首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We examined collembolan food preference for fungal mycelium grown on copper-contaminated medium, and the relationship between copper content, food selectivity and collembolan fitness when fed contaminated mycelium.To clarify whether collembolan food selectivity is related to fitness parameters, Folsomia candida were fed mycelium of the dark-pigmented fungus Alternaria alternata grown on medium with different copper concentrations. Copper-contaminated food (fungus grown on 50, 125, 250 and 500 μg Cu g?1 medium, fresh wt.) was offered together with untreated food for 4 weeks. F. candida fed selectively on the provided mycelium and discriminated clearly between mycelium grown on high and low levels of contamination, distinctly preferring fungus grown on medium with a total copper concentration of 50 and 125 μg g?1. In contrast, fungus grown on highly contaminated medium (250 and 500 μg g?1) was avoided. Collembolan food preference generally matched fitness parameters. Reproduction was significantly affected by the total copper concentration of the fungal growth medium. When fed their preferred mycelium, collembolan reproduction was enhanced, whereas a diet of highly contaminated mycelium (250 or 500 μg g?1) resulted in a strong decrease in reproduction. Adult survival was affected only marginally. Even though heavy metal contamination is a potential stress factor for many soil microarthropods, F. candida is able to discriminate between high and low quality food sources, and even benefits from moderately elevated copper concentrations.  相似文献   

2.
The aim of this study was to compare the monoterpene content and distribution in litters and roots of three conifer species: Picea abies (L.) Karst, Picea sitchensis (Bong.) Carr. and Pinus sylvestris (L.). We analysed the monoterpene content of green needles, needle litter, F (fermentation) layer material and roots collected from monoculture plots. The rate of loss of monoterpenes from freshly fallen litter in the field was also studied at two monthly intervals over 10 months, to assess the length of time that monoterpenes entering the litter layer remain. Monoterpene analysis was carried out by extracting homogenised samples in hexane and identifying and quantifying the resulting monoterpenes using gas chromatography with flame ionisation detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Mean total monoterpene concentrations varied significantly between the three species examined (e.g. in freshly fallen litter 1531 ± 96, 100 ± 5 and 1175 ± 122 μg g−1 d. wt for P. abies, P. sitchensis and P. sylvestris); each species had distinctive and consistent monoterpene profiles associated with each type of tissue, and total monoterpene concentrations in green needles varied between individual trees of the same species, particularly for P. sitchensis. A substantial proportion of the monoterpene content of green needles remained in the needles after litter fall for P. abies (42%), P. sitchensis (11%) and P. sylvestris (30%). Although rates of monoterpene loss from needle litters varied initially (P. sylvestris > P. abies > P. sitchensis), the majority of the monoterpene content was lost after 4-6 months. Maximum monoterpene emission rates from decaying litter were calculated of 39 (P. abies), 1.7 (P. sitchensis) and 39 μg m−2 h−1 (P. sylvestris). Monoterpene concentrations in F layer material were very low (<10 μg g−1 d. wt). Roots, particularly in P. sylvestris, represented a significant pool of monoterpenes (185 ± 16, P. abies; 258 ± 54, P. sitchensis; 2133 ± 200 μg g−1 d. wt, P. sylvestris). The monoterpene profile was similar between roots and litter of P. sylvestris (α-pinene most abundant), and for P. sitchensis, (limonene and α-pinene most abundant), although a different pattern was observed between needle litter (most abundant β-pinene) and roots (most abundant myrcene) of P. abies. The relatively high concentrations and different profiles of monoterpenes characterised in upper organic soil horizons here emphasise the need for their influence on soil ecological processes to be assessed.  相似文献   

