首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present work has been to study the possibility of obtaining modified gliadin films with improved water resistance and mechanical properties by means of promoting intermolecular covalent bonds between polypeptide chains. Prior to casting films, formaldehyde, glutaraldehyde, and glyoxal were used to cross-link proteins at concentrations ranging from 1% to 4% (grams per 100 g of protein). Mechanical properties (tensile strength and elongation at break), water vapor permeability, moisture sorption isotherms, and optical properties of the films produced were evaluated as a function of the cross-linker used. Experimental results showed that some properties of gliadin films were considerably modified. Cross-linking improved the water resistance of films, avoiding their disintegration. Their water barrier properties were also enhanced, but their moisture sorption properties remained unchanged. Formaldehyde imparted greater mechanical strength to films than glutaraldehyde or glyoxal, increasing tensile strength values 10-fold. Addition of the cross-linkers at concentrations in excess of 2.5% did not further improve the mechanical or barrier properties. However, modification with glutaraldehyde or glyoxal imparted an increasingly yellowish tint to the films.  相似文献   

2.
Improvement in the water stability and other related functional properties of thin (<50 μm) kafirin protein films was investigated. Thin conventional kafirin films and kafirin microparticle films were prepared by casting in acetic acid solution. Thin kafirin films cast from microparticles were more stable in water than conventional cast kafirin films. Treatment of kafirin microparticles with heat and transglutaminase resulted in slightly thicker films with reduced tensile strength. In contrast, glutaraldehyde treatment resulted in up to a 43% increase in film tensile strength. The films prepared from microparticles treated with glutaraldehyde were quite stable in ambient temperature water, despite the loss of plasticizer. This was probably due to the formation of covalent cross-linking between free amino groups of the kafirin polypeptides and carbonyl groups of the aldehyde. Thus, such thin glutaraldehyde-treated kafirin microparticle films appear to have good potential for use as biomaterials in aqueous applications.  相似文献   

3.
为制备纳米级孔径的大豆蛋白多孔材料,研究了冰箱和液氮冷冻处理的醛交联大豆蛋白多孔材料的结构及吸附性能。结果表明:戊二醛对大豆蛋白的交联效果优于甲醛和乙二醛。液氮冷冻处理的多孔材料比表面积和孔容均较大,而平均孔径较小;纳米级孔的孔径都分布在80 nm以内,介孔总孔容占比超过50%,大孔次之,微孔占比最小;冰箱冷冻样品纳米级孔的孔径主要分布在70 nm以内,且微孔和介孔孔容都小于采用液氮冷冻处理的样品。场发射扫描电镜分析表明,大豆蛋白多孔材料的孔形态为微米级圆孔和纳米级狭缝孔。冷冻处理比醛类交联剂对孔结构的影响大,合适的冷冻方式能替代或超过交联剂种类变化取得的效果。热重分析表明液氮冷冻处理的戊二醛交联大豆蛋白多孔材料热稳定性好;该多孔材料对对硝基苯酚和六价铬离子具有一定的吸附效果,是制备大豆蛋白多孔材料较合适的方法。研究结果为植物蛋白多孔材料的制备提供参考。  相似文献   

4.
Whey protein isolate (WPI) was chemically modified by vanillic acid in order to enhance its cross-linkability by laccase enzyme. Incorporation of methoxyphenol groups created reactive sites for laccase on the surface of the protein and improved the efficiency of cross-linking. The vanillic acid modified WPI (Van-WPI) was characterized using MALDI-TOF mass spectrometry, and the laccase-catalyzed cross-linking of Van-WPI was studied. Furthermore, the vanillic acid modification was compared with the conventional approach to improve laccase-catalyzed cross-linking by adding free phenolic compounds. A small extent of the vanillic acid modification significantly improved the cross-linkability of the protein and made it possible to avoid color formation in a system that is free of small phenolic compounds. Moreover, the potential application of Van-WPI as emulsifier and the effect of cross-linking on the stability of Van-WPI emulsion were investigated. The post-emulsification cross-linking by laccase was proven to enhance the storage stability of Van-WPI emulsion.  相似文献   

