首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Virulent Rhizoctonia spp. isolated from strawberry in Israel belonged to anastomosis groups (AG) of: binucleate Rhizoctonia (BNR) AG-A, AG-G, AG-K and AG-F, and to multinucleate Rhizoctonia (MNR) AG 4 subgroup HG-I. In addition, a soil isolate of AG 4 subgroup HG-III was also found to be virulent on strawberry. None of the Israeli isolates obtained in the present study belonged to BNR AG-I, or other MNR AGs. In the cluster analysis of rDNA-ITS sequences, all of the isolate sequences consistently clustered according to their known AGs and subgroups. One AG-F cluster included sequences of 10 strawberry isolates, while another AG-F cluster included sequences of two isolates submitted to GenBank. Additional work is needed to determine whether the isolates of these two clusters may belong to different AG-F subgroups. The current virulence bioassay used for Rhizoctonia spp. isolates on strawberry is based on inoculation of stolon-derived daughter plants with the isolates and estimation of the reduction in plant biomass, rather than on specific distinct disease severity symptoms. The duration of this test is relatively long (ca. 5 weeks or more) and the availability of daughter plants from runners is naturally limited to a certain season. Among the possible alternative methods evaluated in the present study (inoculation of fruits or seedlings developed from germinated strawberry seeds), the method based on seedlings was best. This method has a potential to replace the currently used stolon-daughter plant inoculation bioassay for testing virulence of strawberry root pathogens. This is the first report indicating that Rhizoctonia spp. isolates that belong to AG-F, AG-K, AG 4 HG-I and AG 4 HG-III are virulent to strawberry.  相似文献   

2.
A total of 304Rhizoctonia solani isolates and 60 binucleateRhizoctonia-like fungi were recovered from stems and tubers of infected potato plants over a 2-yr period in northeast Turkey.R. solani isolates were identified to 11 anastomosis groups (AGs): AG-1 (0.66%), AG-2-1 (5.6%), AG-2-2 (0.99%), AG-3 (83.9%), AG-5 (4.6%), AG-6 (0.66%), AG-8 (1.32%), AG-9 (0.33%), AG-10 (1.32%), AG-12 (0.33%), and AG-13 (0.33%). In the greenhouse tests, most of the AG-3 isolates were significantly more virulent than isolates belonging to other AGs on potato cv. Batum. Isolates of other anastomosis groups differed in their virulence. Results indicated that AG-3 is an important pathogen on potatoes grown in the study area. Five of 22 commercial and local potato cultivars evaluated for their reaction toR. solani AG-3 isolates (TP-2) under greenhouse conditions were highly resistant; the remaining cultivars exhibited different levels of susceptibility to the pathogen isolate. http://www.phytoparasitica.org posting July 14, 2005.  相似文献   

3.
The population structure of Rhizoctonia solani AG-1 IA causing rice sheath blight from India was evaluated for 96 isolates using seven RFLP loci. Nineteen of the isolates did not hybridise to R. solani AG-1 IA RFLP probes and rDNA analyses subsequently confirmed that they were either Ceratobasidium oryzae-sativae isolates or another Rhizoctonia sp. The population structure of the remaining 77 R. solani AG-1 IA Indian isolates was similar to that of a previously characterized Texas population. Clonal dispersal of R. solani AG-1 IA in India was moderate within fields and no clones were shared among field populations. Low levels of population subdivision and small genetic distances among populations were consistent with high levels of gene flow. Frequent sexual reproduction was indicated by the fact that most populations were in Hardy–Weinberg equilibrium (HWE). The two loci (R68 and R111) that deviated significantly from HWE showed an excess of heterozygosity. Although Texas and Indian populations were geographically very distant, they exhibited only moderate population subdivision, with an FST value of 0.193.  相似文献   

