首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
ABSTRACT The development of rust epidemics caused by Tranzschelia discolor on leaves and stems of cling peach was studied in California orchards. Sporulating stems lesions were only detected from late March until July in 1997 and 1998. When rust was present in the fall, the quadratic equation Y = -82.51 + 1.97JD - 0.01JD(2) using Julian day (JD) described the incidence of sporulating lesions on stems of cv. Andross (R(2) = 0.73; P /=117.3 mm of total precipitation and maximum temperatures of 相似文献   

2.
Powdery mildew and leaf rust caused large yield losses in spring barley grown near Christchurch, New-Zealand, in two seasons. Disease present during early growth stages was as damaging to yield as disease late in the season. Moderate leaf rust severities after anthesis were most damaging when combined with earlier mildew epidemics. Later growth did not compensate for reduced yield potential induced by early infection. This was attributed, at least in part, to an effect on leaf size, and therefore on green leaf area, at later growth stages. There was a closer relationship, by regression analysis, of yield to green leaf area than to disease severity in three cultivars.
The three cultivars. which differed in yield potential and disease resistance, were not equally sensitive to disease. It is proposed that high yielding cultivars may be the most sensitive to yield constraint by disease.  相似文献   

3.
Studies of crop loss in potato blight caused by Phytophthora infestans   总被引:1,自引:1,他引:0  
Relationships between healthy haulm area (HHA) and yield, and between losses of HHA and yield in the potato late blight system, were evaluated in several seasons and fields variously affected by the disease in Israel. The results showed that because of the different yield potential of potatoes cultivated in different conditions, evaluation of crop losses cannot be separated from evaluation of yield potentials of the crop as influenced by environmental and cultural factors.
In one calculation the yield and the HHA in the healthiest plot in each field were equated to 100% and losses in other plots were derived from comparisons with this plot. In such a calculation the relationships of yield loss to HHA loss in all fields and seasons fitted one regression equation, and a high correlation was obtained between both parameters. However, the actual haulm areas and yield weights differed widely from one field to another, even in the healthiest plots. Also, a similar percentage of destroyed haulms sometimes corresponded to different areas of the remaining haulms and to different yields. So no correlation was found between HHA and yields over all fields and seasons. Such a correlation was found only for several plots, variously affected by late blight, in the same field and season and in different fields and seasons yields responded in a different way to increases in HHA.  相似文献   

4.
The effects of Septoria tritici blotch on spring wheat were incorporated into a crop growth simulator and the model was then used to evaluate the interrelationships between moisture and disease stresses on wheat yields under semi-arid conditions. Simulation experiments revealed that moisture availability plays a role in determining the relationship between disease and yield. In a season when precipitation was distributed evenly, a non-diseased crop yielded more than diseased crops. Yield reductions in diseased crops were related to the severity of epidemics; the relationship between disease and yield was inverse and linear. In a season when water was scarce during the stage of kernel-filling, crops with mild or moderate disease epidemics (apparent infection rate of a logistic model,r, of 0.025 or 0.05 per unit) yielded more than the non-diseased crop. The yield of the crop with a severe epidemic (r of 0.1 per unit) was reduced substantially and the relationship between disease and yield was parabolic. The parabolic relationship was linearized when additional precipitation was simulated in the model.  相似文献   

5.
The effect of leaf rust was investigated on field-grown crops, in two consecutive seasons, each at a single location, using a non-replicated design. The experiments involved three crops and 10 distinct epidemics in the 1987/8 season, and four crops with seven epidemics in the 1988/9 season. The epidemics were concurrent in each season in subplots within each crop, and the yield range was from 2.2–9.0 t ha−1 in nil-diseased plots. Variation in the experiments, assessed as the percentage coefficient of variation, was in the same range as similar, but replicated, experiments with fewer treatment combinations. Early sowing and high agronomic inputs were associated with greater leaf areas, green area durations and yields than in comparable crops sown later or with lower inputs. Disease intensity was described both by per cent disease severity and by the effect on green area. Disease reduced yield mostly via reduced number of fertile ears (mean 31% for all crops) and grain weight (21% mean reduction). Reductions in these components were greater in the 1987/8 season than in the 1988/9 season, but there was no consistent effect associated with yield potential. The number of grains per ear was affected much less (2.5% mean for all crops) than the other components. There was little evidence for compensation between yield components.  相似文献   

