首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A working group within the European Union funded COST Action E12, “Urban Forests and Trees”, carried out a survey between 1999 and 2001 to study current tree establishment practice in European towns and cities. An extensive questionnaire requesting information on the urban area, selection of tree species, establishment and aftercare practices and the main damaging factors was sent to tree professionals in urban areas in each of 17 countries.Indicators such as the relationship between the urban population and the number of street trees were used to compare urban areas. While most central European cities have a ratio of 50–80 street trees per 1000 inhabitants, the tree density was as low as 20 street trees per 1000 inhabitants for Nice. Often only a few species are planted and this may give cause for concern, since species diversity is considered an important factor in increasing the resilience of the urban tree population to abiotic and biotic stresses.The planting of larger street trees of 20–30 cm circumference, usually with hessian-wrapped rootballs, is becoming increasingly common practice. However, some countries report the use of mostly bare-rooted stock of much smaller trees (less than 12 cm circumference). Establishment costs for street trees range from less than 200 Euro to over 1500 Euro each. Poor site conditions, and impacts such as utility trenching are considered to be major restrictions to healthy tree life. Vandalism affects up to 30%of newly planted street trees in some towns and cities.Overall, the survey reveals large differences in tree establishment and management practices among European cities. There is a need to provide urban tree managers with guidance on good practice for tree selection and establishment based on empirical information. The survey was a first step towards collecting the necessary urban forest information from across Europe.  相似文献   

2.
Street trees are threatened by multiple stresses from biophysical and anthropogenic factors. This situation can be extremely challenging in highly developed urban areas with limited space for tree planting. Asia has some of the most densely populated cities globally, but there is a lack of data on factors affecting street tree health in the region. This study aims to examine the impact of constrained planting environments on the health condition of street trees through a case study in Kyoto City, Japan. The health condition of 1230 street trees distributed throughout the city was assessed from June to October 2018. Additionally, several tree- and site-related variables were collected to identify their impact on tree health. Trees that were in excellent and good condition accounted for 19.9 % and 32.0 % of the sample population, respectively. Multivariate linear regression (N = 1139) revealed that tree health condition was significantly related to pruning intensity, tree pit size, adjacent land use, presence/absence of tree grate or guard, width of sidewalk, tree height, presence/absence of dedicated cycle route, tree pit pattern, crown light exposure, DBH and tree pit type. Platanus × acerifolia and other trees with large diameters exhibited relatively poor condition, along with those in tree pits with concrete paving, without tree grates, or in industrial areas, whereas trees planted in strips exceeding 1.8 m in length and exposed to weak pruning showed the best condition. These results imply the potential for healthy growth of street trees in the restricted planting spaces of Kyoto City, which suggests appropriate management and planting practices. Moreover, our empirical data can inform urban tree managers to support their efforts in making decisions on the better matching of species tolerances with urban site conditions for future street tree plans.  相似文献   

3.
Research points to numerous benefits provided by urban street trees including qualitative and quantitative public health, economic, and environmental advantages for a city and its residents. As with other key aspects of city management that help develop municipal success, urban forestry requires foresight, commitment and planning that lead to effective policies and strategies. Good street tree management based on effective policies can maximise street tree benefits. Poorly conceived policies or the absence of effective policies can lead to the opposite result. A case study of the neighbouring cities of Loma Linda and Redlands, California illustrates this difference. The urban tree care and protection policies in these two cities have evolved differently. The differences may be attributable to contrasting municipal commitments to preservation and to best-practice management principles. Based on a comparative analysis of street tree policies of the two cities, it can be concluded that a local culture favouring tree protection and reflective guidelines and policies can result in proactive and successful management of an urban forest. Such policies also include provision for gathering data essential for strategic tree planting, care and removal.  相似文献   