4.
Blight on leaves, stems and bulbs of lilies grown in a greenhouse were found in Hokkaido, Japan, in 2012. Two isolates obtained from the lesions were identified as Rhizoctonia solani anastomosis group (AG)-11 based on morphology and molecular analysis. Original symptoms were reproduced after artificial inoculation with the isolates. Except for R. solani AG-2-1 and AG-4 HG-I, none of the AGs have been reported as pathogens causing lily Rhizoctonia disease in Japan; therefore, we propose adding AG-11 as a pathogen of the disease. More importantly, we report the first appearance of crop disease caused by AG-11 in Japan.  相似文献   

5.
The rDNA-ITS sequence of Rhizoctonia solani AG 1-ID was determined and compared to those of R. solani AG 1-IA, AG 1-IB, and AG 1-IC. The similarity of the isolates from each AG 1 subgroup was almost identical (99%–100%), whereas it was lower between subgroups (91%–95%) than within subgroups. Phylogenetic analysis indicated that isolates of AG 1-ID and other subgroups were separately clustered. Isolates of R. solani AG 1 were clearly separated from R. solani AG 2-1, AG 4, and binucleate Rhizoctonia AG-Bb and AG-K. These results showed that analysis of the rDNA-ITS sequence is an optimal criterion for differentiating R. solani AG 1-ID from other subgroups of R. solani AG 1.  相似文献   

6.
Sixty-eight Rhizoctonia solani isolates (31 AG-1, 37 of AG-2-2) associated with web blight (WB) of common bean, Phaseolus vulgaris, were examined for sequence variations in the ITS-5.8S rDNA region. The isolates were collected in bean-growing lowland and mountainous regions in Central and South America. Sequences of these isolates were aligned with other known R. solani sequences from the NCBI GenBank and distance and parsimony analysis were used to obtain phylogenetic trees. WB isolates of AG-1 formed two clades separated from known AG-1 subgroups. WB isolates of AG-2-2 formed one clade separated from known AG-2-2 subgroups. Other isolates belonged to AG-1 IA and AG-1 IB. Based on phylogenetic analysis, we confirmed that at least five genetically different subgroups incite WB of common beans. Three new subgroups of R. solani have been identified and designated as AG-1 IE, AG-1 IF and AG-2-2 WB. DNA sequences of these isolates provided needed information to design taxon-specific primers that can be employed in ecological/epidemiological studies and seed health tests.  相似文献   

7.
During surveys conducted in 2010–2012 Rhizoctonia symptoms were observed on 30 ornamental species in different nurseries located in eastern Sicily (Southern Italy). Eighty-eight isolates of Rhizoctonia spp. were obtained from symptomatic leaves, roots and stems. Fifty-six of the isolates were binucleate and 32 were multinucleate Rhizoctonia. Characterisation of anastomosis groups (AGs) was performed using morphological characteristics and sequence analysis of the internal transcribed spacer of ribosomal DNA ( rDNA-ITS) region. Most isolates collected were Rhizoctonia solani AG-4 HG-I (35.2% of all isolates) and one isolate was AG-2-2 IIIB. The binucleate isolates belonged to AG-R (27.3%), AG-A (21.6%), AG-G (12.5%), AG-V (1.1%) and AG-Fb (1.1%). The pathogenicity of 38 representative isolates collected from each host was tested on seedlings or cuttings grown in a growth chamber. All R. solani AG-4 HG-I isolates, most of the binucleate AG-R, AG-A and AG-G and AG-V were pathogenic and reproduced symptoms identical to that observed in nurseries, while binucleate AG-Fb and R. solani AG-2-2 IIIB isolates were nonpathogenic. This is the first report of the occurrence of Rhizoctonia species on some ornamental plants and the first report of binucleate Rhizoctonia AG-R and AG-V in Europe.  相似文献   

8.
Four-hundred-sixty-eightFusarium andFusarium-like isolates were obtained from crowns and subcrown internodes of winter wheat grown in Erzurum, Turkey. Of these isolates, 34.8% wereFusarium acuminatum, 32.3% wereF. equiseti, 16.9% wereF. oxysporum, 15.0% wereMicrodochium nivale (formerlyFusarium nivale), 0.6% wereF. tabacinum and 0.4% wereF. solani. In pathogenicity tests on wheat, the highest disease severity was caused by isolates ofM. nivale, whereas isolates ofF. acuminatum, F. equiseti, F. oxysporum andF. solani were slightly virulent; isolates ofF. tabacinum were nonpathogenic. This is the first report ofM. nivale andF. tabacinum from wheat in Turkey. http://www.phytoparasitica.org posting Jan. 29, 2003.  相似文献   