5.
Chemical modification of wheat protein-based natural polymer materials was conducted using glyoxal as cross-linker, and the cross-linking effect was studied on mechanical properties under different humidity conditions, the molecular motions of each component, and the phase structures/components of the whole materials. The cross-linking significantly enhanced the mechanical strength of wheat gluten (WG) materials under RH = 50%. The elongation of materials was also increased, which was in contrast to many cross-linked protein systems. The reaction mainly occurred in proteins and starch components, resulting in the formation of a stable cross-linked network with restricted molecular motions and modified motional dynamics. Although the plasticizer glycerol could also take part in the reaction with glyoxal or other components in WG especially when the glyoxal content was higher, the amount of glycerol involved in such reactions was very little. Glycerol was predominantly hydrogen-bonded with the network. The lipid component did not seem to take part in the cross-linking reaction; its mobility was promoted while its interaction with the protein-starch network was weakened after cross-linking. The formation of the cross-linked network did not enhance the hydrophobicity of the materials; the materials still adsorbed a high level of moisture under high humidity conditions (ca. RH = 85%) with no improvement in mechanical strength. In addition, further increasing the amount of glyoxal did not generate an additional strength improvement even at RH = 50%, possibly because the enhanced mobility of lipid promoted the component to be phase-separated from the WG system. To improve the water-resistant properties, the hydrophobicity of the protein macromolecules requires enhancement by other chemical modifications.  相似文献   

6.
Composite films were prepared from pectin and fish skin gelatin (FSG) or pectin and soybean flour protein (SFP). The inclusion of protein promoted molecular interactions, resulting in a well-organized homogeneous structure, as revealed by scanning electron microscopy and fracture-acoustic emission analysis. The resultant composite films showed an increase in stiffness and strength and a decrease in water solubility and water vapor transmission rate, in comparison with films cast from pectin alone. The composite films inherited the elastic nature of proteins, thus being more flexible than the pure pectin films. Treating the composite films with glutaraldehyde/methanol induced chemical cross-linking with the proteins and reduced the interstitial spaces among the macromolecules and, consequently, improved their mechanical properties and water resistance. Treating the protein-free pectin films with glutaraldehyde/methanol also improved the Young's modulus and tensile strength, but showed little effect on the water resistance, because the treatment caused only dehydration of the pectin films and the dehydration is reversible. The composite films were biodegradable and possessed moderate mechanical properties and a low water vapor transmission rate. Therefore, the films are considered to have potential applications as packaging or coating materials for food or drug industries.  相似文献   

7.
4,5-Dimethyl-3-hydroxy-2(5H)-furanone (sotolone), a naturally occurring flavor impact compound, can be isolated from various sources, especially fenugreek seeds. It can also be thermally produced from intermediates generated from the Maillard reaction such as pyruvic and ketoglutaric acids, glyoxal, and 2,3-butanedione. A naturally occurring precursor of sotolone, 3-amino-4,5-dimethyl-2(5H)-furanone, was thermally generated for the first time from pyruvic acid and glycine or from glyoxylic acid and alanine model systems. Isotope labeling studies have implicated 4,5-dimethylfuran-2,3-dione as an intermediate that can be converted into 3-amino-4,5-dimethyl-2(5H)-furanone through Strecker-like interaction with any amino acid. Furthermore, these studies have also indicated the presence of two pathways for the formation of 4,5-dimethylfuran-2,3-dione, one requiring pyruvic acid and a formaldehyde source and the other requiring glyoxylic acid and acetaldehyde. Self-aldol condensation of pyruvic acid followed by lactonization and further aldol reaction with formaldehyde can generate the same intermediate as the self-aldol addition product of acetaldehyde with glyoxylic acid followed by lactonization. The pyruvic acid pathway was found to be a more efficient route than the glyoxylic acid pathway. Furthermore, the pyruvic acid/glycine model system was able to generate sotolone in the presence of moisture, and in the presence of ammonia, commercial sotolone was converted back into 3-amino-4,5-dimethyl-2(5H)-furanone.  相似文献   