4.
Once renowned as India’s “garden city”, the fast growing southern Indian city of Bangalore is rapidly losing tree cover in public spaces including on roads. This study aims to study the distribution of street trees in Bangalore, to assess differences in tree density, size and species composition across roads of different widths, and to investigate changes in planting practices over time. A spatially stratified approach was used for sampling with 152 transects of 200 m length distributed across wide roads (with a width of 24 m or greater), medium sized roads (12–24 m) and narrow roads (less than 12 m). We find the density of street trees in Bangalore to be lower than many other Asian cities. Species diversity is high, with the most dominant species accounting for less than 10% of the overall population. Narrow roads, usually in congested residential neighborhoods, have fewer trees, smaller sized tree species, and a lower species diversity compared to wide roads. Since wide roads are being felled of trees across the city for road widening, this implies that Bangalore’s street tree population is being selectively denuded of its largest trees. Older trees have a more diverse distribution with several large sized species, while young trees come from a less diverse species set, largely dominated by small statured species with narrow canopies, which have a lower capacity to absorb atmospheric pollutants, mitigate urban heat island effects, stabilize soil, prevent ground water runoff, and sequester carbon. This has serious implications for the city’s environmental and ecological health. These results highlight the need to protect large street trees on wide roads from tree felling, and to select an appropriate and diverse mix of large and small sized tree species for new planting.  相似文献   

5.
Canberra is a unique city in Australia where the trees on public land that dominate the urban forest were planned for at the city's inception. In the mid-1990s, a 100% census of street and park trees was completed, and together with simple health, growth and yield models, this database formed the basis of a decision information system to support the management of the urban trees – DISMUT. The accuracy of the models was evaluated in a study in 2005 where models to predict total tree height were found to be unbiased and precise, tree crown dimension were under-estimated for small trees, and tree health was over-estimated. The over-estimate of health may be due to the relatively poor rainfall conditions over the past 10 years while the biases in crown dimension predictions are more likely due to a too simple model form. However, the existence of DISMUT predictions over all streets and parks in Canberra means that statistically efficient two-phase sampling approaches can be used to correct for any bias in the mean estimates of tree numbers and size, and also to predict the mean value of other environmental, economic or social parameters of interest that are correlated to tree size.  相似文献   

6.
Urban street trees are part of the bundle of environmental amenities that support healthy social, economic, and environmental functions. In this study, we systematically evaluate the quality of 196,825 street trees at the US. Census tract level in Washington D.C., as well as related impacts from socioeconomic, landscape patterns and environmental factors using Ordinary least-squares (OLS) regression, geographically weighted regression (GWR) and structural equation modeling (SEM). Our results reveal that environmental and socioeconomic factors can explain most of the spatial variation of street tree quality in Washington, D.C. There is a substantial statistical negative relationship between median household income and the percent of street trees under stress, which provided the evidence of the inequities of street tree quality in Washington D.C. Higher-income neighborhoods exhibited a lower proportion of street trees under stress. In addition, the extreme summer temperature is positively associated with the proportion of street trees under stress. The quality of street trees is directly impacted by environmental and landscape pattern factors. There is also an indirect impact from socioeconomic factor toward quality of street trees. Our findings suggest that multiple variables, related to income, age, education, landscape pattern, and environment contribute to the quality of street trees in D.C. Based upon our findings, we identify strategies and insights for urban street tree management in DC to not only address environmental inequity and injustice, but also promote a more inclusive and resilient urban greenery system.  相似文献   

7.
Healthy and sustainable tree populations require a high diversity of genera and species. This study examined the occurrence and contents of tree inventories in Denmark's 30 largest municipalities. 59% of the municipalities had a tree inventory for street trees, but only about half of these were complete and updated. Only one municipality had a registration for trees other than street trees. Based on data from the tree inventories, the diversity of road side trees was analyzed at genus level and species level. A total of 82,072 street trees are part of the study. 11 different genera account for 92% of the total street tree stock, and 2–6 genera account for 40–80% of the street tree stock in the individual municipalities. Tilia was the most dominating genera (26%). 12 species account for 73% of the total street tree stock. The 6 most common species account for almost 50% of the total tree population. The species representing the largest numbers were Tilia × europaea (12%), Acer platanoides (10.9%), Platanus × acerifolia (7.2%), Tilia cordata (7.2%), Fraxinus excelsior (6.2%) and Sorbus intermedia (5.9%). The four most urbanized municipalities had a surplus of non-native species, but all municipalities apart from one had most street trees belonging to native species. The concluding recommendation of this study is that tree managers need to start working more strategic with their tree stock, in order to reduce the vulnerability, due to potential attacks from pests or diseases and climate change effects. A risk spreading system for the urban tree population is proposed, suggesting that no genera should account for more than 10% and no species for more than 5% of the tree population.  相似文献   

