首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptation of wheat (Triticum aestivum L.) to high temperatures could be improved by introducing alien genes from wild relatives. We evaluated the responses of wheat-Leymus racemosus chromosome introgression lines to high temperature to determine their potentiality for developing improved wheat cultivars. Introgression lines and their parent Chinese Spring were evaluated in a growth chamber at the seedling stage and in the field at the reproductive stage in two heat-stressed environments in Sudan. Optimum and late planting were used to ensure exposure of the plants to heat stress at the reproductive stage. The results revealed the impact of several Leymus chromosomes in improving wheat adaptation and tolerance to heat. Three lines possessed enhanced adaptation, whereas two showed high heat tolerance. Two addition lines showed a large number of kernels per spike, while one possessed high yield potential. Grain yield was correlated negatively with the heat susceptibility index, days to heading and maturity and positively with kernel number per spike and triphenyl tetrazolium chloride assay under late planting. The findings suggest that these genetic stocks could be used as a bridge to introduce the valuable Leymus traits into a superior wheat genetic background, thus helping maximize wheat yield in heat-stressed environments.  相似文献   

2.
Aluminum (Al) toxicity is the key factor limiting wheat production in acid soils. Soil liming has been used widely to increase the soil pH, but due to its high cost, breeding tolerant cultivars is more cost-effective mean to mitigate the problem. Tolerant cultivars could be developed by traditional breeding, genetic transformation or introgression of genes from wild relatives. We used 30 wheat alien chromosome addition lines to identify new genetic resources to improve wheat tolerance to Al and to identify the chromosomes harboring the tolerance genes. We evaluated these lines and their wheat background Chinese Spring for Al tolerance in hydroponic culture at various Al concentrations. We also investigated Al uptake, oxidative stress and cell membrane integrity. The L. racemosus chromosomes A and E significantly enhanced the Al tolerance of the wheat in term of relative root growth. At the highest Al concentration tested (200 μM), line E had the greatest tolerance. The introgressed chromosomes did not affect Al uptake of the tolerant lines. We attribute the improved tolerance conferred by chromosome E to improved cell membrane integrity. Chromosome engineering with these two lines could produce Al-tolerant wheat cultivars.  相似文献   

3.
Summary In this study a new trigeneric hybrid involving species from the Triticum, Secale and Leymus was produced by crossing octoploid triticale (Jinsong49) with octoploid tritileymus (950059). The chromosome constitution of the parental amphiploid, trigeneric hybrid and its progenies were studied. Genomic in situ hybridization (GISH) analysis showed that Jinsong49 and 950059 had 44 wheat chromosomes, and 12 rye chromosomes, 12 L. mollis chromosomes respectively. The mean meiotic configuration of trigeneric hybrid F1 was 13.17 I + 20.82 II + 0.37 III + 0.02 IV. GISH results indicated the trigeneric hybrid F1 had 6 rye chromosomes and 6 Leymus chromosomes. In the selfed derivatives of the trigeneric hybrids, while the number of selfed generation increased, the mean number of chromosomes tends to decrease gradually and slowly. GISH results revealed that most plant tested in the progeny population had 8–12 rye chromosomes, and no Leymus chromosomes were detected. The results indicated that rye chromosomes can be preferentially transmitted in the progenies of trigeneric hybrid than Leymus chromosomes.  相似文献   

4.
Leymus mollis (Trin.) Pilger is resistant to drought, cold, and many fungal and bacterial diseases, and it grows well on barren and salty soils. It has short, strong stems and large spikes with multiple spikelets. It provides an excellent material for wheat (Triticum aestivum L.) improvement. An octoploid Tritileymus line M842-12 was crossed with T. durum L. cv. Trs-372 and among F5 progenies screened a multiple alien substitution line (05DM6) was identified. This line has 2n = 42 chromosomes and forms 21 bivalents in the metaphase I of meiosis. Genomic in situ hybridization analysis of the root tips and pollen mother cells indicated that 05DM6 carried 36 chromosomes from wheat and six chromosomes from L. mollis, and these six, presumed to be from the Ns genome, formed three bivalents. DNA marker analysis showed that relative to wheat, 05DM6 lost chromosomes 1, 5, and 6 from the D-genome but retained chromosomes 2, 3, 4, and 7, implying that the retained L. mollis chromosomes belong to homoeologous groups 1, 5 and 6. Electrophoretic analysis of the storage proteins confirmed that a group 1 homoeologue from L. mollis was present in 05DM6. The 05DM6 substitution line has reduced height relative to its parents and is remarkably resistant to stripe rust. This multiple alien substitution line can be employed as a bridge parent in wheat breeding and chromosome engineering.  相似文献   