8.
甲醛交联碱木质素-聚乙烯醇薄膜的透光性和透气性   总被引:7,自引:1,他引:6  
为了提高工业碱木质素的利用价值,扩大碱木质素的应用范围,以工业碱木质素和聚乙烯醇为原料,以甲醛为交联剂,利用流延法制备了碱木质素-聚乙烯醇交联反应膜。通过单因素实验探索了碱木质素加入量、甲醛加入量、溶液pH值对碱木质素-聚乙烯醇(PVA,poly vinyl alcohol)反应膜透光性和透气性的影响。采用紫外可见分光光度计分析了薄膜的光学性能,压差法测定薄膜的透气性。采用SEM(scanning electron microscopy)和FTIR(Fourier transform infrared spectroscopy)方法分析反应膜的表面形貌和化学结构,利用静态接触角测量仪测定薄膜的接触角。结果表明:碱木质素加入后,在紫外光区200~400 nm薄膜的透过率为零,对紫外线全吸收,在可见光区400~800 nm薄膜透过率降低,当碱木质素与PVA质量比为1:4时,在600 nm处薄膜的透过率为16.12%;随着甲醛加入量的提高,薄膜可见光区的透光率逐渐增大;随着pH值增大,木质素逐渐溶解,pH值为9时,薄膜600 nm处薄膜透过率为20.85%。与纯PVA薄膜相比较,碱木质素加入后薄膜二氧化碳和氧气的透气性都减小;经甲醛交联后,薄膜的氧气和二氧化碳的透过量都增大;pH值由小到大变化时,碱木质素-聚乙烯醇反应薄膜对二氧化碳和氧气的透气量先增大后减小。FT-IR表征说明碱木质素-聚乙烯醇薄膜结构中有醚键生成,碱木质素和PVA发生了交联反应;电镜图片显示碱木质素-聚乙烯醇反应薄膜表面较光滑;接触角分析说明碱木质素的加入增大了薄膜与水的接触角,薄膜表面亲水性降低,并且交联反应薄膜的接触角大于共混薄膜的接触角,交联提高了薄膜的耐水性。与戊二醛相比甲醛做交联剂时碱木质素和PVA之间的交联反应程度更大,交联薄膜在可见光区的透光性更大。薄膜对紫外线吸收主要是受碱木质素的影响。碱木质素-聚乙烯醇反应膜可作为良好的紫外吸收材料,应用于地膜中。  相似文献   

9.
Active food packaging systems based on the incorporation of agents into polymeric package walls are being designed to purposely release or retain compounds to maintain or even increase food quality. The objective of this work was to develop polyvinyl alcohol (PVOH)/β-cyclodextrin (βCD) composite films that can be applied to reduce undesirable component content such as cholesterol in foods through active retention of the compounds in the package walls during storage. Cyclodextrins were added to PVOH in a proportion of 1:1 and cross-linked with glyoxal under acidic media to reduce its water-soluble character. Three different cross-linking procedures were used: cross-linking of the polymer/polysaccharide mixture in solution and film casting, PVOH. βCD*; cross-linking of the polymer, addition of βCD, and casting of the mixture, PVOH*.CD; and casting of a PVOH film, addition of a βCD/glyoxal solution onto the film, and cross-linking during drying, PVOH.CD*. Characterization studies showed that the PVOH*.CD and PVOH.CD* films provided the best physical characteristics with the lowest release values and the highest barrier properties. As a potential application, materials were tested as potential cholesterol-scavenging films. There was a significant reduction in the cholesterol concentration in milk samples when they were exposed to the materials developed.  相似文献   