8.
Understanding the potential dynamics of tree pests and pathogens is a vital component for creating resilient urban treescapes. Epidemiologically relevant features include differences in environmental stress and tree management between street and garden trees, and variation in the potential for human-mediated spread due to intensity of human activity, traffic flow and buildings. We extend a standard spatially explicit raster-based model for pest and pathogen spread by dividing the urban tree population into roadside trees and park/garden trees. We also distinguish between naturally-driven radial spread of pests and pathogens and human-mediated linear spread along roads. The model behaviour is explored using landscape data for tree locations in an exemplar UK town. Two main sources of landscape data were available: commercially collated aerial data, which have high coverage but no information on species; and, an urban tree inventory, with low, non-random, coverage but with some species data. The data were insufficient to impute a species-specific host landscape accurately; however, by combining the two data sources, and applying either random or Matérn cluster point process driven selection of a subset of all trees, we create two sets of potential host landscapes. We find that combining the two mechanisms of dispersal has a non-additive effect, with the enhanced linear dispersal enabling new foci of infection to be established more rapidly than with radial dispersal alone; and clustering of trees by species slows down the expansion of epidemics when compared with random distribution of tree species within known host locations.  相似文献   

9.
In order to have a healthy and sustainable urban tree population, a high diversity of species and genera is needed. This study examined (1) the diversity and distribution of genera and species of urban trees in the Nordic region; (2) the diversity in different sites of the city, distinguishing between street and park environments; and (3) the presence of native versus non-native tree species in urban environments in the Nordic region. The analysis of tree diversity was based on urban tree databases comprising a total of 190 682 trees in 10 Nordic cities – Aarhus and Copenhagen in Denmark; Espoo, Helsinki, Tampere and Turku in Finland; Gothenburg, Malmo and Stockholm in Sweden; and Oslo in Norway. The tree databases for Copenhagen, Espoo, Helsinki, Stockholm and Tampere only record street trees, while the remaining databases also include park trees. Tilia was the most dominant genus in Arhus, Copenhagen, Espoo, Gothenburg, Helsinki, Oslo and Stockholm, while Sorbus was the most dominant in Malmo and Betula in Tampere and Turku. Tilia × europaea was the most common species, comprising 16.0% of the total number of tree species. There was a higher proportion of species in parks than in street environments. The number of non-native species was higher than the number of native species in both street and park environments. However, the number of individuals belonging to native species was higher than the number of non-native individuals in all cities and environments except park environments in Arhus. The concluding recommendation from this study regarding greater diversity of genera and species is to exploit local experiences of rare species from local urban tree databases. After appropriate evaluation, urban tree planners can evaluate these rare species in larger numbers for e.g. street environments, where the need is greatest.  相似文献   

10.
There is scant research on Australian municipal tree managers’ motivations for street tree planting and the rationales for street tree species selections. Tree managers from 129 city councils across Australia were surveyed to address this knowledge gap. This paper presents the findings from 115 (89%) usable survey responses. Tree managers reported four primary motives for street tree planting: visual and aesthetic (97%), environmental (92%), socio-cultural and community (87%), and health (70%). In contrast, tree species characteristics (97%), management and maintenance issues (92%), visual and aesthetic benefits (89%), site environmental factors (80%) and problems caused by different species (70%) were reported to govern street tree species selection. In spite being the primary motives for planting, considerations for socio-cultural and community benefits (61%) and environmental benefits/ecosystem services (61%) had minor influence on street tree species selection. In absence of established research, Australian city councils’ institutional culture is biased by personal opinions on potential threats to city’s vital infrastructure posed by street tree, resulting in the mismatch between planting and species selection principles. Future research correlating species characteristics to specific ecosystem services/disservices might help Australian city councils to adopt an ecosystem services based approach to street tree planting and species selection.  相似文献   