5.
Summary Octoploid Tritileymus was the partial amphiploid obtained from Triticum aestivum × Leymus mollis, its chromosome constitution was 14 Leymus chromosomes and 42 wheat chromosomes. In the pollen development of Tritileymus, some abnormalities were observed, such as the absence of tetrad formation, cytomixis of microspores, irregular shape of some microspores and multi-germination pores, symmetrical first mitosis, chromosomes or chromatids randomly dispersed in the cytoplasm of microspore.  相似文献   

6.
Salt-affected soils are generally classified into two main categories: saline and sodic (alkaline). Developing and using soybean (Glycine max (L.) Merr) cultivars with high salt tolerance is an effective way of maintaining sustainable production in areas where soybean growth is threatened by salt stress. Early classical genetics studies revealed that saline tolerance was conditioned by a single dominant gene. Recently, a series of studies consistently revealed a major quantitative trait locus (QTL) for saline tolerance located on linkage group N (chromosome 3) around the SSR markers Satt255 and Sat_091; other minor QTLs were also reported. In the case of sodic tolerance, most studies focused on iron deficiency caused by a high soil pH, and several QTLs associated with iron deficiency were identified. A wild soybean (Glycine soja Sieb. & Zucc.) accession with high sodic tolerance was recently identified, and a significant QTL for sodic tolerance was detected on linkage group D2 (chromosome 17). These studies demonstrated that saline and sodic tolerances were controlled by different genes in soybean. DNA markers closely associated with these QTLs can be used for marker-assisted selection to pyramid tolerance genes in soybean for both saline and sodic stresses.  相似文献   

7.
Galactinol synthase (GolS) is considered to be a key regulator of the biosynthesis of Raffinose family oligosaccharides (RFOs). Accumulation of RFOs has been reported to play a role in protection against abiotic stresses. We identified two cDNAs encoding galactinol synthase from wheat (Triticum aestivum L.), which we designated as TaGolS1 and TaGolS2. Expression of the two TaGolS genes was induced by cold stress but not by drought, heat stress or ABA treatment in wheat. We generated transgenic lines of rice (Oryza sativa L.) constitutively overexpressing TaGolS1 or TaGolS2. These transgenic plants accumulated significantly higher levels of galactinol and raffinose than did wild-type plants and exhibited enhanced cold-stress tolerance. The results demonstrate the involvement of galactinol and raffinose in the development of chilling stress in rice and indicate that the genetic modification of the biosynthesis of RFOs by transformation with GolS genes could be an effective method for enhancing chilling-stress tolerance in rice.  相似文献   

8.
We developed a new disomic addition line M11028‐1‐1‐5 (2n = 44 = 21” + 1”) from a cross between wheat cv. ‘7182’ and octoploid Tritileymus M47 (2= 8x = 56, AABBDDN sNs ). Cytological observations demonstrated that M11028‐1‐1‐5 contained 44 chromosomes and formed 22 bivalents during meiotic metaphase I. The genomic in situ hybridization (GISH) investigations showed this line contained 42 wheat chromosomes and a pair of L. mollis chromosomes. SSR, EST and PCR‐based landmark unique gene (PLUG) markers were screened to determine the homoeologous relationships of the introduced L. mollis chromosomes in wheat background. Nine markers, i.e. Xwmc256, Xgpw312, Swes123, CD452568, BF483643, BQ169205, TNAC1748, TNAC1751 and TNAC1752, all of which were located on the homoeologous group 6 chromosomes of common wheat, amplified bands unique to L. mollis in M11028‐1‐1‐5. Gliadin analysis also confirmed that the added chromosomes in M11028‐1‐1‐5 were correlated with the sixth group chromosome. This indicated that M11028‐1‐1‐5 contained a pair of introduced L. mollis chromosome belonging to homoeologous group 6, which we designated it as Lm#6 Ns disomic addition line. This is the first report of a common wheat–L. mollis disomic addition line.  相似文献   

