Breeding》2002,121(1):29-35
In wheat, eyespot caused by PseudoCercosporella herpotrichoides, is one of the main foot‐rot diseases. Yield losses up to 40% occur in some years. Plant protection by fungicide application is possible, but a better way is through resistance breeding. Two resistance sources are currently used: Aegilops ventricosa and the old French variety ‘Cappelle Desprez’. A new source of resistance has been found in the accession AE120 of Ae. kotschyi from the Gatersleben gene bank with the genome constitution UUSvSv. This accession has been crossed and backcrossed twice to susceptible wheat varieties, and in each generation, plants with a relatively high level of resistance have been selected. From this material, lines have been developed and tested in F6 to F8. Finally, several lines could be classified as moderately resistant, such as the French variety ‘Cappelle Desprez’ after resistance determination during milk ripeness (DC75). No line reached the high resistance level achieved with Pch‐1 from Ae. ventricosa. The yield of these lines under infection conditions was higher compared with ‘Cappelle Desprez’. The line 6018‐96‐3 showed a high yield of 64.3 dt/ha compared with 59.6 dt/ha, on the average, in combination with the best expression of eyespot resistance in the adult growth stage over 3 years.  相似文献   

3.
小麦新种质N9628-2抗白粉病基因的SSR分析   总被引:1,自引:0,他引:1  
以抗白粉病的波斯小麦-小伞山羊草双二倍体Am9为母本, 与高感白粉病的普通小麦品种陕160杂交, 并用陕160回交一次, 从其后代中选育的普通小麦种质N9628-2对陕西省关中地区白粉病流行小种关中4号表现免疫。为了明确N9628-2所携带抗性基因的遗传方式及与抗性基因连锁的分子标记, 对该种质的抗白粉病基因进行了遗传分析和SSR标记分析。用高感白粉病品种陕160、陕优225与N9628-2杂交, F1代对白粉病均表现高抗, F2代抗感分离比例均符合3∶1, 表明N9628-2的白粉病抗性由1对显性基因控制。通过208对SSR引物对陕160 ´ N9628-2 F2代抗感分离群体的142个单株的检测, 发现位于6A上的SSR位点Xwmc553和Xwmc684在双亲和抗、感池间有特异性, 并与抗性基因连锁, 遗传距离分别是10.99和7.43 cM, 表明抗病基因可能位于6A染色体上。 用中国春部分第6同源群的缺体-四体系和双端体系进行验证, 进一步将抗性基因定位在6AS。用连锁的SSR标记和相关亲本分析表明, 该抗病基因可能来源于小伞山羊草Y39, 它不同于已有抗白粉病基因, 可能是一个新基因。  相似文献   

4.
普通小麦D染色体组微卫星分子标记遗传差异研究   总被引:13,自引:1,他引:12  
本研究采用微卫星(SSR)分子标记技术, 对我国不同生态区的6个春小麦品种(系)及北方冬麦区的17个冬小麦品种(系)D染色体组的遗传多样性进行了分析. 结果显示, 23个微卫星引物在23份材料间共扩增出65个等位基因, 平均每个引物为2.9个. 分析发现, 冬小麦群体内检测到的等位基因数(60个)及平均遗传距离(0.4504)明显高于春小麦(48  相似文献   

5.
Synthetic hexaploid wheat, produced by combining tetraploid wheat (AB genome) with Triticum tauschii (D genome), was crossed to modern hexaploid wheat (Triticum aestivum ABD genome) in an attempt to introduce new cold hardiness genes into the common hexaploid wheat gene pool. The cold hardiness levels of F) hybrids ranged from similar to parental means to equal to the hardy parent, indicating that cold hardiness was controlled by both additive and dominant genes. As expected when dominant gene action is involved, differences between F2 and parental means were smaller than comparable differences in the F., Frequency distributions of F2—derived F3 lines also suggested that dominant genes were involved in the control of cold hardiness in some crosses. Heritability estimates for cold hardiness ranged from 63 to 70 % indicating that selection for cold hardiness should be effective in populations arising from crosses between common and synthetic hexaploid wheat. However, high selection pressure on the progeny of crosses that included the most hardy T. aestivum, T. durum, and T. tauschii accessions as parents did not identify transgressive segregates for improved cold hardiness. These observations indicate that the close wheat relatives, sharing common genomes with T. aestivum, are not promising sources of new genes to increase the maximum cold hardiness potential of common hexaploid wheat.  相似文献   