6.
The effect of epidemics of Mycosphaerella pinodes on crop growth, radiation interception efficiency (RIE) and radiation use efficiency (RUE) was studied in field conditions and the growth of diseased crop was modelled. Natural epidemics were simulated in field plots by dispersion on the ground of barley grains colonized by the fungus. Growth and leaf area index (LAI) were measured in healthy and diseased plots during the growth season. Epidemics affected crop growth mainly by decreasing RUE, with a slight decrease in RIE. This was probably due to the strong effect of M. pinodes on leaf photosynthesis and the lateness of Mycosphaerella blight epidemics on spring pea, which became serious when the canopy was already formed, thus decreasing RIE only by accelerating the senescence of leaves. The data were used to evaluate the performance of a crop growth model for diseased pea crops. The model comprised the decrease in photosynthesis rate in the leaves, the vertical gradient of disease intensity and the differences in photosynthetic function of the various layers of the canopy. This model, validated over 2 years in the field, accurately simulated the crop growth in diseased plots. Thus the decrease in RUE may be accounted for solely by photosynthesis losses in diseased leaves. This simple model may be used for disease management, defining damage thresholds for chemical application and criteria for tolerant variety selection.  相似文献   

7.
Climatic variation in the U.S. Pacific Northwest (PNW) affects epidemics of wheat stripe rust caused by Puccinia striiformis f. sp. tritici. Previous models only estimated disease severity at the flowering stage, which may not predict the actual yield loss. To identify weather factors correlated to stripe rust epidemics and develop models for predicting potential yield loss, correlation and regression analyses were conducted using weather parameters and historical yield loss data from 1993 to 2007 for winter wheat and 1995 to 2007 for spring wheat. Among 1,376 weather variables, 54 were correlated to yield loss of winter wheat and 18 to yield loss of spring wheat. Among the seasons, winter temperature variables were more highly correlated to wheat yield loss than the other seasons. The sum of daily temperatures and accumulated negative degree days of February were more highly correlated to winter wheat yield loss than the other monthly winter variables. In addition, the number of winter rainfall days was found correlated with yield loss. Six yield loss models were selected for each of winter and spring wheats based on their better correlation coefficients, time of weather data availability during the crop season, and better performance in validation tests. Compared with previous models, the new system of using a series of the selected models has advantages that should make it more suitable for forecasting and managing stripe rust in the major wheat growing areas in the U.S. PNW, where the weather conditions have become more favorable to stripe rust.  相似文献   

8.
Xu 《Plant pathology》1999,48(4):462-471
A model developed to simulate epidemics of powdery mildew on vegetative shoots of apple generates two types of output. Firstly, it forecasts disease severity (percentage of host tissue infected) by incorporating effects on disease development of the amount of healthy susceptible tissue and current infectious (sporulating) disease, the level of initial inoculum (overwintered 'primary' mildew) and weather conditions. The effects of weather variables are considered on only two aspects of the fungal life cycle: initial spore germination and the subsequent development during the incubation period. Secondly, the model generates indices of the relative favourability of weather conditions on disease development by incorporating effects of weather on conidial production/dispersal and germination. On each day, forecasts of the (relative) severity of new infection and total current infectious disease are given for both types of output. The model was evaluated by comparing its predictions with the mildew epidemics observed in two unsprayed orchards over four years. In all the years, the temporal patterns of the predicted and the observed disease were generally similar. The pattern of the disease severity forecasts was marginally closer to the observed than that derived from two weather indices. Potential roles of the model in practical management of apple powdery mildew are discussed.  相似文献   