9.
Previous studies in several Triticeae species have suggested that salt tolerance is a polygenic trait, but that genes on some chromosomes confer better tolerance to salt stress than others. This suggests an intriguing possibility that there may be a similar basis for salt tolerance in the species of the tribe Triticeae. In this study, chromosomal control of the tolerance to sudden salt stress, measured as the mean rate of leaf elongation in solution cultures with a single increment of 200 mM NaCl, was investigated in the genomes of cultivated barley (Hordeum vulgare L.), rye (Secale cereale L.), and Dasypyrum villosum (L.) Can-dargy by using disomic addition lines of individual pairs of chromosomes or chromosome arms of each of the three species in the ‘Chinese Spring’ wheat genetic background. It was observed that the chromosomes of homoeologous groups 3, 4, and 5 in barley, 5 and 7 in rye, and 4 and 6 in D. villosum carry loci with significant positive effects on salt tolerance. Increased doses of chromosomes of group 2, however, reduce or do not increase the tolerance to salt stress. These results are in agreement with a previous study of the tolerance of this salt stress regime in wheat and wheatgrass Lophopyrum elongatum. A ranking analysis of the chromosomal effects within each genome of the five Triticeae species investigated in this and previous studies revealed that the chromosomes of homoeologous groups 3 and 5 consistently confer large positive effects on the tolerance of sudden salt stress, while the chromosomes of homoeologous group 2 in increased dose have no or negative effects on the tolerance. This strongly suggests that species of the tribe Triticeae share some common genetic mechanisms of tolerance of sudden salt stress. The findings in this study give credence to the proposal that wild relatives can be exploited in the development of wheat cultivars with greater tolerance to salt stress.  相似文献   

10.
Tea is one of the most popular beverages in the world and the tea plant, Camellia sinensis (L.) O. Kuntze, is an important crop in many countries. To increase the amount of genomic information available for C. sinensis, we constructed seven cDNA libraries from various organs and used these to generate expressed sequence tags (ESTs). A total of 17,458 ESTs were generated and assembled into 5,262 unigenes. About 50% of the unigenes were assigned annotations by Gene Ontology. Some were homologous to genes involved in important biological processes, such as nitrogen assimilation, aluminum response, and biosynthesis of caffeine and catechins. Digital northern analysis showed that 67 unigenes were expressed differentially among the seven organs. Simple sequence repeat (SSR) motif searches among the unigenes identified 1,835 unigenes (34.9%) harboring SSR motifs of more than six repeat units. A subset of 100 EST-SSR primer sets was tested for amplification and polymorphism in 16 tea accessions. Seventy-one primer sets successfully amplified EST-SSRs and 70 EST-SSR loci were polymorphic. Furthermore, these 70 EST-SSR markers were transferable to 14 other Camellia species. The ESTs and EST-SSR markers will enhance the study of important traits and the molecular genetics of tea plants and other Camellia species.  相似文献   

11.
陈国跃  董攀  魏育明  何坤  李伟  郑有良 《作物学报》2007,33(11):1782-1787
利用已知植物抗病基因编码氨基酸保守区域NBS-LRR(核苷酸结合位点-富亮氨酸区域)设计了42个简并引物组合,运用抗病基因类似物多态性(resistance gene analog polymorphism,RGAP)分子标记技术,对中国春、中国春-长穗偃麦草双二倍体及其附加系和代换系基因组DNA进行PCR扩增。结果表明,共有38对引物组合获得扩增产物,其中35对在普通小麦中国春、中国春-长穗偃麦草双二倍体中能扩增出多态性,平均每个引物组合扩增出38.5个片段。在普通小麦背景下,共获得275条长穗偃麦草E基因组多态性谱带,占扩增总谱带数的17.44%,揭示出在普通小麦背景下E基因组和普通小麦A、B、D基因组间的高丰度遗传变异。另外,利用RGAP分子标记技术,构建了一套完整的长穗偃麦草1E~7E染色体的特异RGAP标记。为小麦背景中长穗偃麦草外源遗传物质的快速检测提供了新途径。  相似文献   