9.
Ninety-eight isolates of Rhizoctonia spp. were obtained from barley and wheat grown in Erzurum, Turkey. Of these, 78% were Rhizoctonia solani (AG-2 type 1, AG-3, AG-4, AG-5 and AG-11), 10% were binucleate Rhizoctonia (AG-I and AG-K) and the remainder were Waitea circinata var circinata ( Rhizoctonia sp.). Among the binucleate Rhizoctonia , AG-I was not recovered from barley. In pathogenicity tests on barley and wheat, the highest disease severity was caused by isolates of AG-4 and AG-11, whereas isolates of AG-2 type 1, AG-3, AG-5 and W. c . var  circinata were moderately virulent. Isolates of binucleate Rhizoctonia were all nonpathogenic. This is the first report of R. solani AG-11 and W. c . var  circinata from Turkey.  相似文献   

10.
This work was undertaken to determine the effects ofTrichoderma spp. combined with label and sublabel rates of metam sodium on survival ofRhizoctonia solani in soil. Soils were infested with wheat bran preparations ofTrichoderma hamatum Tri-4,T. harzianum Th-58,T. virens Gl-3, andT. viride Ts-1-R3. Soil was also infested with sterile beet seeds that were colonized withR. solani. Beet seeds were later recovered, plated onto water agar plus antibiotics, and the growth ofR. solani was recorded. Preliminary experiments showed thatT. hamatum andT. virens reduced survival and saprophytic activity ofR. solani when the biocontrol fungi were incorporated into soil at 1.5% (w:w) or greater. Based on these data, biocontrol fungi in subsequent experiments were incorporated into soil at 2%. Metam sodium at label rate killed all biocontrol fungi andR. solani. At 1:2 and 1:5 dilutions, metam sodium reduced survival ofR. solani and allTrichoderma spp. When biocontrol fungi plus the label rate of metam sodium and 1:5, 1:10, 1:50 or 1:100 dilutions of the label rate were tested together, there were no interactions between any biocontrol agent and the fumigant with respect to colony diameter, reflecting that allTrichoderma isolates tested reacted similarly to increasing concentrations of metam sodium. At the label rate of metam sodium, allTrichoderma spp. significantly reduced colony diameter, but not growth rate, ofR. solani from beet seed. For the levels of metam sodium tested in combination withTrichoderma, it does not appear feasible to use a reduced rate of metam sodium to controlR. solani. However, the combination ofTrichoderma with metam sodium does reduce growth ofR. solani in comparison with that provided by metam sodium at the label rate. http://www.phytoparasitica.org posting Feb. 11, 2004.  相似文献   

11.
Ageratum conyzoides L. is an annual herb in the tropics and subtropics whose extracts are known to possess pharmacological and biocidal activity. We report on the bioactivity of a secondary metabolite (a chromene) isolated from the shoots ofA. conyzoides against some plant pathogenic fungi. Organic solvent extracts from the shoots were tested for antifungal activity against the plant pathogenic fungiRhizoctonia solani, Sclerotium rolfsii, Botryodiplodia theobromae, Phomopsis theae andFusarium species growingin vitro on potato dextrose agar medium. The cruden-hexane extract completely inhibited the growth ofR. solani andS. rolfsii. Then-hexane extract was chromatographed over a column of silica gel followed by activity-guided fractionation to give an antifungal principle. Structure elucidation by detailed analysis of1H,13C NMR and mass spectroscopy identified the active compound as precocene II. The growth ofR. solani andS. rolfsii was completely inhibited by precocene II at a concentration of 80–100 ppm. The sclerotia ofR. solani andS. rolfsii were also completely suppressed by 150 ppm of precocene II. Sub-culture of these inhibited fungi onto precocene II-free medium restored growth of the fungus, indicating that precocene II is fungistatic. Crude or refined extracts fromA. conyzoides offer the possibility of biocontrol of plant pathogenic fungi. http://www.phytoparasitica.org posting Feb. 11, 2004.  相似文献   

