首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Crop tolerance to salinity is of high importance due to the extent and the constant increase in salt-affected areas in arid and semi-arid regions. Pearl millet (Pennistum glaucum), generally considered as fairly tolerant to salinity, could be an alternative crop option for salt affected areas. To explore the genotypic variability of vegetative-stage salinity tolerance, 100 pearl millet lines from ICRISAT breeding programs were first screened in a pot culture containing Alfisol with 250 mM NaCl solution as basal application. Subsequently, 31 lines including many parents of commercial hybrids, selected from the first trial were re-tested for confirmation of the initial salinity responses. Substantial variation for salinity tolerance was found on the basis of shoot biomass ratio (shoot biomass under salinity/ non-saline control) and 22 lines with a wide range of tolerance varying from highly tolerant to sensitive entries were identified. The performance of the genotypes was largely consistent across experiments. In a separate seed germination and seedling growth study, the seed germination was found to be adversely affected (more than 70% decrease) in more than half of the genotypes with 250 mM concentration of NaCl. The root growth ratio (root growth under salinity/control) as well as shoot growth ratio was measured at 6 DAS and this did not reflect the whole plant performance at 39 DAS. In general, the whole plant salinity tolerance was associated with reduced shoot N content, increased K+ and Na+ contents. The K+/Na+ and Ca++/Na+ ratios were also positively related to the tolerance but not as closely as the Na+ content. Therefore, it is concluded that a large scope exists for improving salt tolerance in pearl millet and that shoot Na+ concentration could be considered as a potential non-destructive selection criterion for vegetative-stage screening. The usefulness of this criterion for salinity response with respect to grain and stover yield remains to be investigated.  相似文献   

2.
Four bread wheat genotypes differing in salt tolerance were selected to evaluate ion distribution and growth responses with increasing salinity. Salinity was applied when the leaf 4 was fully expanded. Sodium (Na+), potassium (K+) concentrations and K+/Na+ ratio in different tissues including root, leaf‐3 blade, flag leaf sheath and flag leaf blade at three salinity levels (0, 100 and 200 mm NaCl), and also the effects of salinity on growth rate, shoot biomass and grain yield were evaluated. Salt‐tolerant genotypes (Karchia‐65 and Roshan) showed higher growth rate, grain yield and shoot biomass than salt‐sensitive ones (Qods and Shiraz). Growth rate was reduced severely in the first period (1–10 days) after salt commencements. It seems after 20 days, the major effect of salinity on shoot biomass and grain yield was due to the osmotic effect of salt, not due to Na+‐specific effects within the plant. Grain yield loss in salt‐tolerant genotypes was due to the decline in grain size, but the grain yield loss in salt‐sensitive ones was due to decline in grain number. Salt‐tolerant genotypes sequestered higher amounts of Na+ concentration in root and flag leaf sheath and maintained lower Na+ concentration with higher K+/Na+ ratios in flag leaf blade. This ion partitioning may be contributing to the improved salt tolerance of genotypes.  相似文献   

3.
Maize (Zea mays L.) is susceptible to salinity but shows genotypic variation for salt tolerance. How maize genotypes with contrasting root morphological traits respond to salt stress remains unclear. This study assessed genotypic variation in salinity tolerance of 20 maize genotypes with contrasting root systems exposed to NaCl for 10 days (0, 50 mM or 100 mM NaCl, added in four increments every other day from 14 days after transplanting, DAT) in a semi-hydroponic phenotyping system in a temperature-controlled greenhouse. Considerable variation was observed for each of the 12 measured shoot and root traits among the 20 genotypes under NaCl treatments. Salt stress significantly decreased biomass production by up to 54% in shoots and 37% in roots compared with the non-saline control. The 20 genotypes were classified as salt-tolerant (8 genotypes), moderately tolerant (5) and salt-sensitive (7) genotypes based on the mean shoot dry weight ratio (the ratio of shoot dry weight at 100 mM NaCl and non-saline control) ± one standard error. The more salt-tolerant genotypes (such as Jindan52) had less reductions in growth, and lower shoot Na+ contents and higher shoot K+/Na+ ratios under salt stress. The declared salt tolerance was positively correlated with shoot height, shoot dry weight and primary root depth, and negatively correlated with shoot Na+ content at 100 mM NaCl. Primary root depth is critical for identifying salt responsiveness in maize plants and could be suggested as a selection criterion for screening salt tolerance of maize during early growth. The selected salt-tolerant genotypes have potentials for cultivation in saline soils and for developing high-yielding salt-tolerant maize hybrids in future breeding programmes.  相似文献   