3.
Biological control agents like Bacillus subtilis offer an alternative and supplement to synthetic pesticides. Antibiotic production by biocontrol strains of B. subtilis can play a major role in plant disease suppression. Our current understanding of B. subtilis antibiosis comes from culture media measurements of antibiotic production and in vitro suppression of pathogens. Quantifying the antibiotic metabolite chemistry of B. subtilis biofilms growing on root surfaces provides a more accurate understanding of in vivo antibiotic production. An analytical method based on solid-phase extraction (SPE) with high-performance liquid chromatography (HPLC) and mass spectroscopy (MS) has been developed to quantify antibiotics produced by B. subtilis growing on plant roots. Cucumber (Cucumis sativus) was grown in composted soil and potting media inoculated with B. subtilis strain QST 713 (AgraQuest, USA). Two important B. subtilis antibiotics, surfactin and iturin A, were extracted from root and rhizosphere soil using acidified organic solvents followed by cleaning and concentration using SPE. HPLC and HPLC-MS were used to measure surfactin and iturin A. Rhizosphere concentrations of both antibiotics increased with plant age. For plants grown in peat-based potting media, surfactin concentrations increased from 9 μg g−1 root fresh weight (RFW) at 15 d to 30 μg g−1 RFW at 43 d. Iturin concentrations were 7 μg g−1 RFW at 15 d and 180 μg g−1 RFW at 43 d. In an initial field trial in a composted fine sandy loam, we demonstrated rhizosphere production of surfactin and iturin under competition and predation by the myriad macro- and microfauna existing in a fertile high-organic soil, with mature B. subtilis-inoculated cucumber roots yielding 33 μg g−1 RFW surfactin and 630 μg g−1 RFW iturin at 78 d.  相似文献   

4.
This study was aimed at detecting mycelial compatibility groups and variations in oxalic acid production in Sclerotinia sclerotiorum. For this purpose, 121 isolates of this plant pathogen recovered from lettuce, soybean and sunflower field crops, and grouped in 46 MCGs were tested for their ability to release oxalic acid and other organic acids to the medium. Oxalic acid production on liquid media was measured spectrophotometrically and release of organic acids was estimated by isolate abilities to discolour solid media amended with bromophenol blue. There were significant differences among MCGs in both oxalic acid and organic acids releasing, ranging the mean production of oxalic acid between 18 and 110 μg oxalic acid mg−1 dry wt. When isolates were grouped by their hosts, those obtained from soybean presented the highest release of oxalic acid (71 μg oxalic acid mg−1 dry wt), while those from sunflower showed the highest release of other acids to the medium. Solid medium discoloration was not correlated with oxalic acid concentration in liquid medium (Spearman R=−0.085; P=0.126).  相似文献   

5.
The effects of an arbuscular mycorrhizal (AM) fungus (Glomus etunicatum) on atrazine dissipation, soil phosphatase and dehydrogenase activities and soil microbial community structure were investigated. A compartmented side-arm (‘cross-pot’) system was used for plant cultivation. Maize was cultivated in the main root compartment and atrazine-contaminated soil was added to the side-arms and between them 650 or 37 μm nylon mesh was inserted which allowed mycorrhizal roots or extraradical mycelium to access atrazine in soil in the side-arms. Mycorrhizal roots and extraradical mycelium increased the degradation of atrazine in soil and modified the soil enzyme activities and total soil phospholipid fatty acids (PLFAs). Atrazine declined more and there was greater stimulation of phosphatase and dehydrogenase activities and total PLFAs in soil in the extraradical mycelium compartment than in the mycorrhizal root compartment when the atrazine addition rate to soil was 5.0 mg kg−1. Mycelium had a more important influence than mycorrhizal roots on atrazine degradation. However, when the atrazine addition rate was 50.0 mg kg−1, atrazine declined more in the mycorrhizal root compartment than in the extraradical mycelium compartment, perhaps due to inhibition of bacterial activity and higher toxicity to AM mycelium by atrazine at higher concentration. Soil PLFA profiles indicated that the AM fungus exerted a pronounced effect on soil microbial community structure.  相似文献   