12.
Drought and salt tolerances are complex traits and controlled by multiple genes, environmental factors and their interactions. Drought and salt stresses can result in more than 50% yield loss in Upland cotton (Gossypium hirsutum L.). G. barbadense L. (the source of Pima cotton) carries desirable traits such as tolerance to abiotic and biotic stress along with high fiber quality. However, few studies have been reported on mapping quantitative trait loci (QTL) for abiotic stress tolerance using a permanent bi-parental population in multiple tests. The transfer of drought and salt tolerance from Pima to Upland cotton has been a challenge due to interspecific hybrid breakdown. This issue may be overcome by using introgression lines with genes transferred from Pima to Upland cotton. In this study, four replicated tests were conducted in the greenhouse each for drought and salt tolerance along with another test conducted in a field for drought tolerance using an Upland recombinant inbred line population of TM-1/NM24016 that has a stable introgression from Pima cotton. The objectives of the study were to investigate the genetic basis of drought and salt tolerance and to identify genetic markers associated with the abiotic stress tolerance. A total of 1004 polymorphic DNA marker loci including RGA-AFLP, SSR and GBS-SNP markers were used to construct a genetic map spanning 2221.28 cM. This population together with its two parents was evaluated for morphological, physiological, yield and fiber quality traits. The results showed that drought under greenhouse and field conditions and salt stress in the greenhouse reduced cotton plant growth at the seedling stage, and decreased lint yield and fiber quality traits in the field. A total of 165 QTL for salt and drought tolerance were detected on most of the cotton chromosomes, each explaining 5.98–21.43% of the phenotypic variation. Among these, common QTL for salt and drought tolerance were detected under both the greenhouse and field conditions. This study represents the first study to report consistent abiotic stress tolerance QTL from multiple tests in the greenhouse and the field that will be useful to understand the genetic basis of drought and salt tolerance and to breeding for abiotic stress tolerance using molecular marker-assisted selection in cotton.  相似文献   

13.
利用病毒介导基因沉默方法研究小麦抗光氧化相关基因   总被引:1,自引:0,他引:1  
为了鉴定可能的小麦抗光氧化基因,利用大麦条斑病毒(barley stripe mosaic virus,BSMV)介导的基因沉默(virus-induced gene silencing, VIGS)系统,对6个小偃54响应强光的基因进行了沉默表达研究。以BSMV:GFP植株为对照,分析了这些基因的减量表达植株在低温强光、DCMU、MV及H2O2等处理下的PSI最大光化学效率(Fv/Fm)和光合性能指数(P.I.)、MDA含量及整株生物量变化。结果显示,Ta23008和Ta92165均参与小麦对低温强光、DCMU、MV和H2O2等胁迫的响应过程;Ta106078参与小麦对DCMU、MV和H2O2等胁迫的响应过程;Ta27787参与小麦对低温强光、DCMU和H2O2等胁迫的响应过程;Ta24695参与小麦对低温强光和H2O2胁迫的响应过程;而Ta119251仅参与小麦对DCMU的响应过程。此外,Ta23008、Ta92165、Ta106078、Ta119251四个基因被抑制表达后,其转化株系的生物量比对照显著降低,推测其可能参与调控小麦生物量的积累。  相似文献   

14.
Grain hardness is an important quality trait that influences product development in wheat. This trait is governed by variation in puroindoline proteins (PINA and PINB). Our study evaluated 551 Indian wheat germplasm lines for diversity in Pina and Pinb genes. Eighty-two lines were shortlisted for full length sequencing and grain hardness studies. Sequencing studies identified six unknown alleles: two for the Pina gene and four for the Pinb gene. Five of them were novel with non-synonymous changes in the corresponding amino acid sequences. Identified mutations in the deduced mature proteins and their pre- and pro-peptides influenced the hardness characteristics of the grain. We classified these 82 varieties into different hardness categories with reference to international and Indian systems of classification. The majority of Indian wheat varieties were categorized as hard. This study revealed that unexplored Indian wheat germplasm can be a good source of genetic variability for both Pina and Pinb genes, helping in marker-assisted breeding and in obtaining wheat with different textural properties.  相似文献   

15.
Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5′ upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times.  相似文献   

16.
Quantitative trait loci (QTLs) with additive (a), additive × additive (aa) epistatic effects, and their treatmental interactions (at and aat) were studied under salt stress and normal conditions at seedling stage of wheat (Triticum aestivum L.). A set of 182 recombinant inbred lines (RILs) derived from cross Xiaoyan 54 × Jing 411 were used. A total of 29 additive QTLs and 17 epistasis were detected for 12 traits examined, among which eight and seven, respectively, were identified to have QTL × treatment effects. Physiological traits rather than biomass traits were more likely to be involved in QTL × treatment interactions. Ten intervals on chromosomes 1A, 1D, 2A (two), 2D, 3B, 4B, 5A, 5B and 7D showed overlapping QTLs for different traits; some of them represent a single locus affecting different traits and/or the same trait under both treatments. Eleven pairs of QTLs were detected on seemingly homoeologous positions of six chromosome groups of wheat, showing synteny among the A, B and D genomes. Ten pairs were detected in which each pair was contributed by the same parent, indicating a strong genetic plasticity of the QTLs. The results are helpful for understanding the genetic basis of salt tolerance in wheat and provide useful information for genetic improvement of salt tolerance in wheat by marker-assisted selection.  相似文献   