4.
Salinity is one of the major limitations to wheat production worldwide. This study was designed to evaluate the level of genetic variation among 150 internationally derived wheat genotypes for salinity tolerance at germination, seedling and adult plant stages, with the aim of identifying new genetic resources with desirable adaptation characteristics for breeding programmes and further genetic studies. In all the growth stages, genotype and salt treatment effects were observed. Salt stress caused 33 %, 51 % and 82 % reductions in germination vigor, seedling shoot dry matter and seed grain yield, respectively. The rate of root and shoot water loss due to salt stress exhibited significant negative correlation with shoot K+, but not with shoot Na+ and shoot K+/Na+ ratio. The genotypes showed a wide spectrum of response to salt stress across the growth stages; however, four genotypes, Altay2000, 14IWWYTIR‐19 and UZ‐11CWA‐8 (tolerant) and Bobur (sensitive), exhibited consistent responses to salinity across the three growth stages. The tolerant genotypes possessed better ability to maintain stable osmotic potential, low Na+ accumulation, higher shoot K+ concentrations, higher rates of PSII activity, maximal photochemical efficiency and lower non‐photochemical quenching (NPQ), resulting in the significantly higher dry matter production observed under salt stress. The identified genotypes could be used as parents in breeding for new varieties with improved salt tolerance as well as in further genetic studies to uncover the genetic mechanisms governing salt stress response in wheat.  相似文献   

5.
Forty-five accessions of sunflower collected from different countries were screened for salinity tolerance after 2 weeks growth in sand culture salinized with 150 meq l?1 of NaCl2+ CaCl2 (1:1 ratio equivalent wt. basis) in half strength Hoagland's nutrient solution. The results for plant biomass of 45 accessions show that there was considerable variation in salinity tolerance. In a further greenhouse experiment, the salinity tolerance of three tolerant (HO-1, Predovik, Euroflor) and two sensitive (SMH-24, 9UO-985) lines (selected on the basis of their performance in the seedling experiment) was assessed at the adult stage to evaluate the consistency of salinity tolerance at different growth stages. All three salt tolerant accessions produced significantly greater plant biomass, seed yield and seed oil content than the salt sensitive accessions. The tolerant accessions accumulated less Cl? and more K+ in the leaves under saline conditions compared with the salt sensitive accessions. The salt tolerant accessions also maintained relatively high leaf K:Na ratio and K+ versus Na+ selectivity. Although statistically nonsignificant, all three tolerant accessions had greater soluble carbohydrates, soluble proteins, total free amino acids and proline in the leaves than the sensitive accessions. A field trial conducted in a salt-affected field confirmed the greenhouse results of the selected accessions. This study shows that salinity tolerance of sunflower does not vary with stage of plant cycle, so selection for increased salt tolerance can be carried out at the initial growth stage. Secondly, it is found that there is great variation of salt tolerance in sunflower. Low uptake of Cl?, high uptake of K+, and maintenance of high K:Na ratios and K+ versus Na+ selectivity in the leaves and possibly the accumulation of organic osmotica such as soluble carbohydrates, soluble proteins, proline and free amino acids seem to be the important components of salt tolerance in sunflower.  相似文献   