6.
Plant roots normally release a complex mixture of chemicals which have important effects in the rhizosphere. Among these different root-emitted compounds, volatile isoprenoids have received very little attention, yet they may play important and diverse roles in the rhizosphere, contributing to the regulation of microbial activity and nutrient availability. It is therefore important to estimate their abundance in the rhizosphere, but so far, there is no reliable sampling method that can be used to measure realistic rates of root emissions from plants growing in field conditions, or even in pots. Here, we measured root content of volatile isoprenoids (specifically monoterpenes) for Pinus pinea, and explored the feasibility of using a dynamic bag enclosure method to measure emissions from roots of intact pot-grown plants with different degrees of root cleaning. We also investigated a passive diffusion method for exploring monoterpenes in soil at incremental distances from mature Pinus sylvestris trees growing in field conditions. Total monoterpene content of P. pinea roots was 415±50 μg g−1 fresh wt in an initial screening study, and between 688±103 and 1144±208 μg g−1 dry wt in subsequent investigations. Emissions from shaken-clean roots of intact plants and roots of intact plants washed to remove remaining soil after shaken-clean experiments were 119±14 and 26±5 μg g−1 dry wt h−1, respectively. Emissions from intact roots in soil-balls were an order of magnitude lower than from shaken-clean roots, and probably reflected the amount of emitted compounds taken up by physical, chemical or biological processes in the soil matrix surrounding the roots. Although monoterpene content was not significantly different in droughted roots, emission rates from droughted roots were generally significantly lower than from well-watered roots. Finally, passive sampling of monoterpenes in the soil at different distances from mature P. sylvestris trees in field conditions showed significantly decreasing sampling rates with increasing distance from the trunk. We conclude that it is feasible to measure volatile isoprenoid emissions from roots but the method of root preparation affects magnitude of measured emissions and therefore must be decided according to the application. We also conclude that the rhizosphere of Pinus species is a strong and previously un-characterized source of volatile isoprenoid emissions and these are likely to impact significantly on rhizosphere function.  相似文献   

7.
Five bacteria (Pseudomonas fluorescens, P. fluorescens subgroup G strain 2, P. marginalis, P. putida subgroup B strain 1 and P. syringae strain 1) and three fungi (Penicillium brevicompactum, P. solitum strain 1 and Trichoderma atroviride) were evaluated to determine their promoting effect on the growth of mature healthy tomato plants grown under hydroponic conditions. P. putida and T. atroviride were shown to improve fruit yields in rockwool and in organic medium. The production or degradation of indole acetic acid (IAA) by the two microorganisms was investigated as possible mechanisms for plant growth stimulation. Both P. putida and T. atroviride were shown to produce IAA. The production of IAA by the two microorganisms was stimulated in vitro by the addition of l-tryptophan, tryptamine and tryptophol (200 μg ml−1) in the culture medium. P. putida and T. atroviride also increased the fresh weight of both the shoot and the roots of tomato seedlings grown in the presence of increasing concentrations of l-tryptophan (up to 0.75 mM). Both microorganisms showed partial degradation of IAA in vitro when grown in a minimal medium with or without sucrose. In addition, the capacity of these microorganisms to reduce the deleterious effect of exogenous IAA was investigated using tomato seedlings. The results showed that the roots of tomato seedlings grown in the presence of increasing concentrations of IAA (0-10 μg ml−1) were significantly longer when seeds were previously treated with P. putida or T. atroviride. The reduction in the detrimental effect of IAA on root elongation could be associated with a reduced ethylene production resulting from a decrease of its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) by microbial degradation of IAA in the rhizosphere and/or by ACC deaminase activity present in both microorganisms.  相似文献   

8.
In terms of food searching and trophic interactions among soil organisms volatile signalling plays a crucial role. Still, volatile-based foraging decisions are poorly understood, especially as the dispersal and perception of cues is more restricted within the soil pore space than in simple laboratory approaches where volatiles disperse freely in the air. Focusing on the tritrophic interaction between the soil fungus Trichoderma viride, the fungivorous collembolan Folsomia candida and the predatory mite Hypoaspis aculeifer, we tested the effect of prey and prey-associated volatile signals on the food choice decision of the predatory mite in a laboratory experiment under soil conditions as well as the possible occurrence and relevance of grazing-induced indirect defence signals. The mites showed a clear preference for ungrazed and grazed fungal mycelium. However, we found no evidence of induced indirect defence as ungrazed mycelium was preferred to grazed fungus.  相似文献   