11.
Field data from randomly located plots in 12 cities in the United States and Canada were used to estimate the proportion of the existing tree population that was planted or occurred via natural regeneration. In addition, two cities (Baltimore and Syracuse) were recently re-sampled to estimate the proportion of newly established trees that were planted. Results for the existing tree populations reveal that, on average, about 1 in 3 trees are planted in cities. Land uses and tree species with the highest proportion of trees planted were residential (74.8 percent of trees planted) and commercial/industrial (61.2 percent) lands, and Gleditsia triacanthos (95.1 percent) and Pinus nigra (91.8 percent). The percentage of the tree population planted is greater in cities developed in grassland areas as compared to cities developed in forests and tends to increase with increased population density and percent impervious cover in cities. New tree influx rates ranged from 4.0 trees/ha/yr in Baltimore to 8.6 trees/ha/yr in Syracuse. About 1 in 20 trees (Baltimore) and 1 in 12 trees (Syracuse) were planted in newly established tree populations. In Syracuse, the recent tree influx has been dominated by Rhamnus cathartica, an exotic invasive species. Without tree planting and management, the urban forest composition in some cities will likely shift to more pioneer or invasive tree species in the near term. As these species typically are smaller and have shorter life-spans, the ability of city systems to sustain more large, long-lived tree species may require human intervention through tree planting and maintenance. Data on tree regeneration and planting proportions and rates can be used to help determine tree planting rates necessary to attain desired tree cover and species composition goals.  相似文献   

12.
The urban forests of Tokyo and Hiroshima were devastated by American bombing during World War II. Approximately 160 km2 of Tokyo were burned by more than 100 fire bombings, while an area of 12 km2 was leveled and burned by one atomic bomb in Hiroshima. Tokyo's street tree population was reduced from 105,000 to approximately 42,000 by the end of the war. In the years immediately following the war, the street tree population dropped to 35,000 in Tokyo due to a combination of further tree mortality and the cutting of trees for fire wood. No estimates of pre-war street tree populations are available for Hiroshima. Examination of pre- and post-atomic bombing photographs of Hiroshima suggests an even higher percentage of the trees in the city were destroyed. Post-war reconstruction of the urban forests of each city developed along different pathways. Plans for the redevelopment of Tokyo were rejected by the general public who wanted a return to pre-war conditions. Few streets were widened to accommodate traffic and allow for new street tree planting. Plans for new parks were shelved or only partially achieved. Some streets were replanted by private citizens. Initial survival rates of replanting were low. Trees in Tokyo's municipal tree nurseries, which had not been converted to vegetable gardens during the war, were often larger than the optimal size for transplanting, but were used as no other trees were available. A more concerted effort to reconstruct the urban forest came following the 1959 decision to site the 1964 Olympic Games in Tokyo. Many streets were widened and planted with trees. New tree-lined boulevards were also created. In contrast, Hiroshima sponsored an international competition for the design of a Peace Park and a major tree-lined boulevard. Several wide streets were built with space for street trees. Major plans were also drawn to create greenways along the rivers and to build additional parks. Trees were initially donated by local farmers and nearby towns for planting the parks and the boulevard since municipal tree nurseries had been converted to vegetable gardens during the war. Survival rates were very low due to the rubble content of the soil and difficulties in watering the transplanted trees. Strong support from the mayors of Hiroshima contributed to the success of urban forest reconstruction in Hiroshima. The historical significance of the destruction caused by the first atomic bomb to be dropped on an urban area also contributed to Hiroshima citizens' will to reconstruct both the city and its urban forest. Species and location of trees determined the survival of trees after war in both cities. Species with strong resprouting ability and thick bark survived the bombing and fire. In Tokyo trees located in open areas avoided the fire, while in Hiroshima trees standing behind tall concrete buildings were shielded from radiation and the heat wave. In addition to the difficulties faced during the city-wide replanning process, constraints of urban forest recovery included severe financial restriction, short supply of proper large-sized trees for planting and lack of labor for planting and post-planting tree care. Hiroshima used public participation and community involvement to restore the urban greenery successfully and, until today, has maintained a program to conserve the trees that survived the atomic bomb.  相似文献   

13.
Urban forest managers must balance social, economic, and ecological goals through tree species selection and planting location. Ornamental trees are often popular in tree planting programs for their aesthetic benefits, but studies find that they have lower survivability and growth compared to larger shade trees. To maximize ecosystem services within these aesthetic preferences, it is important to select species carefully based on their ability to grow in each particular climate. However, little locality-specific and species-specific data exist on urban trees in many regions. This study examines the growth, survival, and vigor of three common ornamental street trees in San Francisco’s three different microclimate zones after over 16 years since planting. While we found over 70% survival for all three species throughout the city, there were significant differences in health and vigor among microclimates for each species, likely due to differences in drought-tolerance. While Arbutus had the greatest proportion of healthy trees in the Fog Belt and Sun Belt zones, Prunus cerasifera had the greatest proportion in the Sun Belt, and Prunus serrulata had the greatest proportions in the Transition and the Sun Belt zones. This species-specific and climate-specific information will better equip urban foresters to target both planting and tree-care of these popular species appropriately to maximize the benefits provided by these street trees while still maintaining a diverse canopy. Finally, we argue that simple survival calculations can mask more complex differences in the health and ability of different urban tree species to provide ecosystem services.  相似文献   