6.
Salinity reduces crop yield by limiting water uptake and causing ion‐specific stress. Soybean [Glycine max (L.) Merr.] is sensitive to soil salinity. However, there is variability among soybean genotypes and wild relatives for salt tolerance, suggesting that genetic improvement may be possible. The objective of this study was to identify differences in salt tolerance based on ion accumulation in leaves, stems and roots among accessions of four Glycine species. Four NaCl treatments, 0, 50, 75 and 100 mm , were imposed on G. max, G. soja, G. tomentella and G. argyrea accessions with different levels of salinity tolerance. Tolerant genotypes had less leaf scorch and a greater capacity to prevent Na+ and Cl? transport from soil solution to stems and leaves than sensitive genotypes. Magnitude of leaf injury per unit increase in leaf Na+ or Cl? concentrations was lower in tolerant than in susceptible accessions. Also, plant injury was associated more with Na+ rather than with Cl? concentration in leaves. Salt‐tolerant accessions had greater leaf chlorophyll‐meter readings than sensitive genotypes at all NaCl concentrations. Glycine argyrea and G. tomentella accessions possessed higher salt tolerance than G. soja and G. max genotypes.  相似文献   

7.
Four breviaristatum (short awned and semi-dwarf) barley mutants; ari-e.1, ari-e.119, ari-e.156 and ari-e.228 were compared with other semi-dwarf mutants; Golden Promise, Alf, Pallas and Diamant along with their non-mutant parents; Bonus, Foma, Maythorpe, Bomi and Valticky, for response to salt stress. Plants were exposed to hydroponic salt treatments (NaCl at 25 and 175 mol m-3) for 4 weeks, after which response was measured in terms of shoot dry weight, sodium content and δ13C. In general ari-e mutants and Golden Promise had significantly lower Na+ contents than the other mutants. They also had significantly more negative δ13C values than the other lines in stressed (175 mol m-3 NaCl) conditions. There was a positive correlation (r = 0.71, p < 0.01) between shoot Na+ and δ13C values so that δ13C became less negative with increasing Na+ content. Shoot dry weights were compared to shoot Na+ and δ13C values. The ari-e and Golden Promise mutants showed less reduction in dry matter production in salt stress relative to the control treatment than all the other lines. The data suggest that ari-e mutants and Golden Promise are better adapted to salt stressed environments than the other lines examined. Tests for gibberellic acid sensitivity revealed that ari-e mutants and Golden Promise responded weakly to GA3, while other dwarf mutants Pallas, Diamant and Alf along with their parents Bonus, Foma, Maythorpe, Valticky and Bomi were highly sensitive. Our results support previous findings that ari-e mutants and the GPert mutant are allelic. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Sixty Nicotiana species were examined for tolerance against various osmotica for seed germination and seedling growth in vitro. The species showed a wide variety of tolerance, and based on the results of the in vitro tests, 31 species were selected and further evaluated for salt and drought tolerance in a glasshouse. The degrees of tolerance of germination among the 57 species toward NaCl were approximately related to those toward mannitol, indicating that the osmolarity plays a majorrole in seed germination. However, the responses during the seedling growth differed in NaCl and mannitol or drought, and there was no correlation between salt and drought tolerance. Based on the responses in vitro and in the glasshouse, N. paniculata and N. excelsior were selected as the salt tolerant species, and N. arentsii as the salt sensitive species. The degrees of accumulation of dry matter and of Na+ in the leaves were different in the two tolerant species; during NaCl treatment, N. paniculata and N. arentsii accumulated less dry matter relative to the control plants than N. excelsior, and N. paniculata accumulated more Na+ in its leaves than N. excelsior and N. arentsii. It is assumed that the two salt tolerant species have different mechanisms for tolerance to the salt. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
High germination percentage with vigorous early growth is preferred for harvesting good wheat stand under saline soils. Therefore, an attempt for rapid screening of wheat genotypes for salt tolerance was made in this study. Eleven wheat genotypes including salt tolerant check Kiran-95were subjected to salinity (120 and 160 mMNaCl) along with non-saline control. Results showed a gradual decrease in seed germination and restricted seedling growth in tested wheat genotypes in response to increasing NaCl concentration in nutrient solution. Among the genotypes, NIA-AS-14-6 and NIA-AS-14-7 exhibited more sensitivity towards the salt stress at the germination stage but NIA-AS-14-6 performed quite satisfactorily later on at the seedling stage. Wheat genotypes NIA-AS-14-2, NIA-AS-14-4, NIA-AS-14-5, NIA-AS-14-10, and Kiran-95 showed better performance in term of root-shoot length, plant biomasses (fresh and dry), K+:Na+ ratio with least Na+ content, and high accumulation of K+ at higher levels of NaCl stress. On the basis of overall results, the categorization of genotypes was carried out as sensitive, moderately tolerant, and tolerant. Wheat genotypes NIA-AS-14-2, NIA-AS-14-4, NIA-AS-14-5, NIA-AS-14-10, and Kiran-95 grouped as tolerant, moderately salt tolerant group comprised of NIA-AS-14-1, NIA-AS-14-3, NIA-AS-14-6, and NIA-AS-14-8, whereas, NIA-AS-14-7 and NIA-AS-14-9 were found sensitive to salt stress. Principal component analysis revealed that components I and II contributed 70 and 16.5%, respectively. All growth parameters are associated with each other except RDW. In addition to growth traits, low Na+ and improved K+ content with better K+:Na+ ratio may be used for screening of salt tolerance in wheat as potential physiological criteria.  相似文献   