9.
Phosphomonoesterase (PMEase) activity plays a key role in nutrient cycling and is a potential indicator of soil condition and ecosystem stress. We compared para-nitrophenyl phosphate (pNPP) and 4-methylumbelliferyl phosphate (MUP) as substrate analogues for PMEase in 7 natural ecosystem soils and 8 agricultural top soils with contrasting C contents (8.0-414 g kg−1 C) and pH (3.0-7.5). PMEase activities obtained with pNPP (0.05-5 μmol g−1 h−1) were significantly less than activities obtained with MUP (0.9-13 μmol g−1 h−1), especially in soils with a high organic matter content (>130 g kg−1). Only PMEase activities assayed with MUP correlated significantly with total C and total N (r=0.7, P<0.01 all), and pH (r=−0.71, P<0.01). PMEase activities obtained with the two substrate analogues were correlated when expressed on a C-content basis (r=0.8, P<0.001), but not when expressed on an oven-dry soil weight basis. This indicated that interference by organic matter is related to the quantity rather than to the quality of organic matter. Overall, assaying with MUP was more sensitive compared to assaying with pNPP, particularly in the case of high organic and acid soils.  相似文献   

10.
Plasmid transfer among isolates of Rhizobium leguminosarum bv. viciae in heavy metal contaminated soils from a long-term experiment in Braunschweig, Germany, was investigated under laboratory conditions. Three replicate samples each of four sterilized soils with total Zn contents of 54, 104, 208 and 340 mg kg−1 were inoculated with an equal number (1×105 cells g−1 soil) of seven different, well-characterized isolates of R. leguminosarum bv. viciae. Four of the isolates were from an uncontaminated control plot (total Zn 54 mg kg−1) and three were from a metal-contaminated plot (total Zn 340 mg kg−1).After 1 year the population size was between 106 and 107 g−1 soil, and remained at this level in all but the most contaminated soil. In the soil from the most contaminated plot no initial increase in rhizobial numbers was seen, and the population declined after 1 year to <30 cells g−1 soil after 4 years. One isolate originally from uncontaminated soil that had five large plasmids (no. 2-8-27) was the most abundant type re-isolated from all of the soils. Isolates originally from the metal-contaminated soils were only recovered in the most contaminated soil. After 1 year, four isolates with plasmid profiles distinct from those inoculated into the soils were recovered. One isolate in the control soil appeared to have lost a plasmid. Three isolates from heavy metal contaminated soils (one isolate from the soil with total Zn 208 mg kg−1 and two isolates from the soil with total Zn 340 mg kg−1) had all acquired one plasmid. Plasmid transfer was confirmed using the distinct ITS-RFLP types of the isolates and DNA hybridization using probes specific to the transferred plasmid. The transconjugant of 2-8-27 which had gained a plasmid was found in one replicate after 2 years of the most contaminated soil but comprised more than 50% of the isolates. A similar type appeared in a separate replicate of the most contaminated soil after 3 years and persisted in both of these soils until the final sampling after 4 years. After 2 years isolates were recovered from four of the soil replicates with the chromosomal type of 2-8-27 which appeared to have lost one plasmid, but these were not recovered subsequently.Isolate 2-8-27 was among the isolates most sensitive to Zn in laboratory assays, whereas isolate 7-13-1 showed greater zinc tolerance. Acquisition of the plasmid conferred enhanced Zn tolerance to the recipients, but transconjugant isolates were not as metal tolerant as 7-13-1, the putative donor. Laboratory matings between 2-8-27 and 7-13-1 in the presence of Zn resulted in the conjugal transfer of the same small plasmid from 7-13-1 to isolate 2-8-27 and the transconjugant had enhanced metal tolerance. Our results show that transfer of naturally-occurring plasmids among rhizobial strains is stimulated by increased metal concentrations in soil. We further demonstrate that the transfer of naturally-occurring plasmids is important in conferring enhanced tolerance to elevated zinc concentrations in rhizobia.  相似文献   