9.
The effects of four planting patterns of bean (Phaseolus vulgaris) (bean only, maize–bean (MB), sorghum–bean (SB), and maize–bean–sorghum (MBS)) and four cropping systems (sole cropping, row, mixed, and broadcast intercropping) on the temporal epidemics of bean common bacterial blight (CBB) caused by Xanthomonas campestris pv. phaseoli were studied. The experiments were conducted during two consecutive spring and summer seasons in 1999 and 2000 in replicated field experiments. The Gompertz model described disease progress curves better than the logistic model. Intercropping delayed epidemic onset, lowered disease incidence and severity, and reduced the disease progress rate. The type of cropping system and planting pattern affected CBB incidence and severity at initial, final and overall assessments and also affected the rate of disease development. Statistical significance of treatment interactions based on disease assessments was found for incidence in all four experiments and for severity in three experiments. A slower disease progress rate and lower incidence and severity occurred on beans planted with maize or sorghum in row, mixed and broadcast intercropping than on bean planted alone. Incidence was reduced 36% and severity 20% in intercropping compared to sole cropping. The built-in disease delay and the slowing of the disease progress rate could provide protection for beans from severe CBB epidemics in intercropped systems. Variation between years appeared to be related to relative humidity (RH).  相似文献   

10.
Three cultivars of white cabbage with different levels of resistance toMycosphaerella brassicicola were tested for seedbed infection. Seedlings grown in seedbeds, to which infected plant debris was added as an inoculum, showed typical ring spot lesions on the cotyledons and first two leaves before seedlings reached the transplanting stage, whereas non-inoculated controls had few lesions only. Differences in levels of resistance between cultivars were present in seedlings grown under field conditions. Disease severity of transplants at the end of the season reflected disease severity of seedlings before transplanting in each cultivar.To lower the risk of a severe epidemic of ringspot at the end of the growing season, the seedbed should be protected from infection byM. brassicicola.  相似文献   

11.
The incidence and severity of foliar anthracnose, caused by Colletotrichum gloeosporioides , were recorded for seven fields of yams ( Dioscorea alata var. White Lisbon) in Barbados over a complete growing season. A scoring system was developed to estimate severity, placing the emphasis on the earliest, least visible stages of the disease. Disease progress curves were described in terms of the logistic model and the effects of site and leaf age on the parameters as well as on disease at tuber bulking were analysed. Differences between sites indicated that disease was more severe in areas of higher rainfall. In severe epidemics, disease predominated on young leaves. Fungicides applied sufficiently early can delay the onset of disease and slow the rate of disease progress.  相似文献   

12.
ABSTRACT Spatial and temporal patterns of foliar disease caused by Phoma ligulicola were quantified in naturally occurring epidemics in Tasmanian pyrethrum fields. Disease assessments (defoliation incidence, defoliation severity, incidence of stems with ray blight, and incidence of flowers with ray blight) were performed four times each year in 2002 and 2003. Spatial analyses based on distribution fitting, runs analysis, and spatial analysis by distance indices (SADIE) demonstrated aggregation in fields approaching their first harvest for all assessment times between September and December. In second-year harvest fields, however, the incidence of stems with ray blight was random for the first and last samplings, but aggregated between these times. Spatiotemporal analyses were conducted between the same disease intensity measures at subsequent assessment times with the association function of SADIE. In first-year harvest fields, the presence of steep spatial gradients was suggested, most likely from dispersal of conidia from foci within the field. The importance of exogenous inoculum sources, such as wind-dispersed ascospores, was suggested by the absence of significant association between defoliation intensity (incidence and severity) and incidence of stems with ray blight in second-year harvest fields. The logistic model provided the best temporal fit to the increase in defoliation severity in each of six first-year harvest fields in 2003. The logistic model also provided the best fit for the incidence of stems with ray blight and the incidence of flowers with ray blight in four of six and three of six fields, respectively, whereas the Gompertz model provided the best fit in the remaining fields. Fungicides applied prior to mid-October (early spring) significantly reduced the area under disease progress curve (P < 0.001) for defoliation severity, the incidence of stems with ray blight, and the incidence of flowers with ray blight for epidemics at all field locations. This study provides information concerning the epidemiology of foliar disease and ray blight epidemics in pyrethrum and offers insight on how to best manage these diseases.  相似文献   