10.
以紫花苜蓿(Medicago sativa)为材料, 利用反转录PCR方法分离了NHX1全长cDNA(命名为MsNHX1)。Southern杂交结果表明, 在紫花苜蓿中存在一个小的液泡型Na+/H+逆向转运蛋白基因家族。序列分析表明, 该基因所编码的蛋白与拟南芥、水稻和棉花中液泡型Na+/H+逆向转运蛋白具有较高的同源性。在洋葱表皮细胞中瞬时表达MsNHX1-GFP融合基因的结果表明, MsNHX1定位在液泡膜上。Northern杂交发现该基因的表达受高浓度NaCl诱导。MsNHX1在盐敏感酵母突变体中表达可以提高转化子对NaCl的耐受性, 说明MsNHX1具有转运Na+的功能。在拟南芥中表达MsNHX1能显著提高植株耐受盐胁迫的能力; 而且在受到盐胁迫时, 转基因植株比野生型的渗透调节能力更强, 生物膜受破坏程度降低, 光合能力增强。以上研究结果表明MsNHX1是一个液泡膜Na+/H+逆向转运蛋白, 在植物耐受盐胁迫过程中起重要作用。  相似文献   

11.
Soil salinity is a worldwide issue that affects agricultural production. The understanding of mechanisms by which plants tolerate salt stress is crucial for breeding varieties for salt tolerance. In this work, a large number of wheat (Triticum aestivum and Triticum turgidum) cultivars were screened using a broad range of physiological indices. A regression analysis was then used to evaluate the relative contribution of each of these traits towards the overall salinity tolerance. In general, most of the bread wheats showed better Na+ exclusion that was associated with higher relative yield. Leaf K+/Na+ ratio and leaf and xylem K+ contents were the major factors determining salinity stress tolerance in wheat. Other important traits included high xylem K+ content, high stomatal conductance and low osmolality. Bread wheat and durum wheat showed different tolerance mechanisms, with leaf K+/Na+ content in durum wheat making no significant contributions to salt tolerance, while the important traits were leaf and xylem K+ contents. These results indicate that Na+ sequestration ability is much stronger in durum compared with bread wheat, most likely as a compensation for its lesser efficiency to exclude Na+ from transport to the shoot. We also concluded that plant survival scores under high salt stress can be used in bread wheat as a preliminary selection for Na+ exclusion gene(s).  相似文献   

12.
Summary Embryogenic calli isolated from immature embryos of four wheat cultivars were subjected to three in vitro selection methods for salt tolerance. The effect of NaCl on the selected and unselected cell lines has been investigated. The results indicated that the relative growth rate of callus decreased as the concentration of NaCl increased in both callus lines. The selected callus line gave a higher growth weight in the presence of NaCl in the medium and was highly significant as compared with unselected callus line across medium protocols in all wheat cultivars. The dry weight of both kinds of callus lines of all wheat cultivars increased markedly with increasing NaCl concentration in most cases. The Na+ and Cl- contents of both callus lines were increased with increasing salinity levels while K+ content was decreased. The selected callus line of each cultivar at the same salinity level produced significant amounts of Na+, K+ and Cl- higher than the unselected callus line in most salinity levels. However, the unselected callus lines of the cultivars Giza-157 and Sakha-90 at the same salinity level produced significant amounts of K+ higher than the selected callus line in most salinity levels. The proline content of both kinds of callus lines for all wheat cultivars was increased with increasing salinity level. However, the selected callus line gave a significantly higher proline content than the unselected callus line in all wheat cultivars at the same Salinity level. Results from the in vitro selection for NaCl tolerance showed that the stepwise method of increasing NaCl in the medium was more effective for plant regeneration than other methods.  相似文献   