10.
Protein solubility (PS) values of different soy protein isolate (SPI) films were determined in water, 0.01 N HCl, 0.01 N NaOH, 4 M urea, and 0.2 M 2-mercaptoethanol. Tensile and color (L, a, and b values) properties of films also were determined. Control films were cast from heated (70 degrees C for 20 min), alkaline (pH 10) aqueous solutions of SPI (5 g/100 mL of water) and glycerin (50% w/w of SPI). Additional films were cast after incorporation of dialdehyde starch (DAS) at 10% w/w of SPI or small amounts of formaldehyde in the film-forming solutions. Also, control film samples were subjected to heat curing (90 degrees C for 24 h), UV radiation (51.8 J/m(2)), or adsorption of formaldehyde vapors. PS of control films was highest (P < 0.05) in 2-mercaptoethanol, confirming the importance of disulfide bonds in SPI film formation. All treatments were effective in reducing (P < 0.05) film PS in all solvents. Both DAS and adsorbed formaldehyde rendered the protein in films practically insoluble in all solvents. Adsorption of formaldehyde vapors and heat curing also substantially increased (P < 0.05) film tensile strength from 8.2 to 15.8 or 14.7 MPa, respectively. However, heat curing decreased (P < 0.05) film elongation at break from 30 to 6%. Most treatments had small but significant (P < 0.05) effects on b color values, with DAS-containing films having the greatest (P < 0. 05) mean b value (most yellowish). Also, DAS-containing, heat-cured, and UV-irradiated films were darker, as evidenced by their lower (P < 0.05) L values, than control films. It was demonstrated that PS of SPI films can be notably modified through chemical or physical treatments prior to or after casting.  相似文献   

11.
The influence of thermal processing and nonenymatic as well as polyphenoloxidase-catalyzed browning reaction on the allergenicity of the major cherry allergen Pru av 1 was investigated. After thermal treatment of the recombinant protein rPru av 1 in the absence or presence of carbohydrates, SDS-PAGE, enzyme allergosorbent tests, and inhibition assays revealed that thermal treatment of rPru av 1 alone did not show any influence on the IgE-binding activity of the protein at least for 30 min, thus correlating well with the refolding of the allergen in buffer solution as demonstrated by CD spectroscopic experiments. Incubation of the protein with starch and maltose also showed no effect on IgE-binding activity, whereas reaction with glucose and ribose and, even more pronounced, with the carbohydrate breakdown products glyceraldehyde and glyoxal induced a strong decrease of the IgE-binding capacity of rPru av 1. In the second part of the study, the effect of polyphenoloxidase-catalyzed oxidation of polyphenols on food allergen activity was investigated. Incubation of rPru av 1 with epicatechin in the presence of tyrosinase led to a drastic decrease in IgE-binding activity of the protein. Variations of the phenolic compound revealed caffeic acid and epicatechin as the most active inhibitors of the IgE-binding activity of rPru av 1, followed by catechin and gallic acid, and, finally, by quercetin and rutin, showing significantly lower activity. On the basis of these data, reactive intermediates formed during thermal carbohydrate degradation as well as during enzymatic polyphenol oxidation are suggested as the active chemical species responsible for modifying nucleophilic amino acid side chains of proteins, thus inducing an irreversible change in the tertiary structure of the protein and resulting in a loss of conformational epitopes of the allergen.  相似文献   

12.
The ability of phaseolin to act as an acyl donor and acceptor substrate of transglutaminase was studied by using an enzyme isolated from Streptoverticillium mobarense. Phaseolin, a trimeric storage protein from Phaseolus vulgaris L., was shown to possess both glutamine and lysine residues reactive for the enzyme. The extent of transglutaminase-catalyzed cross-linking has been studied in function of both incubation time and enzyme concentration. Native- and SDS-PAGE demonstrated that phaseolin is intra- and intermolecularly cross-linked by transglutaminase and gives rise to different polymers as well as to modified forms of the protein having a similar molecular weight but lower Stokes radius if compared to unmodified phaseolin. Cross-linked phaseolin was found to be more resistant to proteolytic cleavage than the unmodified counterpart, as demonstrated by in vitro trypsin and pepsin digestion experiments. This behavior could suggest novel possible uses of the transglutaminase-modified phaseolin.  相似文献   

13.
Interactive effects of microbial transglutaminase (MTGase) and recombinant cystatin on the mackerel and hairtail water soluble protein (WSP), salt soluble protein (SSP), and muscle protein (MP) were investigated. According to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and enzymic activity analyses, cross-linking of mackerel and hairtail myosin heavy chain and low molecular mass compounds and formation of epsilon-(gamma-glutamyl)lysine cross-links were observed on samples with MTGase, while the recombinant cystatin could effectively inhibit the cathepsins and subsequently prevent degradation of proteins during setting. The cathepsins and MTGase activities in WSP, SSP, and MP solutions decreased, but the recombinant cystatin activity increased during setting at 45 degrees C.  相似文献   