6.
To investigate the effects of individual chromosomes on freezing resistance, as well as their interactions with the genetic background, reciprocal sets of chromosome substitution lines between two hard red winter wheat cultivars, ‘Cheyenne’ and ‘Wichita’, were used in this study. Duplicate lines for each chromosome were included to check background homogeneity. Two experiments were carried out in complete block designs with two replications for each duplicate. Crown and leaf water content and leaf wet weight were measured in the field experiments. Crown survival, electrolyte leakage and 50% lethality temperature (LT50) were measured in the laboratory. The results showed that ‘Cheyenne’ was more resistant than ‘Wichita’. Crown survival was significantly correlated with crown water content, crown wet weight and electrolyte leakage. Chromosomes 6A, 3B and 5D substituted from ‘Wichita’ into ‘Cheyenne’ (‘CNN‐WI’), decreased the crown survival, and increased membrane stability, crown water content and crown wet weight of ‘Cheyenne’. Thus, these chromosomes from ‘Wichita’ decreased freezing resistance in ‘Cheyenne’. Reciprocally, chromosomes 5A, 5D, 3B and 4D from ‘Cheyenne’ into ‘Wichita’ increased crown survival and decreased crown water content and crown wet weight of ‘Wichita’. It was concluded that these chromosomes from ‘Cheyenne’ cause freezing resistance in ‘Wichita’ and carry freezing‐resistance genes.  相似文献   

7.
RAPD markers were developed for octoploid X Tritordeum (amphiploid Hordeum chilense × Triticum aestivum) and its parents. Two bread wheats, two H. chilense accessions and the two tritordeums synthesized with them were used. A total of 41 arbitrary decamer primers were tested, yielding 190 products that could be assigned to wheat, 185 to H. chilense and 108 that were nonspecific (present in wheat and barley). A total of 44 products were specific to one H. chilense line and 33 to the other 16 of the former were located on the chromosomes using a set of H. chilense in T. aestivum addition lines. The potential of RAPDs for developing addition lines or the detection of introgressions of H. chilense in bread wheat is discussed.  相似文献   

8.
Inheritance of resistance to Karnal bunt was investigated in the crosses of four resistant synthetic hexaploid wheats (SH; Triticum turgidum×T. tauschii) and two susceptible T. aestivum cultivars. The resistance was dominant or partly dominant over susceptibility. The SH cultivars Chen/T. tauschii (205) and Chen/T. tauschii (224) have single dominant resistance genes which could be allelic to each other. ‘Altar 84’/T. tauschii (219) appeared to have two dominant genes for resistance. ‘Duergand’T. tauschii (214) possessed two complementary dominant genes for resistance. The work is being extended to involve diverse Karnal bunt-resistant SH and bread wheat cultivars.  相似文献   

9.
R. Simeone    D. Pignoni    A. Blanco  M. Attolico 《Plant Breeding》1989,103(3):189-195
Interspecific hybrids and amphiploids between Aegilops caudata L. (2n = 2x = 14, CC) and Triticum turgidum (L.) Thell. conv. durum Desf M. K. (2n = 4x = 28, AABB) were produced. Such hybrids can be used to introduce desirable traits such as disease resistance into cultivated durum wheats. One of the durum parents was a ph I mutation of the cv. ‘Cappelli’ used for testing the possibility of direct introduction of alien variation into cultivated species. The amphiploids were obtained both through colchicine chromosome doubling and as natural non-reductional mciosis products. In both hybrids and amphiploids, meiotic pairing and fertility were studied. Hybrids showed varying degrees of pairing and, in addition to the one involving the ph 1 mutant, one high pairing hybrid was found (Ae. caudata× cv. ‘Capinera’). Cytological examination of microsporogenesis in amphiploids revealed a high frequency of bivalent formation. Fertility proved to be a very variable character since some of the amphiploids were almost completely sterile. The use of amphiploids in breeding programmes is discussed in relation to meiotic and fertility data.  相似文献   