13.
Evaluation of salt tolerance in rice genotypes by physiological characters   总被引:5,自引:0,他引:5  
The use of physiological characters as selection criteria in salt tolerance breeding requires the identification of the contribution each individual character makes to salt tolerance. Rice genotypes were evaluated for salt tolerance in terms of grain yield and physiological characters. Plants of twelve genotypes were grown in sand tanks in a greenhouse and irrigated with Yoshida nutrient solution. Sodium chloride and calcium chloride (5:1 molar ratio) were added at two concentrations to give moderate (4.5 dS m-1) and high (8.3 dS m-1) salinity treatments. One set of plants was harvested at 635 °Cċd (accumulative thermal time) after planting to determine LAI and mineral ion concentrations. Another set of plants was allowed to grow to maturity. High genotypic diversity for LAI and shoot ion contents was observed. LAI contributed the most to the variation of the grain yield under salt stress. Significant correlations between LAI and yield components in both salt-tolerant and-sensitive genotypes further confirmed the significant contribution of LAI to grain yield. K-Na selectivity increased with increasing salinity. Conversely, Na-Ca selectivity decreased with increasing salinity. Significant correlations were identified between grain yield and both Na-Ca and K-Na selectivity. Highly significant (p<0.001) correlations were identified between Na-Ca selectivity and the rankings among genotypes for grain yield. Thus, Na-Ca selectivity could be one salt tolerance component and an useful selection criterion in screening for salt tolerance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Salinity stress causes ion toxicity and osmotic imbalances, leading to oxidative stress in plants. Arbuscular mycorrhizae (AM) are considered bio‐ameliorators of saline soils and could develop salinity tolerance in crop plants. Pigeonpea exhibits strong mycorrhizal development and has a high mycorrhizal dependency. The role of AM in enhancing salt tolerance of pigeonpea in terms of shoot and root dry weights, phosphorus and nitrogen contents, K+ : Na+, Ca2+ : Na+ ratios, lipid peroxidation, compatible solutes (proline and glycine betaine) and antioxidant enzyme activities was examined. Plants were grown and maintained at three levels of salt (4, 6 and 8 dSm?1). Stress impeded the growth of plants, led to weight gain reductions in shoots as well as roots and hindered phosphorus and nitrogen uptake. However, salt‐stressed mycorrhizal plants produced greater root and shoot biomass, had higher phosphorus and nitrogen content than the corresponding uninoculated stressed plants. Salt stress resulted in higher lipid peroxidation and membrane stability was reduced in non‐AM plants. The presence of fungal endophyte significantly reduced lipid peroxidation and membrane damage caused by salt stress. AM plants maintained higher K+ : Na+ and Ca2+ : Na+ ratios than non‐AM plants under stressed and unstressed conditions. Salinity induced the accumulation of both proline and glycine betaine in AM and non‐AM plants. The quantum of increase in synthesis and accumulation of osmolytes was higher in mycorrhizal plants. Antioxidant enzyme activities increased significantly with salinity in both mycorrhizal and non‐mycorrhizal plants. In conclusion, pigeonpea plants responded to an increased ion influx in their cells by increasing the osmolyte synthesis and accumulation under salt stress, which further increased with AM inoculation and helped in maintaining the osmotic balance. Increase in the antioxidant enzyme activities in AM plants under salt stress could be involved in the beneficial effects of mycorrhizal colonization.  相似文献   