12.
Fifty-eight binucleate Rhizoctonia isolates were collected over six years from strawberry plants displaying symptoms of black root rot in Italy. Almost all isolates were able to produce necrosis on strawberry roots, most of them also showed this ability on faba bean and, with lower frequency, on a crucifer and a cereal crop used in rotation with strawberry in Italy. The sequence alignment of Internal Transcribed Spacer (ITS) regions of 51 binucleate Rhizoctonia were analyzed and compared with a set of eight sequences representative of Rhizoctonia isolate Anastomosis Groups (AG) already found to be pathogenic on strawberry (AG-A, AG-G, AG-I and AG-F). The neighbour-joining tree, based on ITS region sequences, divided Italian strawberry Rhizoctonia isolates into two main clusters corresponding to AG-A and AG-G. The results were confirmed by hyphal anastomosis tests. The clustering obtained with the phylogenetic tree was also confirmed using PCR-Restriction Fragment Length Polymorphism of 28S rDNA to compare some isolates, defined as AG-A and AG-G on the basis of ITS region sequence analysis, with representative AG isolates pathogenic on strawberry. The AG-A and AG-G Rhizoctonia spp. were widespread in Italian strawberry-growing areas, although with different relative frequencies: AG-G was most frequent in northern (latitude 44°N) and AG-A in southern (latitude 39–40°N) Italy. Analysis of MOlecular VAriance, based on geographic location, showed that Rhizoctonia molecular variations between northern and southern Italy accounted for 36.6% of the total, but most of the variations (61%) occurred within each of the four geographical regions from where the isolates originated.  相似文献   

13.
Aphanomyces euteiches (races 1 and 2) causes root rot of alfalfa; however, its population biology and distribution are poorly understood where alfalfa is a major crop. The objectives of this study were to (1) characterise the distribution and frequency of races of A. euteiches in Illinois alfalfa fields, (2) determine host range of A. euteiches on cultivated and native legumes, and (iii) to describe genetic diversity and population genetic structure of A. euteiches in alfalfa fields. To accomplish this, soil samples (n = 103) were collected from 30 alfalfa fields in 18 Illinois counties. Using the susceptible cv. ‘Saranac’, 148 isolates of A. euteiches were baited from the soil. The virulence phenotype of isolates representing all 18 counties was tested, and 54% were R1 and 46% were R2. Both races were detected in 61% of the counties, whereas only R1 was detected in 22% and R2 in 17%. Thirteen legume hosts for isolates from alfalfa fields were identified based on symptoms and/or production of oospores in roots. In addition to six previously known hosts, seven species were susceptible to infection: kura clover, purple prairie clover, white prairie clover, ladino clover, hairy vetch, Canadian milk vetch, and Illinois tick trefoil. AFLP analysis revealed high levels of genetic diversity among the isolates from different fields and counties and a lack of genetic structuring of populations based on race or geographical origin. The results suggest that populations of A. euteiches in alfalfa fields are diverse, often composed of races 1 and 2, and create risk for alfalfa and to multiple cultivated and native legume species.  相似文献   

14.
Foot rot of mature tomato plants was found in four cities of Hokkaido, Japan, from 2004 to 2007. Six of eight isolates obtained from damaged tissues were identified as Rhizoctonia solani anastomosis group (AG)-3, and the remaining two isolates belonged to AG-2-1. We compared these isolates with nine reference isolates including the different subgroups in AG-3 (PT, TB and TM) and AG-2-Nt (pathogen of tobacco leaf spot) within AG-2-1 in terms of pathogenicity to tomato, tobacco and potato. All eight isolates caused foot rot on tomato. The six AG-3 isolates caused stem rot on young potato plants. While, all reference isolates of AG-3 PT causing stem rot of young potato plants incited foot rot on tomato. The two AG-2-1 isolates and an AG-2-Nt reference isolate caused severe leaf spot on tobacco leaves. The sequences of rDNA- ITS region and rDNA-IGS1 region of the AG-3 isolates showed high similarity to that of AG-3 PT isolates. Phylogenetic tree based on ITS and IGS1 regions of rDNA indicated that the AG-2-1 isolates from tomato formed a single clade with AG-2-Nt isolates and that they were separate from Japanese AG-2-1 isolates (culture type II). Pathogenicity tests and DNA sequence evaluation of the causal fungi revealed that the present isolates of AG-3 and AG-2-1 belonged to AG-3 PT and AG-2-Nt, respectively. This is the first report of tomato foot rot caused by R. solani in Japan.  相似文献   