11.
Soil microbial biomass P is usually determined through fumigation-extraction (FE), in which partially extractable P from lysed biomass is converted to biomass P using a conversion factor (Kp). Estimation of Kp has been usually based on cultured microorganisms, which may not adequately represent the soil microbial community in either nutrient-poor or in altered carbon and nutrient conditions following fertilisation. We report an alternative approach in which changes in microbial P storage are determined as the residual in a mass balance of extractable P before and after incubation. This approach was applied in three low-fertility sandy soils of southwestern Australia, to determine microbial P immobilisation during 5-day incubations in response to the amendment by 2.323 mg C g−1, 100 μg N g−1 and 20 μg P g−1. The net P immobilisation during the amended incubations determined to be 18.1, 14.1 and 16.3 μg P g−1 in the three soils, accounting for 70.6-90.5% of P added through amendment. Such estimates do not rely on fumigation and Kp values, but for comparison with the FE method we estimated ‘nominal’ Kp values to be 0.20-0.31 for the soils under the amended conditions. Our results showed that microbial P immobilisation was a dominant process regulating P concentration in soil water following the CNP amendment. The mass-balance approach provides information not only about changes in the microbial P compartment, but also about other major P-pools and their fluxes in regulating soil-water P concentrations under substrate- and nutrient-amended conditions.  相似文献   

12.
Forests naturally maintained by stand-replacing wildfires are often managed with clearcut harvesting, yet we know little about how replacing wildfire with clearcutting affects soil processes and properties. We compared the initial recovery of carbon (C) and nitrogen (N) pools and dynamics following disturbance in jack pine (Pinus banksiana) stands in northern Lower Michigan, USA, by sampling soils (Oa+A horizons) from three “treatments”: 3-6-year-old harvest-regenerated stands, 3-6-year-old wildfire-regenerated stands and 40-55-year-old intact, mature stands (n=4 stands per treatment). We measured total C and N; microbial biomass and potentially mineralizable C and N; net nitrification; and gross rates of N mineralization and nitrification. Burned stands exhibited reduced soil N but not C, whereas clearcut and mature stands had similar quantities of soil organic matter. Both disturbance types reduced microbial biomass C compared to mature stands; however, microbial biomass N was reduced in burned stands but not in clearcut stands. The experimental C and N mineralization values were fit to a first-order rate equation to estimate potentially mineralizable pool size (C0 and N0) and rate parameters. Values for C0 in burned and clearcut stands were approximately half that of the mature treatment, with no difference between disturbance types. In contrast, N0 was lowest in the wildfire stands (170.2 μg N g−1), intermediate in the clearcuts (215.4 μg N g−1) and highest in the mature stands (244.6 μg N g−1). The most pronounced difference between disturbance types was for net nitrification. These data were fit to a sigmoidal growth equation to estimate potential NO3 accumulation (Nitmax) and kinetic parameters. Values of Nitmax in clearcut soils exceeded that of wildfire and mature soils (149.2 vs. 83.5 vs. 96.5 μg NO3-N g−1, respectively). Moreover, the clearcut treatment exhibited no lag period for net NO3 production, whereas the burned and mature treatments exhibited an approximate 8-week lag period before producing appreciable quantities of NO3. There were no differences between disturbances in gross rates of mineralization or nitrification; rather, lower NO3 immobilization rates in the clearcut soils, 0.20 μg NO3 g−1 d−1 compared to 0.65 in the burned soils, explained the difference in net nitrification. Because the mobility of NO3 and NH4+ differs markedly in soil, our results suggest that differences in nitrification between wildfire and clearcutting could have important consequences for plant nutrition and leaching losses following disturbance.  相似文献   