17.
Aegilops tauschii Coss. is the D-genome donor to hexaploid bread wheat (Triticum aestivum) and is the most promising wild species as a genetic resource for wheat breeding. To study the population structure and diversity of 81 Ae. tauschii accessions collected from various regions of its geographical distribution, the genomic representation of these lines were used to develop a diversity array technology (DArT) marker array. This Ae. tauschii array and a previously developed DArT wheat array were used to scan the genomes of the 81 accessions. Out of 7500 markers (5500 wheat and 2000 Ae. tauschii), 4449 were polymorphic (3776 wheat and 673 Ae. tauschii). Phylogenetic and population structure studies revealed that the accessions could be divided into three groups. The two Ae. tauschii subspecies could also be separately clustered, suggesting that the current taxonomy might be valid. DArT markers are effective to detect very small polymorphisms. The information obtained about Ae. tauschii in the current study could be useful for wheat breeding. In addition, the new DArT array from this Ae. tauschii population is expected to be an effective tool for hexaploid wheat studies.  相似文献   

18.
Drought tolerance in plants is a complex trait involving morphological, physiological, and biochemical mechanisms. Hundreds of genes underlie the response of plants to the stress. For crops, selecting cultivars that can produce economically significant yields under drought is a priority. Potato (Solanum tuberosum L.) is considered as drought sensitive crop, although cultivar-dependent differences in tolerance have been described. Cultivar ‘Katahdin’ possesses many appropriate characteristics and is widely used for breeding purposes worldwide; it also has enhanced tolerance to drought stress. In this study, we evaluated cv. ‘Katahdin’ and a half-sib family of 17 Katahdin-derived cultivars for leaf relative water content (RWC) and tuber yield under drought stress. The yields of cultivars ‘Wauseon’, ‘Katahdin’, ‘Magura’, ‘Calrose’, and ‘Cayuga’ did not significantly decline under drought stress. Among these five, Wauseon exhibited the lowest reduction in both tuber yield and relative water content under water shortage. The data showed that ‘Wauseon’ is the most attractive cultivar for studies of molecular and physiological processes under drought and for potato breeding due to low yield losses that correspond with high RWC values. This cultivar can serve as a reservoir of potentially useful genes to develop cultivars with enhanced tolerance to this abiotic stress.  相似文献   

19.
Synthetic hexaploid wheat is an effective genetic resource for transferring agronomically important genes from Aegilops tauschii to common wheat. Wide variation in grain size and shape, one of the main targets for wheat breeding, has been observed among Ae. tauschii accessions. To identify the quantitative trait loci (QTLs) responsible for grain size and shape variation in the wheat D genome under a hexaploid genetic background, six parameters related to grain size and shape were measured using SmartGrain digital image software and QTL analysis was conducted using four F2 mapping populations of wheat synthetic hexaploids. In total, 18 QTLs for the six parameters were found on five of the seven D-genome chromosomes. The identified QTLs significantly contributed to the variation in grain size and shape among the synthetic wheat lines, implying that the D-genome QTLs might be at least partly functional in hexaploid wheat. Thus, synthetic wheat lines with diverse D genomes from Ae. tauschii are useful resources for the identification of agronomically important loci that function in hexaploid wheat.  相似文献   

20.
I. Molnár    G. Linc    S. Dulai    E. D. Nagy    M. Molnár-Láng 《Plant Breeding》2007,126(4):369-374
A spontaneously developed wheat–barley 4H(4D) disomic substitution line was identified cytogenetically using genomic in situ hybridization (GISH), multicolour fluorescent in situ hybridization (FISH) and microsatellite markers. The ability of the barley 4H chromosome to compensate for wheat 4D in response to mild drought stress was also investigated. In the barley cv. 'Betzes' and the 4H(4D) substitution line, mild osmotic stress induced intensive stomatal closure, resulting in reduced water loss through transpiration and unchanged relative water content in the leaves. As the CO2 assimilation rate remained relatively high, the water use efficiency, which is an important factor associated with drought tolerance, increased extensively under mild osmotic stress in these lines. In the case of the parental wheat genotypes, however, mild drought stress induced less intense stomatal closure and a greater decrease in the CO2 assimilation rate than in barley or in the substitution line, resulting in unaugmented or reduced water use efficiency. The results demonstrate that genes localised on the 4H chromosome of barley were able to increase the water use efficiency of the wheat substitution line, which is suitable for improving wheat drought tolerance through intergeneric crossing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号