15.
From 2007 to 2013, a disease of Welsh onion, causing leaf sheath rot and concomitant death of outer leaves was found in 20 fields in Hokkaido, Japan. We obtained 20 Rhizoctonia isolates from diseased tissues and identified them based on the number of nuclei, hyphal fusion reactions, and molecular techniques using specific PCR primers and sequence of the rDNA-ITS region. The 20 isolates consisted of 16 multinucleate and four binucleate isolates. Of the multinucleate isolates, five were found to be so far unknown and designated here as Rhizoctonia solani AG-4 hybrid subgroup between HG-I and HG-II. Others were identified as AG-1 IB (three isolates), AG-2-2 IIIB (two isolates), AG-4 HG-I (two isolates), AG-1 IC (one isolate), AG-2-1 (one isolate), AG-4 HG-II (one isolate) and AG-5 (one isolate). All four binucleate isolates were binucleate Rhizoctonia AG-U. Original symptoms were reproduced on all plants inoculated with these isolates. Thus, we revealed that as many as nine taxa of Rhizoctonia spp. were associated with the disease. This is the first report of leaf sheath rot of Welsh onion caused by Rhizoctonia spp.  相似文献   

16.
One hundred and twenty-nine isolates ofRhizoctonia spp. were obtained from soil samples in Israel and from culture collections in the U.S.A. and Japan. The isolates varied in host range and disease severity when tested on six to eleven different host plants. Approximately 30% of the isolates were nonpathogenic to all the host plants tested. Mycelial growth rate of the nonpathogenic strains did not differ significantly from that of the virulent isolates. The 107 Israeli isolates represented anastomosis groups (AG) 1, 2, 3, 4, 5 and 6 ofR, solani, two groups ofR. zeae, and three groups of binucleateRhizoctonia AG: A, F and K.  相似文献   

17.
Rhizoctonia spp. anastomosis groups (AGs) associated with canola and lupin in the southern and western production areas of the Western Cape province of South Africa were recovered during the 2006 and 2007 growing seasons and identified using sequence analyses of the rDNA internal transcribed spacer regions. The effect of crop rotation systems and tillage practices on the recovery of Rhizoctonia spp. was evaluated at Tygerhoek (southern Cape, Riviersonderend) and Langgewens (western Cape, Moorreesburg) experimental farms. Isolations were conducted from canola planted after barley, medic/clover mixture and wheat, and lupin planted after barley and wheat, with sampling at the seedling, mid-season and seedpod growth stages. In the 2006 study, 93.5% of the Rhizoctonia isolates recovered were binucleate and 6.5% multinucleate; in 2007, 72.8% were binucleate and 27.2% were multinucleate. The most abundant AGs within the population recovered included A, Bo, I and K, among binucleate isolates and 2-1, 2-2 and 11 among multinucleate isolates. Crop rotation sequence, tillage and plant growth stage at sampling all affected the incidence of recovery of Rhizoctonia, but certain effects were site-specific. The binucleate group was more frequently isolated from lupin and the multinucleate group from canola. AG-2-1 was only isolated from canola and AG-11 only from lupin. This study showed that important Rhizoctonia AGs such as AG-2-1, 2-2 and 11 occur in both the southern and the western production areas of the Western Cape province and that crop rotation consistently influences the incidence and composition of the Rhizoctonia community recovered from the cropping system.  相似文献   