14.
Urban green infrastructure, including street trees, plays a key role in providing ecosystem services to urban residents. However, to fully understand the effective role of trees in the urban context, it is also necessary to evaluate the disservices that they can produce in the development of their functions if not managed in an adequate and integrated way. This contribution aims to demonstrate an approach to assess three disservices (pavement damage, aesthetic damage, likelihood of tree failure) of street trees at the municipal level, starting from the existing municipal tree inventory. In this case study, from the street tree population, a sample of approximately 5% of the trees was drawn by stratified random sampling, where the strata were composed of groups of tree species. In particular, a sampling scheme is adapted in which the probability to select a tree in the sample is greater for bigger trees, under the assumption that the bigger the trees the greater are the disservices caused. In this way, a greater precision of the estimates of the considered disservices for the population of urban trees is expected. The results show a high variability of disservices provision among species groups. The results also confirmed a positive correlation between the considered disservices and tree diameter at breast height, while other tree attributes such as total height and crown diameter were found to be positively related only to pavement damages. Finally, severe pruning can lead to a high level of the aesthetic and functional disservices even for shorter and younger street trees.  相似文献   

15.
Trees along footpath zones (or verges) grow on the “front-line” of urban forest ecosystems, increasingly recognised as essential to the quality of human life in cities. Growing so close to where residents live, work and travel, these street trees require careful planning and active management in order to balance their benefits against risks, liabilities, impacts and costs. Securing support and investment for urban trees is tough and robust business cases begin with accurate information about the resource. Few studies have accounted for spatial heterogeneity within a single land-use type in analyses of structure and composition of street tree populations. Remotely sensed footpath tree canopy cover data was used as a basis for stratification of random sampling across residential suburbs in the study area of Brisbane, Australia. Analysis of field survey data collected in 2010 from 80 representative sample sites in 52 suburbs revealed street tree population (432,445 ± 26,293) and stocking level (78%) estimates with low (6.08%) sampling error. Results also suggest that this population was transitioning to low risk, small-medium sized species with unproven longevity that could limit the capacity of the Brisbane’s Neighbourhood Shadeways planting program to expand from 35% footpath tree canopy cover in 2010, to a target of a 50% by 2031. This study advances the use of contemporary techniques for sampling extensive, unevenly distributed urban tree populations and the value of accurate resource knowledge to inform evidence-based planning and investment for urban forests.  相似文献   

16.
Tree planting has been favoured in many North American cities, including Montreal which aims to increase its canopy from 20% to 25% in 2025. However, the mortality rate of street trees is especially high in the first few years after planting. Studies have shown that variables that are intrinsic to the tree and those related to its location, the urban form and the socio-demographic characteristics of the surrounding environment are significantly associated either with trees’ survival rate or with vegetation cover. In this research we examine variables that have statistical associations with tree growth, which is the diameter at breast height divided by the number of years on the ground, for approximately 28,000 street trees in Montreal. Independent variables were nested into three spatial scales: the tree (species and physical variables), the street section (urban form variables), and the census tract (socio-demographic variables). Multilevel models reveal that 65.51% of the growth variance is potentially explained by the species and planting physical conditions such as the east and north sides (positive associations with the growth), signage as an obstruction (negative association). 28.54% of the grow variance is potentially explained by the urban form, in our case building age (convex relationship with the growth), mixed zoning (negatively) and residential zoning (positively). At the neighbourhood level, although none of our variables is significant, 6.95% of the growth variance is be potentially explained by other missing variables. New planting programs should hence consider the urban form in order to improve tree growth.  相似文献   

17.
Over the course of the last three decades the role of the street tree in planning and policy arenas has transitioned from one primarily of beautification and ornamentation to one more inclusive of environmental services provision in numerous U.S. cities. This phenomenon was examined in the northern California cities of Palo Alto, Sacramento, and San Francisco. Analysis of policy documents, non-profit newsletters, field work, and interviews revealed that claims about the environmental values of street trees have been championed by municipal and non-profit actors and have been legitimized by the production and dissemination of urban forest science.  相似文献   