10.
By crossing Aegilops mutica with Triticum dicoccum as a bridge species and backcrossing with common wheat as a recurrent pollen parent, male sterile alloplasmic line(s) were produced. In progeny of the crosses, a self fertile plant with 42 chromosomes was selected and named R 20. From this plant several lines that possessed Rf (fertility restoring) genes and/or powdery mildew resistant genes were obtained. Apparently, the system of sterility-fertility of pollen can be applied for hybrid wheat production. In addition, the disease resistance may be used in breeding. The male fertile lines possessed one or more Ae. mutica sat-chromosome(s), which show the ability to suppress the nucleolar organizing regions of chromosomes 1B and 6B of common wheat. The relation between the sat-chromosomes and male fertility restoration is not yet clear. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
In hexaploid bread wheat, Triticum aestivum (2n = 6x = 42), little work has been carried out to study the genetic control of the synthesis of reduced, non‐reduced and total non‐structural carbohydrates and soluble proteins in aerial and rooting structures. The aim of this paper was to determine the chromosomal location of genes determining carbohydrate and protein synthesis that could be used for diagnostic selection in segregating breeding populations. A set of wheat intervarietal chromosome substitution lines [‘Chinese Spring’ (CS) × synthetic wheat (Triticum diccocoides×Aegilops squarrosa) (Syn)], was used. Plants were cultivated in hydroponic solutions to the fully expanded third leaf stage. Carbohydrate and protein contents and dry matter were determined for aerial and root parts. The root dry weight did not show significant differences between the parental varieties and the substitution lines, except for 5A, 2B and 6B, which had significantly lower dry weights. The aerial dry weight was significantly higher for Syn and the 2A substitution line. The ratio aerial dry weight/root dry weight was significantly higher in Syn, 1A, 2A and 4B. The protein content of the plant showed highly significant differences between both parental lines but 6A and 1D of the substitution lines showed highly significant differences, with contents as high as that for Syn. Syn produced significantly lower total aerial carbohydrates. The substitution lines 2A, 5A, 6A, 7A, 2B, 3D, 5D and 6D showed highly significant total carbohydrate content increases in the aerial parts compared with both parental lines. The non‐reduced carbohydrate contents showed a pattern similar to that of the total carbohydrates. Syn had a lower reduced carbohydrate content than CS. Only the 5A, 2B, and 1D substitution lines had a highly significantly different content of reduced carbohydrates than CS. In roots, Syn produced the lowest values for every type of sugar. The highest significant values for total carbohydrates were found in substitution lines 2B, 4B, 5B, 6B, 1D and 6D. The non‐reduced carbohydrate levels were significantly higher than CS in 2B, 5B, 6B and 6D substitution lines. Only the substitution lines 3B and 1D showed a significantly higher reduced carbohydrate content in roots compared with CS. The photoassimilate partitioning in Syn, 1 A, 2A and 4B favoured the aerial parts but, in contrast, higher partitioning to the roots was found in the 7B, 1D and 3D substitution lines. Both groups appear to carry interesting patterns worth incorporating in wheat cultivars.  相似文献   

12.
Using the genomic in situ hybridization (GISH) technique, one translocation line, seven translocation-addition lines, five translocation plus translocation addition lines and two ditelosomic addition lines were identified in backcross progenies of Triticum aestivum L. -Psathyrostachys juncea (Fisch.) Nevski intergeneric hybrids. No complete P. juncea chromosomes were detected in the 25 lines studied. The results suggest that intact P. juncea chromosomes may be difficult to isolate in a wheat background. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
L. Reddy    R. E. Allan    K. A. Garland  Campbell 《Plant Breeding》2006,125(5):448-456
In wheat, variation at the orthologus Vrn‐1 loci, located on each of the three genomes, A, B and D, is responsible for vernalization response. A dominant Vrn‐1a allele on any of the three wheat genomes results in spring habit and the presence of recessive Vrn‐1b alleles on all three genomes results in winter habit. Two sets of near‐isogenic lines (NILs) were evaluated for DNA polymorphisms at their Vrn‐A1, B1 and D1 loci and for cold hardiness. Two winter wheat cultivars, ‘Daws’ and ‘Wanser’ were used as recurrent parents and ‘Triple Dirk’ NILs were used as donor parents for orthologous Vrn‐1 alleles. The NILs were analysed using molecular markers specific for each allele. Only 26 of 32 ‘Daws’ NILs and 23 of 32 ‘Wanser’ NILs had a plant growth habit that corresponded to the marker genotype for the markers used. Freezing tests were conducted in growth chambers programmed to cool to ?21.5°C. Relative area under the death progress curve (AUDPC), with a maximum value of 100 was used as a measure of death due to freezing. The average relative AUDPC of the spring habit ‘Daws’Vrn‐A1a NILs was 86.15; significantly greater than the corresponding winter habit ‘Daws’Vrn‐A1b NILs (42.98). In contrast, all the ‘Daws’Vrn‐A1bVrn‐B1aVrn‐D1b and Vrn‐A1bVrn‐B1bVrn‐D1a NILs (spring habit) had relative AUDPC values equal to those of their ‘Daws’ sister genotypes with Vrn‐A1bVrn‐B1bVrn‐D1b NILs (winter habit). The average AUDPC of spring and winter habit ‘Wanser’ NILs differed at all three Vrn‐A1, Vrn‐B1 and Vrn‐D1 locus comparisons. We conclude that ‘Daws’ and ‘Wanser’ have different background genetic interactions with the Vrn‐1 loci influencing cold hardiness. The marker for Vrn‐A1 is diagnostic for growth habit and cold hardiness but there is no relationship between the Vrn‐B1 and Vrn‐D1 markers and the cold tolerance of the NILs used in this study.  相似文献   