18.
Genetic diversity among 51 isolates of Rhizoctonia solani AG-3, representing potato and tobacco populations, was inferred from the sequences of the internal transcribed spacer (ITS) and 5.8S ribosomal RNA (rRNA) gene. The 5.8S rDNA sequence was completely conserved not only in AG-3, but across all the AG isolates examined, whereas the rDNA-ITS sequence was found to be variable among the isolates. The nucleotide sequence similarity in the ITS 1 region was high (96-100%) for isolates within each of the two populations, but was 91-92% for isolates from different populations. The AG-3 isolates had 56 to 91% sequence similarities in the ITS 1 region with R. solani isolates of the other AGs. Phylogenetic analysis based on the ITS-5.8S rDNA sequence data indicated that the different populations in AG-3 are distantly related to each other. Genetic divergence between the two populations was also supported by the results of DNA-DNA hybridization studies. This study suggests that AG-3 consists of two genetically isolated groups corresponding to separate subgroups: AG-3 PT (potato type) and AG-3 TB (tobacco type). Specific primer sets for the detection of the two AG-3 subgroups were developed from the aligned rDNA-ITS sequences. Received 22 April 1999/ Accepted in revised form 2 July 1999  相似文献   

19.
河北省小麦纹枯病菌群体组成及致病力分化   总被引:4,自引:2,他引:2  
为明确河北省小麦纹枯病发生特点及病菌特征,采用五点取样法调查该病的发生情况,通过细胞核染色、菌丝融合反应和r DNA-ITS序列分析测定196株纹枯病菌群体组成,并比较其对不同小麦品种的致病力差异。结果表明,河北省3个不同生态类型麦区30个监测点均有纹枯病发生,临漳县发病最重,其次是邯郸县和馆陶县,青县发病最轻;纹枯病菌可划分为AG-D、AG-B(0)、AGI、AG-4和AG-5共5种融合群,分别占菌株总数的88.3%、1.5%、5.1%、3.6%和1.5%;采自黑龙港平原区和山前平原区的纹枯病菌对石新828、良星99和邯6172的平均致病力均明显强于冀东平原区;菌株可划分为极强、强、中等和弱4个致病类型,分别占菌株总数的45.92%、33.67%、7.65%和12.76%。表明河北省小麦纹枯病发生普遍,总体呈南重北轻的趋势,纹枯病菌群体组成较简单,以强致病力AG-D融合群为主。  相似文献   

20.
Rhizoctonia solani AG-1 IA causes leaf blight on soybean and rice. Despite the fact that R. solani AG-1 IA is a major pathogen affecting soybean and rice in Brazil and elsewhere in the world, little information is available on its genetic diversity and evolution. This study was an attempt to reveal the origin, and the patterns of movement and amplification of epidemiologically significant genotypes of R. solani AG-1 IA from soybean and rice in Brazil. For inferring intraspecific evolution of R. solani AG-1 IA sampled from soybean and rice, networks of ITS-5.8S rDNA sequencing haplotypes were built using the statistical parsimony algorithm from Clement et al. (2000) Molecular Ecology 9: 1657–1660. Higher haplotype diversity (Nei M 1987, Molecular Evolutionary Genetics Columbia University Press, New york: 512p.) was observed for the Brazilian soybean sample of R. solani AG-1 IA (0.827) in comparison with the rest of the world sample (0.431). Within the south-central American clade (3-2), four haplotypes of R. solani AG-1 IA from Mato Grosso, one from Tocantins, one from Maranhão, and one from Cuba occupied the tips of the network, indicating recent origin. The putative ancestral haplotypes had probably originated either from Mato Grosso or Maranhão States. While 16 distinct haplotypes were found in a sample of 32 soybean isolates of the pathogen, the entire rice sample (n=20) was represented by a single haplotype (haplotype 5), with a worldwide distribution. The results from nested-cladistic analysis indicated restricted gene flow with isolation by distance (or restricted dispersal by distance in nonsexual species) for the south-central American clade (3-2), mainly composed by soybean haplotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号