13.
Many legume plants benefit from the tripartite symbiosis of arbuscular mycorrhizal fungi (AMF) and rhizobia. Beneficial effects for the plant have been assumed to rely on increased P supply through the mycorrhizas. Recently, we demonstrated that P does not regulate the establishment of the tripartite symbiosis. Flavonoids appear to play a role as early signals for both rhizobia and AMF. Four soybean lines known to express different concentrations of the isoflavones genistein, daidzein and glycitein in the seed were used to test three hypotheses: (i) The establishment of the tripartite symbiosis is not dependent of a nutrient mediated effect; (ii) There is a positive correlation between seed isoflavone concentrations of different soybean lines and the progress of the tripartite symbiosis; (iii) Specific flavonoids control the establishment of the tripartite symbiosis in that a change in flavonoid root accumulation resulting from the development of one microbial partner can stimulate colonization of soybean roots by the other. Disturbed versus undisturbed soil treatments were produced to vary the potential for indigenous AMF colonization of soybean. In contrast, the potential for Bradyrhizobium was kept identical in both soil disturbance treatments. The uptake of P and Zn and the concentration of flavonoids in mycorrhizal soybean roots at 10 d after emergence were analysed either separately of Bradyrhizobium or in context of the tripartite symbiosis. Zinc nutrition did not differ between AMF treatments which supports the first hypothesis. The concentration of daidzein was at least four times greater in the root than in the seed reaching 3958±249 μg g−1 dry across soybean lines. Coumestrol, which was absent in the seed, was synthesized to reach 2154±64 μg g−1 dry. Conversely, the concentration of genistein was approximately three times smaller in the root that in the seed (301±15 μg g−1 dry), while glycitein and formononetin were never detected. The establishment of the tripartite symbiosis was identical across soybean lines which does not support the second hypothesis. Concentrations of flavonoids were significantly greater in roots under disturbed soil, for which both symbioses were not as developed as in plants from undisturbed soil. This clearly supports the third hypothesis. This research provides the first data linking the function of different flavonoids to the establishment of the tripartite symbiosis, and suggests that these compounds are produced and released into the rhizosphere as a function of the colonization process.  相似文献   

14.
Soil organic carbon (SOC), microbial biomass carbon (MBC), their ratio (MBC/SOC) which is also known as microbial quotient, soil respiration, dehydrogenase and phosphatase activities were evaluated in a long-term (31 years) field experiment involving fertility treatments (manure and inorganic fertilizers) and a maize (Zea mays L.)-wheat (Triticum aestivum L.)-cowpea (Vigna unguiculata L.) rotation at the Indian Agricultural Research Institute near New Delhi, India. Applying farmyard manure (FYM) plus NPK fertilizer significantly increased SOC (4.5-7.5 g kg−1), microbial biomass (124-291 mg kg−1) and microbial quotient from 2.88 to 3.87. Soil respiration, dehydrogenase and phosphatase activities were also increased by FYM applications. The MBC response to FYM+100% NPK compared to 100% NPK (193 vs. 291 mg kg−1) was much greater than that for soil respiration (6.24 vs. 6.93 μl O2 g−1 h−1) indicating a considerable portion of MBC in FYM plots was inactive. Dehydrogenase activity increased slightly as NPK rates were increased from 50% to 100%, but excessive fertilization (150% NPK) decreased it. Acid phosphatase activity (31.1 vs. 51.8 μg PNP g−1 h−1) was much lower than alkali phosphatase activity (289 vs. 366 μg PNP g−1 h−1) in all treatments. Phosphatase activity was influenced more by season or crop (e.g. tilling wheat residue) than fertilizer treatment, although both MBC and phosphatase activity were increased with optimum or balanced fertilization. SOC, MBC, soil respiration and acid phosphatase activity in control (no NPK, no manure) treatment was lower than uncultivated reference soil, and soil respiration was limiting at N alone or NP alone treatments.  相似文献   

15.
Fifteen plants species were grown in the greenhouse on the same soil and sampled at flowering to obtain rhizosphere soil and root material. In both fractions, the data on fungal and bacterial tissue obtained by amino sugar analysis were compared with the total microbial biomass based on fumigation-extraction and ergosterol data. The available literature on glucosamine concentrations in fungi and on muramic acid concentrations in bacteria was reviewed to prove the possibility of generating conversion values for general use in root material. All microbial properties analysed revealed strong species-specific differences in microbial colonisation of plant roots. The root material contained considerable amounts of microbial biomass C and biomass N, reaching mean levels of 10.9 and 1.4 mg g−1 dry weight, respectively. However, the majority of CHCl3 labile C and N, i.e. 89 and 55% was root derived. The average amount of ergosterol was 13 μg g−1 dry weight and varied between 0.0 for Phacelia roots and 45.5 μg g−1 dry weight for Vicia roots. The ergosterol content in root material of mycorrhizal and non-mycorrhizal plant species did not differ significantly. Fungal glucosamine was converted to fungal C by multiplication by 9 giving a range of 7.1-25.9 mg g−1 dry weight in the root material. Fungal C and ergosterol were significantly correlated. Bacterial C was calculated by multiplying muramic acid by 45 giving a range from 1.7 to 21.6 mg g−1 dry weight in the root material. In the root material of the 15 plant species, the ratio of fungal C-to-bacterial C ranged from 1.0 in mycorrhizal Trifolium roots to 9.5 in non-mycorrhizal Lupinus roots and it was on average 3.1. These figures mean that the microbial tissue in the root material consists on average of 76% fungal C and 24% bacterial C. The differences in microbial colonisation of the roots were reflected by differences in microbial indices found in the rhizosphere soil, most strongly for microbial biomass C and ergosterol, but to some extent also for glucosamine and muramic acid.  相似文献   