14.
以硬脂酸作为增塑剂,胱氨酸作为交联剂制备具有一定力学性能和良好抗湿性能的大豆分离蛋白复合膜。将膜放在25℃,相对湿度为50%的干燥器中平衡两天,用质构仪测定膜的抗拉强度(TS),延伸率(E(%))。在水分活度aw为0.10~0.90的范围内研究了复合膜在25℃的吸湿特性。吸湿速率和吸湿等温线数据分别拟合到Peleg's 方程和GAB(Guggenheim-Anderson-de Boer)模型。结果表明:大豆蛋白复合膜的TS、延伸率E(%)以及吸湿速率随着硬脂酸和胱氨酸的添加比率显著地变化。硬脂酸和胱氨酸的最佳添加比率为40∶60(w/w)(每升蛋白质溶液中加入10 g混合添加剂),此时,大豆蛋白膜的强度比原来提高2倍,并且有最佳的吸湿速率。吸湿数据和GAB 模型有很高的拟合度,拟合系数最高达0.99。  相似文献   

15.
Color-generating reactions of protein-bound lysine with carbohydrates were studied under thermal as well as under physiological conditions to gain insights into the role of protein/carbohydrate reactions in the formation of food melanoidins as well as nonenzymatic browning products in vivo. EPR spectroscopy of orange-brown melanoidins, which were isolated from heated aqueous solutions of bovine serum albumin and glycolaldehyde, revealed the protein-bound 1,4-bis(5-amino-5-carboxy-1-pentyl)pyrazinium radical cation (CROSSPY) as a previously unknown type of cross-linking amino acid leading to protein dimerization. To verify their formation in foods, wheat bread crust and roasted cocoa as well as coffee beans, showing elevated nonenzymatic browning, were investigated by EPR spectroscopy. An intense radical was detected, which, by comparison with the radical formed upon reaction bovine serum albumin with glycolaldehyde, was identified as the protein-bound CROSSPY. The radical-assisted protein oligomerization as well as the browning of bovine serum albumin in the presence of glycolaldehyde occurred also rapidly under physiological conditions, thereby suggesting CROSSPY formation to be probably involved also in nonenzymatic glycation reactions in vivo.  相似文献   

16.
Pectins from Foeniculum vulgare were extracted under acidic conditions. The obtained pectins were mainly composed of uronic acid but also contained traces of rhamnose, galactose, and arabinose. Extracted pectins were used as a carbohydrate source to prepare biopolymer films in the absence and in the presence of phaseolin protein. The swelling characteristics of the films were examined as a function of ionic strength, pH, and the applied osmotic stress. The swelling behavior was dominated by a Donnan-type effect, which decreases with increasing ionic strength and counterion valency. In all cases the swelling of films containing phaseolin was reduced, suggesting a network formation between protein and pectins. Mechanical property studies have also estimated the validity of the obtained novel biopolymer films in terms of mechanical resistance.  相似文献   

17.
Low-pH whey protein gels are formulated using a sequential protocol of heat treatment, enzyme incubation, and cold-set acidification. The heat-induced disulfide and enzyme-catalyzed epsilon-(gamma-glutamyl)lysine linkages, both at neutral pH, produce a polymerized protein solution. The molecular weights of these samples show an exponential increase with protein concentration. The additional enzyme-catalyzed cross-links cause little change in molecular weight from that of heat-treated samples at low protein concentrations, indicating predominant intramolecular cross-linking. Enzyme treatment at higher protein concentration however causes increase in molecular weight, possibly due to formation of intermolecular cross-links. Acidification of the polymerized protein solutions through glucono-delta-lactone acid leads to gel formation at pH 4. The elastic (G') and viscous (G' ') moduli of gels with and without enzyme treatment show similar frequency dependence, indicating comparable microstructures, consistent with all samples exhibiting similar fractal dimensions of approximately 2 obtained independently using rheology and confocal microscopy. A substantial increase in fracture strain and stress of the gel is achieved by enzyme treatment. However, the elastic modulus (G') is only slightly larger after enzyme treatment compared with heat-treated samples. These results indicate that factors responsible for fracture properties may not be apparent in the gel microstructure and linear viscoelastic properties.  相似文献   

