首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of unilateral castration (UC) and induced unilateral cryptorchidism (UCR) on basal plasma luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone, and on the responses of these hormones to gonadotropin releasing hormone (GnRH), were investigated in bulls altered at 3, 6 or 9 months of age. Blood plasma was collected before and after GnRH (200 micrograms) stimulation approximately 1 year following gonadal manipulation. Neither mean baseline concentrations nor GnRH-induced increases in plasma testosterone were altered (P greater than .1) by hemicastration or UCR (P greater than .1). Both mean baseline LH and GnRH-induced LH release were greater (P less than .05) in bulls altered at 3 months of age than in bulls altered at 9 months of age. UC increased (P less than .05) plasma LH response to GnRH over that observed in intact bulls, but not above that in UCR bulls. UCR had no detectable effect on either baseline concentrations or GnRH-stimulated LH release. FSH was increased (P less than .05) in hemicastrates, while UCR had a variable effect on peripheral FSH: FSH was reduced (P less than .05) in UCR animals altered at 3 months of age but increased (P less than .05) in UCR bulls altered at both 6 and 9 months of age when compared to FSH in intact bulls. The results indicate that, compared with intact bulls, UC bulls release increased amounts of both gonadotropins but similar amounts of testosterone in response to GnRH stimulation. UCR had a variable effect on FSH release and did not alter either LH or testosterone.  相似文献   

2.
Two experiments with steers were performed to determine the effects of 10 days of treatment with testosterone propionate (TP) on secretion of follicle stimulating hormone (FSH) and luteinizing hormone (LH) after the administration of gonadotropin releasing hormone (GnRH). In Experiment 1, eight 15-month-old Holstein steers castrated at 12 months of age were used. In Experiment 2, eight beef-type steers between the ages of 12–18 months old and which had been castrated for 8–15 months were used. An initial injection of GnRH was followed by 10 daily injections of TP (175 ug/ kg of body weight) or safflower oil, and on the eleventh day a second injection of GnRH was given. Hormonal endpoints in long-term castrated steers (Experiment 2) were not altered by TP treatment. In contrast, TP treatment significantly suppressed FSH and LH concentrations in daily blood samples from Experiment 1 steers and significantly increased the response to GnRH. The lack of response in the long-term castrated steers (Experiment 2) to TP treatment is similar to the response observed in previous experiments with long-term ovariectomized cows. However, from the results of Experiment 1, it appears that the timing of castration influences the response to TP treatment.  相似文献   

3.
In boars and rabbits, administration of adrenocorticotropic hormone (ACTH) results in a testis-dependent, short-term increase in concentrations of testosterone in peripheral plasma. This experiment was designed to assess the short-term effects of a single ACTH injection on plasma concentrations of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH) and cortisol in stallions. Eight light horse and two pony stallions were paired by age and weight and then one of each pair was randomly assigned to the treatment (ACTH, .2 IU/kg of body weight) or control (vehicle) group. Injection of ACTH increased (P<.01) plasma concentrations of cortisol by approximately twofold in the first 60 minutes; control stallions showed no change (P>.10) in concentrations of cortisol during the blood sampling period. Control stallions exhibited a midday increase (P>.05) in concentrations of testosterone similar to that reported previously; ACTH treatment prevented or delayed this increase such that concentrations of testosterone in treated stallions were lower (P<.05) than in controls 4 to 5 hours after injection of ACTH. Treatment with ACTH had no effect (P<.10) on plasma concentrations of LH or FSH up to 12 hours after injection.  相似文献   

4.
Effects of testosterone propionate (TP) treatment on plasma concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) before and after an injection of gonadotropin releasing hormone (GnRH) were studied using ovariectomized cows and pony mares. An initial injection of GnRH (1 microgram/kg of body weight) was followed by either TP treatment or control injections for 10 (cows) or 11 (ponies) d. A second GnRH injection was administered 1 d after the last TP or oil injection. Concentrations of LH and FSH were determined in samples of plasma taken before and after each GnRH injection. Control injections did not alter the response to GnRH (area under curve) nor the pre-GnRH concentrations of LH and FSH in ovariectomized cows or ponies. Testosterone treatment increased (P less than .01) the FSH release in response to GnRH in ovariectomized mares by 4.9-fold; there was no effect in cows, even though average daily testosterone concentrations were 59% higher than in pony mares. Testosterone treatment reduced the LH release in response to GnRH by 26% in ovariectomized mares (P less than .05) and by 17% in ovariectomized cows (P approximately equal to .051). These results are consistent with a model that involves ovarian androgens in the regulation of FSH secretion in the estrous cycle of the mare, but do not support such a model in the cow.  相似文献   