13.
大豆疫霉病发生危害及影响其发生因素的探讨   总被引:5,自引:0,他引:5  
经1995~1998年对黑龙江省大部分大豆产区调查明确,大豆疫霉病在黑龙江大豆产区的发生面积及危害程度有逐年扩大和加重趋势,田间发病率一般为3%~5%,严重达75%,甚至绝产。其发病严重原因除受品种抗病性的因素影响外,主要取决于降水的多少及土壤积水时间的长短。此外,耕作、栽培方式、茬口等因素也不同程度影响发病。大豆在整个生育期间都可受到疫霉菌的侵染。  相似文献   

14.
The effect of the distance of initial inoculum on the intensity of watermelon gummy stem blight, caused by Didymella bryoniae, was studied in a naturally-infected rainfed commercial field. The shorter the distance from the focus, the sooner was disease onset and the earlier maximum disease levels were achieved. Maximum disease incidences were reached earlier than maximum severities, but eventually destructive levels were observed for both disease incidence and severity. Disease progressed at similar rates, irrespective of the radial distance from the focus. A detailed study of the disease temporal progress was conducted in inoculated rainfed experimental fields with commercial genotypes Crimson Sweet (susceptible, S) and Riviera (moderately resistant, R). The Gompertz model best described the disease progress curves, and estimated apparent infection rates were 0.049 and 0.020 respectively for S and R genotypes. In addition, spatial pattern studies were conducted during the dry season in overhead irrigated experimental plots, inoculated with point-source foci. Disease intensity gradients were better explained by the Exponential model than by the Power Law model. Gummy stem blight distribution was classified as aggregated by the Ordinary Runs procedure. Two different spatial autocorrelation methods (2DCorr and LCOR) revealed strong short distance spatial dependencies. Long distance positive correlations between quadrats were observed along with periods of higher progress rates. The dynamic patterns of the epidemics of gummy stem blight in watermelon described here are consistent with epidemics of polycyclic diseases with splash-dispersed spores.  相似文献   

15.
Phoma stem canker, caused by Leptosphaeria maculans and L. biglobosa, is the most important disease of oilseed rape in Europe. Differences between L. maculans and L. biglobosa in their life-cycles enable the two species to co-exist on oilseed rape crops over a cropping season. This review considers the factors affecting geographic variation in the severity of phoma stem canker epidemics and in the structure of the population of the pathogens in the UK, where the most severe epidemics occur in the south of England and cankers do not develop in Scotland. It is concluded that this variation is directly related to differences in climate, since weather-based models show that stem canker severity increases with increasing winter/spring temperature and temperatures are greater in the south of the UK. It may also be related to differences in pathogen populations, since surveys showed that the proportion of the more damaging L. maculans in stem cankers was greatest in southern England, with most L. biglobosa in northern England. Regional variation in agronomic practices such as cultivar choice and fungicide use may also indirectly influence phoma stem canker severity. Differences in cultivar choice result in differences in L. maculans race structure, which may influence the severity of epidemics. Differences in fungicide use may also influence pathogen populations, since L. maculans and L. biglobosa differ in their sensitivities to different azole fungicides. These factors are discussed in relation to strategies for sustainable production of oilseed rape by adaptation to threats posed by climate change.  相似文献   

16.
Most mathematical models of plant disease epidemics ignore the growth and phenology of the host crop. Unfortunately, reports of disease development are often not accompanied by a simultaneous and commensurate evaluation of crop development. However, the time scale for increases in the leaf area of field crops is comparable to the time scale of epidemics. This simultaneous development of host and pathogen has many ramifications on the resulting plant disease epidemic. First, there is a simple dilution effect resulting from the introduction of new healthy leaf area with time. Often, measurements of disease levels are made pro rata (per unit of host leaf area or total root length or mass). Thus, host growth will reduce the apparent infection rate. A second, related effect, has to do with the so-called "correction factor," which accounts for inoculum falling on already infected tissue. This factor accounts for multiple infection and is given by the fraction of the host tissue that is susceptible to disease. As an epidemic develops, less and less tissue is open to infection and the initial exponential growth slows. Crop growth delays the impact of this limiting effect and, therefore, tends to increase the rate of disease progress. A third and often neglected effect arises when an increase in the density of susceptible host tissue results in a corresponding increase in the basic reproduction ratio, R(0), defined as the ratio of the total number of daughter lesions produced to the number of original mother lesions. This occurs when the transport efficiency of inoculum from infected to susceptible host is strongly dependent on the spatial density of plant tissue. Thus, crop growth may have a major impact on the development of plant disease epidemics occurring during the vegetative phase of crop growth. The effects that these crop growth-related factors have on plant disease epidemics spread by airborne spores are evaluated using mathematical models and their importance is discussed. In particular, plant disease epidemics initiated by the introduction of inoculum during this stage of development are shown to be relatively insensitive to the time at which inoculum is introduced.  相似文献   