18.
True ileal total lysine digestibility was determined and compared with true ileal reactive lysine digestibility when applied to 20 cereal-based breakfast foods. Semisynthetic diets each containing a breakfast cereal as the sole protein source were formulated and fed to growing rats. Titanium dioxide was included as an indigestible marker. Digesta were collected from the rats and total (conventional amino acid analysis) and reactive (guanidination) lysine were determined in both diets and digesta. The true ileal reactive lysine digestibility ranged from 53 to 108% and was significantly higher than the true ileal total lysine digestibility for most of the breakfast cereals. Available lysine content (digestible reactive lysine content) ranged from 0.21 to 3.5 g/kg across the breakfast cereals. The conventional measure of digestible total lysine content significantly overestimated (on average 37%) available lysine for the majority of the cereals. Breakfast cereals undergo a significant degree of lysine modification probably as a result of processing during manufacture.  相似文献   

19.
Dynamic and steady shear rheology is used to examine the synthesis of low-pH (approximately 4) whey protein gels obtained through a two-step process. The first step involves cross-linking of whey proteins at pH 8 and 50 degrees C using transglutaminase enzyme, while the second step entails cold-set acidification of the resulting solution using glucono-delta-lactone (GDL) acid. During the first step, the sample undergoes enzyme-catalyzed epsilon-(gamma-glutamyl)lysine bond formation with a substantial increase in viscosity. Acidification in the second step using GDL acid leads to a rapid decrease in pH with a concomitant increase in the elastic (G') and viscous (G' ') moduli and formation of a gelled network. We examine the large strain behavior of the gel samples using a relatively new approach that entails plotting the product of elastic modulus and strain (G'gamma) as a function of increasing dynamic strain and looking for a maximum, which corresponds to the yield or fracture point. We find the enzyme-catalyzed gels to have significantly higher yield/fracture stress and strain compared to cold-set gels prepared without enzyme or conventional heat-set gels. In addition, the elastic modulus of the enzyme-catalyzed gel is also higher than its non-enzyme-treated counterpart. These results are discussed in terms of the gel microstructure and the role played by the enzyme-induced cross-links.  相似文献   

20.
Heat and alkali treatments of foods, widely used in food processing, result in the formation of dehydro and cross-linked amino acids such as dehydroalanine, methyldehydroalanine, beta-aminoalanine, lysinoalanine (LAL), ornithinoalanine, histidinoalanine (HAL), phenylethylaminoalanine, lanthionine (LAN), and methyl-lanthionine present in proteins and are frequently accompanied by concurrent racemization of L-amino acid isomers to D-analogues. The mechanism of LAL formation is a two-step process: first, hydroxide ion-catalyzed elimination of H(2)S from cystine and H(2)O, phosphate, and glycosidic moieties from serine residues to yield a dehydroalanine intermediate; second, reaction of the double bond of dehydroalanine with the epsilon-NH(2) group of lysine to form LAL. Analogous elimination-addition reactions are postulated to produce the other unusual amino acids. Processing conditions that favor these transformations include high pH, temperature, and exposure time. Factors that minimize LAL formation include the presence of SH-containing amino acids, sodium sulfite, ammonia, biogenic amines, ascorbic acid, citric acid, malic acid, and glucose; dephosphorylation of O-phosphoryl esters; and acylation of epsilon-NH(2) groups of lysine. The presence of LAL residues along a protein chain decreases digestibility and nutritional quality in rodents and primates but enhances nutritional quality in ruminants. LAL has a strong affinity for copper and other metal ions and is reported to induce enlargement of nuclei of rats and mice but not of primate kidney cells. LAL, LAN, and HAL also occur naturally in certain peptide and protein antibiotics (cinnamycin, duramycin, epidermin, nisin, and subtilin) and in body organs and tissues (aorta, bone, collagen, dentin, and eye cataracts), where their formation may be a function of the aging process. These findings are not only of theoretical interest but also have practical implications for nutrition, food safety, and health. Further research needs are suggested for each of these categories. These overlapping aspects are discussed in terms of general concepts for a better understanding of the impact of LAL and related compounds in the diet. Such an understanding can lead to improvement in food quality and safety, nutrition, microbiology, and human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号