14.
W-C. Zhou    F. L. Kolb    G-H. Bai    L. L. Domier    L. K. Boze  N. J. Smith 《Plant Breeding》2003,122(1):40-46
The objectives of this study were to validate the major quantitative trait locus (QTL) for scab resistance on the short arm of chromosome 3B in bread wheat and to isolate near‐isogenic lines for this QTL using marker‐assisted selection (MAS). Two resistant by susceptible populations, both using ‘Ning7840’ as the source of resistance, were developed to examine the effect of the 3BS QTL in different genetic backgrounds. Data for scab resistance and simple sequence repeat (SSR) markers linked to the resistance QTL were analyzed in the F2:3 lines of one population and in the F3:4 lines of the other. Markers linked to the major QTL on chromosome 3BS in the original mapping population (‘Ning7840’/‘Clark’) were closely associated with scab resistance in both validation populations. Marker‐assisted selection for the QTL with the SSR markers combined with phenotypic selection was more effective than selection based solely on phenotypic evaluation in early generations. Marker‐assisted selection of the major QTL during the seedling stage plus phenotypic selection after flowering effectively identified scab resistant lines in this experiment. Near‐isogenic lines for this 3BS QTL were isolated from the F6 generation of the cross ‘Ning7840’/‘IL89‐7978’ based on two flanking SSR markers, Xgwm389 and Xbarc147. Based on these results, MAS for the major scab resistance QTL can improve selection efficiency and may facilitate stacking of scab resistance genes from different sources.  相似文献   

15.
Triticum tauschii provides breeders with a valuable source of resistance and tolerance genes. Elucidation of the inheritance of traits in this species that hinder its use in breeding programmes is therefore of interest to wheat breeders. Inheritance of threshability was investigated in the crosses of four non-free-threshing (NFT) synthetic hexaploids (Triticum turgidum×T. tauschii) and two free-threshing (FT) T. aestivum cultivars during four crop seasons over 3 years at E1 Batan and Ciudad Obregon, Mexico. The parents, their F1 Hybrids and individual F2 plant-derived F3 progenies of the crosses revealed that ‘Altar 84’/T. tauschii (219), ‘Chen’/T. tauschii (205), ‘Chen’/T. tauschii (224), and ‘Duergand’/T. tauschii (214) have independently segregating loci with two dominant alleles controlling threshability. Intercrosses among the synthetics, except ‘Altar 84’/T. tauschii (219), showed the genes to be allelic to each other. The cross between the FT cultivars showed no segregation in the F3 generation, indicating common recessive genes. Based on these findings, population sizes of the synthetic-derived breeding materials should be increased to improve the chances of selecting FT desirable plants in the programme.  相似文献   

16.
野生二粒小麦在农艺性状和品质性状上具有丰富的遗传变异,这些优异基因的导入对促进优质小麦生产具有重要的意义。以普通小麦品种Bethlehem(BLH)为遗传背景的野生二粒小麦染色体臂置换系(chromosome arm substitution lines,CASLs)为材料,进行2年一点田间试验,考察籽粒(粒长、粒宽和千粒重)与品质相关性状(蛋白质含量、湿面筋含量、沉降值、淀粉含量和灰分含量)。结果表明:CASLs群体中3AL 2年的粒长均显著长于亲本BLH,推测3AL染色体上至少有1个正效QTL控制野生二粒小麦的粒长,至少3个控制粒长的负效QTLs分别位于4BS、6BL和7BL,至少11个控制千粒重的负效QTLs分别位于2AS、5AS、6AL、7AS、1BS、1BL、4BS、4BL、5BL、6BL和7BL,至少6个与蛋白质含量正相关的QTLs分别位于6AL、1BS、2BS、3BL、7BS和7BL,至少3个控制湿面筋形成的正效QTLs分别位于2BL、7BS和7BL,至少3个控制沉降值的主效QTLs分别位于4AL、7AL和7BL,至少1个控制淀粉形成的负效QTL位点位于7BL;至少1个促进小麦籽粒灰分含量增加的QTL位于7BL上。相关性分析表明,千粒重与蛋白质含量、湿面筋含量、沉降值和灰分含量呈显著或极显著的负相关,蛋白质含量与湿面筋含量、沉降值和灰分含量均呈极显著正相关,而与淀粉含量呈极显著负相关。综上所述,CASLs群体具有丰富的遗传多样性,且每个置换系只含有对应野生二粒小麦的染色体臂,各置换系有着不同的遗传特点,因此,可以综合利用置换系的有利性状对小麦目标性状进行遗传改良,进而为小麦育种提供更加丰富的遗传资源。  相似文献   