15.
Salinity is known to reduce chickpea yields in several regions of the world. Although ion toxicity associated with salinity leads to yield reductions in a number of other crops, its role in reducing yields in chickpea growing in saline soils is unclear. The purpose of this study was to (i) identify the phenological and yield parameters associated with salt stress tolerance and sensitivity in chickpea and (ii) identify any pattern of tissue ion accumulation that could relate to salt tolerance of chickpea exposed to saline soil in an outdoor pot experiment. Fourteen genotypes of chickpea (Cicer arietinum L.) were used to study yield parameters, of which eight were selected for ion analysis after being grown in soil treated with 0 and 80 mm NaCl. Salinity delayed flowering and the delay was greater in sensitive than tolerant genotypes under salt stress. Filled pod and seed numbers, but not seed size, were associated with seed yield in saline conditions, suggesting that salinity impaired reproductive success more in sensitive than tolerant lines. Of the various tissues measured for concentrations of Cl?, Na+ and K+, higher seed yields in saline conditions were positively correlated with higher K+ concentration in seeds at the mid‐filling stage (R2 = 0.55), a higher K+/Na+ ratio in the laminae of fully expanded young leaves (R2 = 0.50), a lower Na+ concentration in old green leaves (R2 = 0.50) and a higher Cl? concentration in mature seeds. The delay in flowering was associated with higher concentrations of Na+ in the laminae of fully expanded young leaves (R2 = 0.61) and old green leaves (R2 = 0.51). We conclude that although none of the ions appeared to have any toxic effect, Na+ accumulation in leaves was associated with delayed flowering that in turn could have played a role in the lower reproductive success in the sensitive lines.  相似文献   

16.
Summary Aluminum toxicity due to the cation Al+3 is a major factor limiting yields in acid soils. Wide genetic variability to aluminum tolerance is found in oat genotypes. The objectives of this study were to determine the number of genes controlling aluminum tolerance in oats and to verify if any detrimental effects were present of the aluminum tolerance genes on grain yield and grain quality in Al+3free soils. Aluminum tolerance was estimated as the average regrowth of the main root after exposure to toxic levels of Al+3 in a hydroponic solution under controlled conditions. The number of genes controlling that trait was estimated from the distribution of the average root regrowth frequencies in a population of 333 recombinant inbred lines (RIL's) in generations F5:6 and F5:7. The effects on grain yield and grain quality were assessed in a subpopulation of 162 RIL's chosen based on their aluminum tolerance response. Aluminum tolerance in the evaluated population was controlled by one dominant major gene with the tolerant genotypes carying Al a Al a and the sensitive ones al a al a alleles. No detrimental effects of the Al a allele on grain yield or grain quality were detected.Part of the Master of Science dissertation of the first author  相似文献   

17.
The complexity and polygenic nature of the salt tolerance trait in plants needs to develop a multiple indicator in the screening process. The mentioned issue led us to carry out an experiment to identify tolerant genotypes through multiple parameters in Andrographis paniculata. For this purpose, the 40-days seedlings were grown in different salinity levels (control, 4, 8, 12 and 16?dS?m?1) on Hoagland??s medium. The results indicated that salinity had a significant effect on the morphological, physiological and biochemical traits. All measured morphological traits, and chlorophyll, K+ and Ca2+ content were significantly decreased with increasing salinity levels, while proline and Na+ content increased. The present exploration revealed that, salt tolerance index (STI), using the multiple regression model, demonstrated a more stable trend than the single variable assay (total dry weight). Furthermore, STI based on multiple regression analysis gives an accurate definition of salt-tolerant individuals. Under salt stress, tolerant accessions had high STI and produced higher proline, K+ and Ca2+, and lower Na+ content than sensitive accessions. Cluster analysis based on related traits to STI, indicated high similarity in each group. These outcomes can be utilized to evaluate the salt tolerance threshold in the species and may have a great advantage over conventional methods. Probably, our upshots can be applied in the next breeding programs to develop salt-tolerant varieties.  相似文献   