18.
Urban vegetation is shown to be unevenly distributed across cities and there is evidence of disparities in benefits provided by vegetation and of public health problems induced by urban heat islands. In order to improve vegetation cover, it remains crucial to understand the underpinning of such unevenness. In this paper, we investigate in Montreal (Canada) how the built environment, sociodemographic factors and administrative boroughs influence tree and lawn cover in public and residential land. The analysis was conducted at the dissemination area (DA) level, a Canadian census unit containing about 400–700 people. Six vegetation indicators were used as dependent variables: the proportion of a DA covered by trees/shrubs, lawn and total vegetation; the proportion of streets covered by trees/shrubs and the proportion of residential yards covered by trees/shrubs and total vegetation. Three sets of independent variables were studied: the built environment, sociodemographics and borough names. We used spatial autoregressive models to control for dependence and the spatial autoregressive term explained a large amount of variability in vegetation cover. The built-environment variables tend to have higher effects than the socio-demographic variables when predicting the three DA vegetation indicators, backyard vegetation, and to a lesser degree, street tree/shrub cover. In particular, population density is associated negatively to all indicators but positively to street tree cover. Socio-demographics are substantial in the explanation of the distribution of street trees, especially the presence of recent immigrants (negative effect) and of university degree holders (positive effect). These findings call for appropriate greening programs adapted to the local socio-demographic profile. The significance of boroughs also suggests the need for further research on the impact of within-city administrative hierarchies on the unevenness of urban vegetation.  相似文献   

19.
The urban forest of three arctic and near-arctic cities (Murmansk in Russia, Nuuk in Greenland, and Reykjavik in Iceland) were surveyed to determine tree species composition and structure. Interviews with local authorities were conducted to learn about the history of urban tree planting. The urban forests of all three cities were composed of a limited number of trees and tree species due to abiotic constraints of the arctic and near-arctic environment. These limitations include: low temperature, short growing season, high wind velocity and permafrost. A total of 28 species were observed in the three cities. Only three of these (Alnus incana (L.) Moench, Picea abies (L.) Karst., Betula pubescens Ehrh., and Salix glauca L.) were observed in all three of the cities. Planting designs that created windbreaks for pedestrians were common along streets in Murmansk and Reykjavik. Street trees have not yet been introduced in Nuuk, but trees were found in cemeteries, parks, and on private property. Older portions of cemeteries in all three cities were characterized by trees planted directly on graves. These grave trees were the first trees to be introduced in these cities. Subsequently, ‘trial and error’ was used by local residents to plant trees. Much of these plantings failed. In recent times arboreta were established near all three cities to identify species suited for planting under arctic and near-arctic conditions. Trees identified in these test gardens are now being planted in Murmansk and Reykjavik.  相似文献   

20.
Facing the trend of rapid urbanization, conserving the biodiversity of urban green spaces is a challenge, particularly in a developing region like Latin America. In this sense, it is known that urban sacred sites have significant cultural and conservation significance within cities. However, more needs to be studied about the vegetation they house. Given the scientific gap, the composition, richness and abundance of trees in urban religious sites of Arequipa established since the 16th century were examined, and temporal changes in the composition and distribution of trees between ancient and modern sites were identified. 749 trees of 54 species were recorded in 26 religious’ sites. A higher proportion of exotic species (74%) corresponds in greater quantity to fruit trees (52%). There were no significant differences in tree richness and abundance between ancient and modern sites. However, the ancient sites had higher richness (96.3%) and abundance (71.4%). Likewise, ancient sites present a preference for growing fruit trees in orchards and cloister gardens, unlike modern sites focused on increasing ornamental trees, with a predominance of conifers and palms. Despite the long history of the monuments, the size of the site and the green areas significantly influenced the richness and abundance; similarly, the care of the gardens greatly influenced a site that stored greater diversity and abundance. In this way, it is demonstrated that these culturally significant places house an important tree diversity, with species of nutritional and ornamental value for the self-provisioning of the religious and the beautification of the gardens. In addition, they contribute to environmental sustainability, providing different ecosystem services to cities with rapid population growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号