16.
Soil microbial biomass N is commonly determined through fumigation-extraction (FE), and a conversion factor (KEN) is necessary to convert extractable N to actual soil biomass N. Estimation of KEN has been constrained by various uncertainties including potential microbial immobilisation. We developed a mass-balance approach to quantify changes in microbial N storage during nutrient-amended incubation, in which microbial uptake is determined as the residual in a ‘mass-balance’ based on soil-water N before and after amended incubation. The approach was applied to three sandy soils of southwestern Australia, to determine microbial N immobilisation during 5-day incubation in response to supply of 2.323 mg C g−1, 100 μg N g−1 and 20 μg P g−1. The net N immobilisation was estimated to be 95-114 μg N g−1 in the three soils, equivalent to 82.7-85.1% of soil-water N following the amendment. Such estimation for microbial uptake does not depend on fumigation and KEN conversion, but for comparison purposes we estimated ‘nominal’ KEN values (0.11-0.14) for the three soils, which were comparable to previously reported KEN from soils receiving C and N amendment. The accuracy of our approach depends on the mass-balance equation and the integrated measurement errors of the multiple N pools, and was assessed practically through recoveries of added-N when microbial uptake can be minimised. Near-satisfactory recoveries were achieved under such conditions. Our mass-balance approach provides information not only about changes in the microbial biomass nitrogen storage, but also major N-pools and their fluxes in regulating soil N concentrations under substrate and nutrient amended conditions.  相似文献   

17.
Like other N-fixing invasive species in Hawaii, Falcataria moluccana dramatically alters forest structure, litterfall quality and quantity, and nutrient dynamics. We hypothesized that these biogeochemical changes would also affect the soil microbial community and the extracellular enzymes responsible for carbon and nutrient mineralization. Across three sites differing in substrate texture and age (50-300 years old), we measured soil enzyme activities and microbial community parameters in native-dominated and Falcataria-invaded plots. Falcataria invasion increased acid phosphatase (AP) activities to >90 μmol g−1 soil h−1 compared to 30-60 μmol g−1 soil h−1 in native-dominated stands. Extracellular enzymes that mineralize carbon and nitrogen also increased significantly under Falcataria on the younger substrates. By contrast, total microbial biomass and mycorrhizal abundance changed little with invasion or substrate. However, fungal:bacterial ratios declined dramatically with invasion, from 2.69 and 1.35 to <0.89 on the 50- and 200-year-old substrates, respectively. These results suggest that Falcataria invasion alters the composition and function of belowground soil communities in addition to forest structure and biogeochemistry. The increased activities of AP and other enzymes that we observed are consistent with a shift toward phosphorus limitation and rapid microbial processing of litterfall C and N following Falcataria invasion.  相似文献   

18.
Nanoparticles (NPs) of TiO2 and ZnO are receiving increasing attention due to their widespread applications. To evaluate their toxicities to the earthworm Eisenia fetida (Savigny, 1826) in soil, artificial soil systems containing distilled water, 0.1, 0.5, 1.0 or 5.0 g kg−1 of NPs were prepared and earthworms were exposed for 7 days. Contents of Zn and Ti in earthworm, activities of antioxidant enzymes, DNA damage to earthworm, activity of cellulase and damage to mitochondria of gut cells were investigated after acute toxicity test. The results from response of the antioxidant system combined with DNA damage endpoint (comet assay) indicated that TiO2 and ZnO NPs could induce significant damage to earthworms when doses were greater than 1.0 g kg−1. We found that Ti and Zn, especially Zn, were bioaccumulated, and that mitochondria were damaged at the highest dose in soil (5.0 g kg−1). The activity of cellulase was significantly inhibited when organisms were exposed to 5.0 g kg−1 of ZnO NPs. Our study demonstrates that both TiO2 and ZnO NPs exert harmful effects to E. fetida when their levels are higher than 1.0 g kg−1 in soil and that toxicity of ZnO NPs was higher than TiO2.  相似文献   