17.
Variation was investigated in 110 doubled haploid (DH) lines of wheat derived from wheat × maize crosses. Field observation revealed visible variations in 15 DH2 lines such as extreme dwarfism, low seed fertility, alteration of spike type and stripes. Six agronomic traits, i.e., heading date, spike number/ plant, culm length, spike length, seed fertility and grain weight were statistically analyzed in the DH2 and DH3 generations. Out of the 88 DH2 lines/DH3 groups, 26 %/64 % showed significant differences from the parental variety in the means of one or more traits. Ranges of the DH3 lines were larger than those of the DH2 lines, except for spike number/plant. Furthermore, analyses of variance within and between DH lines showed the presence of heterogeneity/heterozygosity in the DH2 lines/plants. These results indicated the occurrence of gametoclonal variation in the DH lines. It is considered that most of the variations detected were due to the colchicine treatment rather than to the 2,4-D treatment or in vitro culture.  相似文献   

18.
Cereta/Aegilops tauschii783是由CIMMYT引进的硬粒小麦/节节麦人工合成种,具有高抗条锈和高抗穗发芽等优良特性.本文选用小麦A、B、D染色体组的91对SSR引物将人工合成小麦Cereta/Aegilops tauschii783与绵阳26在分子水平上进行了比较分析,结果表明:91对引物中有88对引物能扩增出清晰条带;88对引物中除3对引物外,86对引物(96.59%)均能揭示出Cereta/Aegilops tauschii783与绵阳26之间的差异.人工合成小麦Cereta/Aegilops tauschii783与育成小麦品种遗传差异很大,是丰富现代小麦遗传多样性的优异基因源;利用人工合成小麦Cereta/Aegilops tauschii783与绵阳26构建SSR标记群体,可有效标记双亲优良基因.  相似文献   

19.
Summary Genes for leaf rust and stem rust resistance and segregation distortion (Gc), that seemed to derive from an Aegilops spetroides ssp. ligustica accession, were transferred to common wheat. While the advanced backcrosses had normal meioses and 42 chromosomes, high levels of male and female sterility, abnormal endosperm development and chromosome aberrations were evident. These effects were more pronounced in Gc-heterozygotes than in homozygotes. Gametes without Gc genes did not survive, and the Gc-associated defects were always inherited with the resistance. Since the resistance genes were effective against local pathotypes of the leaf rust and stem rust pathogens, an attempt was made to disrupt the Gc-system through irradiation, treatment with the mutagen N-nitroso-N-methyl-urea or growing the material at elevated temperatures. A very low frequency of the treated material showed slightly better fertility and seed development. However, these effects did not persist in subsequent generations and were apparently not strong enough to allow the recovery of segregates which had lost the Gc gene(s).  相似文献   

20.
M. Q. Yu    G. B. Deng    X. P. Zhang    X. R. Ma  J. Chen   《Plant Breeding》2001,120(4):285-289
Chromosome pairing was analysed in F1 hybrids of the wheat cultivar ‘Chinese Spring’ (CS) and its ph1b mutant (CSphlb) with Dasypyrum villosum. On average, 1.61 chromosomes per cell paired in the hybrid CS ×D. villosum, but 14.43 in the hybrid CS ph1b×D. villosum. Genomic fluorescence in situ hybridization (GISH) revealed three types of homoeologous association between wheat (W) and D. villosum (D) chromosomes (W‐D, D‐W‐W and D‐W‐D) in pollen mother cells of the CS ph1b×D. villosum hybrid, and only one type (W‐W), in the CS ×D. villosum hybrid. Both F1 hybrids were self‐sterile. The seed set of the backcross of CS ×D. villosum with CS was 6.67% and that of CS ph1b×D. villosum with CS or CS ph1b was only 0.45%. The chromosome number of BC1 plants varied from 48 to 72. Translocations of chromosome segments or entire arms between wheat and D. villosum chromosomes were detected by GISH in the BC1 plants from the backcross of CS ph1b×D. villosum to CS ph1b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号