18.
In a pot experiment the responses of two alfalfa cultivars differing in salt tolerance were evaluated in terms of root nitrogen remobilization rates (RNRR) and their relationship with the ionic status of the plants. A split‐plot design with factorial treatments in three replications was used. Three levels of salinity stress with electrical conductivities (ECs) of 1.2, 7 and 12 ds m?1 were established in irrigation water by using tap water with and without NaCl. The average data taken from plant materials at three defoliations were used for statistical analysis. Each time, plant materials were harvested at the 10 % flowering stage and then 10 days later. From the results observed, it was found that alfalfa shoot growth is highly dependent on RNRR under salinity stress. However, the total N reserves within the roots do not appear to be a limiting factor. The high positive correlation coefficient between shoot K+/Na+ and RNRR (r = 0.77; P = 0.01) indicates that lower demands for N because of diminished metabolic activities within the shoot sink may have reduced the rates of root N utilization. Unlike in some other species, the shoot K+ concentration and contents of alfalfa plants were significantly reduced by increasing salt stress. However, a relatively suitable K+/Na+ ratio of 7.1 is maintained in the shoots at the second level of salinity, as lowering the rates of salt induced an increase in Na+ uptake (Na exclusion). The salt tolerance recognized in the Bami cultivar may be attributed to the 339 % increase in its selectivity rates of K+ over Na+ in ion transport from the soil to the shoots, as the shoot Na+ content did not increase with increasing salt levels.  相似文献   

19.
Developing more stress‐tolerant crops will require greater knowledge of the physiological basis of stress tolerance. Here, we explore how biomass declines in response to salinity relate to leaf traits across 20 genotypes of cultivated sunflower (Helianthus annuus). Plant growth, leaf physiological traits and leaf elemental composition were assessed after 21 days of salinity treatments (0, 50, 100, 150 or 200 mM NaCl) in a greenhouse study. There was a trade‐off in performance such that vigorous genotypes, those with higher biomass at 0 mM NaCl, had both a larger absolute decrease and proportional decrease in biomass due to increased salinity. More vigorous genotypes at control were less tolerant to salinity. Contrary to expectation, genotypes with a low increase in leaf Na and decrease in K:Na were not better at maintaining biomass with increasing salinity. Rather, genotypes with a greater reduction in leaf S and K content were better at maintaining biomass at increased salinity. While we found an overall trade‐off between sunflower vigour and salt tolerance, some genotypes were more tolerant than expected. Further analysis of the traits and mechanisms underlying this trade‐off may allow us to breed these into high‐vigour genotypes in order to increase their salt tolerance.  相似文献   

20.
Soil salinity is a major limitation to legume production in many areas of the world. The salinity sensitivity of soybean was studied to determine the effect of salinity on seed germination, shoot and root dry weights, and leaf mineral contents. Three soybean cultivars, Lee, Coquitt, and Clark 63, were planted in soils of different salinity levels. The electrical conductivity (EC) of the soils used in this experiment was 0.5 dS m?1. The soil salinity treatments were 0.5, 2.5 4.5, 6.5 and 8.5 dS m?1. Saline drainage water from a drainage canal with an EC of 15 dS m?1 was used to treat the soil samples in order to obtain the desired salinity levels. Germination percentages were recorded 10 days after planting. Shoot and root dry weights of 45‐day‐old plants were measured. Nutrient concentrations for Na+, K+, Ca2+, Mg2+ and Cl? were determined. Germination percentages were significantly reduced with increasing salinity levels. The cultivar Lee was less affected by salinity stress than Coquitt and Clark 63. At 8.5 dS m?1 a significant reduction in plant height was found in all three cultivars. However, Lee plants were taller than plants of the other two cultivars. Salinity stress induced a significant increase in leaf sodium (Na+) and chloride (Cl?) in all cultivars. However, the cultivar Lee maintained lower Na+ and Cl+ concentrations, a higher potassium (K+) concentration and a higher K+/Na+ ratio at higher salinity levels than Coquitt and Clark 63. Saline stress reduced the accumulation of K+, calcium (Ca2+) and magnesium (Mg2+) in the leaves of the cultivars studied. This study suggests that Lee is the most tolerant cultivar, and that there is a relationship between the salt tolerance of the cultivar and macronutrient accumulation in the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号