19.
A 49-day incubation experiment was carried out with the addition of field-grown maize stem and leaf residues to soil at three different temperatures (5, 15, and 25 °C). The aim was to study the effects of two transgenic Bt-maize varieties in comparison to their two parental non-Bt varieties on the mineralization of the residues, on their incorporation into the microbial biomass and on changes in the microbial community structure. The stem and leaf residues of Novelis-Bt contained 3.9 μg g−1 dry weight of the Bt toxin Cry1Ab and those of Valmont-Bt only 0.8 μg g−1. The residues of the two parental non-Bt varieties Nobilis and Prelude contained higher concentrations of ergosterol (+220%) and glucosamine (+190%) and had a larger fungal C-to-bacterial C ratio (+240%) than the two Bt varieties. After adding the Bt residues, an initial peak in respiration of an extra 700 μg CO2-C g−1 soil or 4% of the added amount was observed in comparison to the two non-Bt varieties at all three temperatures. On average of the four varieties, 19-38% of the maize C added was mineralized during the 49-day incubation at the three different temperatures. The overall mean increase in total maize-derived CO2 evolution corresponded to a Q10 value of 1.4 for both temperature steps, i.e. from 5 to 15 °C and from 15 to 25 °C. The addition of maize residues led to a strong increase in all microbial properties analyzed. The highest contents were always measured at 5 °C and the lowest at 25 °C. The variety-specific contents of microbial biomass C, biomass N, ATP and adenylates increased in the order Novelis-Bt ? Prelude<Valmont-Bt ? Nobilis. The mineralization of Novelis-Bt residues with the highest Bt concentration and lowest N concentration and their incorporation into the microbial biomass was significantly reduced compared to the parental non-Bt variety Nobilis. These negative effects increased considerably from 5 to 25 °C. The transgenic Bt variety Valmont did not show further significant effects except for the initial peak in respiration at any temperature.  相似文献   

20.
The effects of elevated CO2 supply on N2O and CH4 fluxes and biomass production of Phleum pratense were studied in a greenhouse experiment. Three sets of 12 farmed peat soil mesocosms (10 cm dia, 47 cm long) sown with P. pratense and equally distributed in four thermo-controlled greenhouses were fertilised with a commercial fertiliser in order to add 2, 6 or 10 g N m−2. In two of the greenhouses, CO2 concentration was kept at atmospheric concentration (360 μmol mol−1) and in the other two at doubled concentration (720 μmol mol−1). Soil temperature was kept at 15 °C and air temperature at 20 °C. Natural lighting was supported by artificial light and deionized water was used to regulate soil moisture. Forage was harvested and the plants fertilised three times during the basic experiment, followed by an extra fertilisations and harvests. At the end of the experiment CH4 production and CH4 oxidation potentials were determined; roots were collected and the biomass was determined. From the three first harvests the amount of total N in the aboveground biomass was determined. N2O and CH4 exchange was monitored using a closed chamber technique and a gas chromatograph. The highest N2O fluxes (on average, 255 μg N2O m−2 h−1 during period IV) occurred just after fertilisation at high water contents, and especially at the beginning of the growing season (on average, 490 μg N2O m−2 h−1 during period I) when the competition of vegetation for N was low. CH4 fluxes were negligible throughout the experiment, and for all treatments the production and oxidation potentials of CH4 were inconsequential. Especially at the highest rates of fertilisation, the elevated supply of CO2 increased above- and below-ground biomass production, but both at the highest and lowest rates of fertilisation, decreased the total amount of N in the aboveground dry biomass. N2O fluxes tended to be higher under doubled CO2 concentrations, indicating that increasing atmospheric CO2 concentration may affect N and C dynamics in farmed peat soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号