17.
The use of cultivar mixtures is increasingly practical in wheat stripe rust management. Field experiments with wheat cultivar mixtures were conducted to determine their effects on temporal and spatial patterns of stripe rust epidemics in three regions. In the Beijing and Gangu fields, where the epidemics were caused by artificial inoculation, disease incidence and the area under the disease progress curve (AUDPC) of the cultivar mixtures were significantly lower (P < 0.05) than those of the susceptible pure stands. We defined the relative effectiveness of cultivar mixture on disease development related to that in pure stands (REM). The results demonstrated that in many treatments of mixtures of susceptible cultivar with resistant cultivars at various ratios in different locations, their effects on disease reduction were positive (REM < 1). The reduction of epidemic rate in cultivar mixtures expressed in either early season or late season depended on the initial pattern of disease and cultivar mixture treatments. Semivariograms were used to determine the spatiotemporal patterns of disease in the Gangu field. The spatial analysis showed clear spatial patterns of the disease in all four directions of the fields on susceptible pure stands but not on cultivar mixtures. The results implied that the mechanisms of cultivar mixture on disease management might include the interruption of disease spatial expansion and a physical barrier to pathogen inoculum by resistant cultivars.  相似文献   

18.
19.
Three field experiments were carried out with the bean cultivar Carioca Comum to investigate the relationships among visual and virtual severity of angular leaf spot (caused by Phaeoisariopsis griseola), area under visual and virtual disease progress curves (AUDPC), healthy leaf area index on any given day (HLAI), healthy leaf area duration (HAD), healthy leaf area absorption (HAA), effective leaf area duration (ELAD), effective leaf area absorption (ELAA) and yield of Phaseolus vulgaris. To obtain a wide range of disease severities, the plots were sprayed with fungicide at different stages of plant growth (before, during and after flowering). Visual and virtual severity and AUDPC showed no significant correlation with yield. However, HAD, HAA, ELAD and ELAA were significantly correlated with yield. Variables that considered the effective leaf area (ELAD and ELAA) provided similar or better coefficients of determination (R2) than those that considered the remaining green leaf area only (HAD and HAA). Single-point models with HLAI, effective leaf area index (ELAI), intercepted radiation by healthy leaf area (HRI) and intercepted radiation by effective leaf area (EHRI) to estimate yield at various times during the crop season were developed. The slope of the relationship between yield and HLAI, ELAI, HRI and EHRI proved to be stable, regardless of planting date and bean growth stage (from R6 to R8).  相似文献   

20.
Reduced yields caused by powdery mildew and leaf rust in two seasons were associated with reduced plant growth. Combinations of early, late and full epidemics in one season, and 12 epidemic combinations in the second, were designed to identify crop sensitivity to disease by comparing growth and development with healthy plants. Early epidemics reduced ear number by increasing tiller death, and reduced grain number by effects on spikelet, floret or grain abortion, depending on the type of epidemic. Epidemics later in crop growth increased floret and grain abortion and also reduced grain weight.
There was no compensation by later-determined components for reduced growth and delayed development at earlier growth stages. Plants infected at early growth stages were more sensitive to late infections, seen as effects on the later-determined components, than plants which were healthy initially. Interactions occurred between epidemics at different times and are likely to occur between diseases and other constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号