5.
Considerable variation exists in the serum levels of gonadotropins in boars; this results in differential testicular function. Boars (Chinese Meishan, European White composite, and crosses of the two breeds) selected for high and low circulating FSH concentrations were used to define possible differences in pituitary sensitivity to GnRH and GnRH antagonist and gonadal and adrenal responses. After a 2-h pretreatment sampling period, boars were injected with GnRH or GnRH antagonist and repetitively sampled via jugular cannula for changes in serum concentrations of FSH, LH, testosterone, and cortisol. In response to varying doses of GnRH or GnRH antagonist, FSH, LH, or testosterone changes were not different in high- or low-FSH boars. Declines in LH after GnRH stimulation were consistently faster in boars selected for high FSH. Chinese Meishan boars had considerably higher cortisol concentrations than White composite boars (132.2 +/- 28.5 vs 67.4 +/- 26.8 ng/mL, respectively; P < .01). When select high- and low-gonadotropin Meishan:White composite crossbreds were sampled, cortisol levels were elevated but comparable between the two groups (126.5 +/- 13.7 vs 131.4 +/- 13.4 ng/mL, respectively). After GnRH antagonist lowered LH concentrations, administration of hCG resulted in increased testosterone and cortisol concentrations. Although testosterone concentrations remained high for 30 h, cortisol concentrations returned to normal levels within 10 h after hCG injection. The mechanism by which boars selected for high gonadotropins achieve increased levels of LH and FSH may not be due to differences in pituitary sensitivity to GnRH but to differences in clearance from the circulation.  相似文献   

6.
Gonadotrophin-releasing hormone (GnRH) (a single intravenous injection with 0.042 mg busereline acetate) was administered to control stallions (n=5), aged stallions (n=5) and stallions with lack of libido (n=5). Jugular blood samples were taken at -10, 0, 10, 20, 40 and 80 minutes after treatment and measured for luteinizing hormone (LH) and testosterone concentrations. A single intravenous injection of hCG (3000 IE) was given 1 day later. Venous blood samples were taken at -60, 0, 15, 30, 60, 120, and 240 minutes after treatment and measured for the testosterone concentration. The experiment was performed in the breeding season. There was a wide variation between stallions in basal concentrations of LH and testosterone. The treatment groups all showed a significant increase in LH and testosterone concentrations after treatment with GnRH. There was a significant difference (P<0.05) between the control, the lack of libido stallions and the aged stallions in the production of LH before and after stimulation with GnRH. The aged stallions had higher basal LH concentrations. GnRH induced a rise in plasma LH in all groups, but the greatest response was observed in aged stallions. No response to GnRH was seen with respect to plasma testosterone. There was an increase in plasma testosterone following hCG; however, this increase was very small in aged stallions. After stimulation with hCG the control and lack of libido stallions had a significant increase (P<0.05) in testosterone production. In conclusion, stimulation with either GnRH or hCG can be a valuable method to test whether the function of the stallion's reproductive endocrine system is optimal.  相似文献   

7.
Eight mature light-breed stallions with normal testes size, sperm output and semen quality were used to evaluate response to 3 GnRH challenge regimens in the summer in southeast Texas. Gonadotropin releasing hormone (50 μg) was administered intravenously once to each of eight stallions after three days of sexual rest (50 μg GnRH-1X). The same stallions were administered either 5μg GnRH intravenously once hourly for three injections (5 μg GnRH-3X) and 15μg GnRH intravenously once (15μg GnRH-1X) one and two weeks later. Blood samples were collected prior to and at intervals after GnRH administration. Plasma was immediately separated from blood samples and was frozen until assayed for LH, FSH, estradiol and testosterone concentrations. Percentage changes in hormone concentrations from pre-treatment values (baseline) were analyzed by paired studient'st-test to detect significant rises in hormone concentrations. Group mean percentage changes in hormone concentrations were analyzed by analysis of variance to compare responses among treatments. A computerized peak-detection algorithm (PC Pulsar) was used to detect peaks in LH and testosterone concentrations following 5 μg GnRH-3X and 15 μg GnRH-1X treatment.No differences (P>0.10) were detected in percentage change from baseline concentration for LH, FSH, or testosterone at one or two hours after administration of any of the three regimens of GnRH. When more frequent sampling intervals were analyzed for 5 μg GnRH-3X or 15 μg GnRH-1X treatments, no differences were detected in percentage change from baseline concentration for any hormone at 15, 30 or 60 minutes. Thereafter, percentage changes in concentrations of LH and FSH remained increased for 5μg GnRH-3X compared to 15 μg GnRH-1X treated stallions (P<0.05). Percentage changes in concentrations of testosterone were increased for 5μg GnRH-3X compared to 15 μg GnRH-1X treated stallions from 180–300 min (P<0.05), while no differences (P>0.10) were detected between 5 μg GnRH-3X and 15 μg GnRH-1X treated stallions for changes in concentrations of estradiol throughout the experiment.For 15 μg GnRH-1X treated stallions, maximum concentrations of LH in PC Pulsar-detected peaks occurred most commonly at 15 to 30 minutes (7/8 treatment periods) after GnRH injection. Maximum concentrations of testosterone in PC Pulsar-detected peaks occurred most commonly at 60–120 min (7/8 treatment periods) after GnRH injection.A protocol of blood sampling prior to, and 15, 30, 60 and 120 minutes after, intravenous administration of small doses of GnRH would be practical for challenge testing of stallions during the breeding season. In order to reduce cost of hormone assays, we suggest assay of the pre-challenge blood sample (baseline) could include LH, FSH, testosterone and estradiol concentrations (to assess overall hypothalamic-pituitary-testicularfunction), while only LH and testosterone concentrations need be determined after GnRH administration (to assess pituitary and testicular responsiveness). Assay for LH could be done on only the 15 and 30 minute post-GnRH samples, and assay for testosterone could be done on only the 60 and 120 minute post-GnRH samples. Failure to achieve approximately a 50% increase in LH concentration by 30 minutes after GnRH administration, and/or failure to achieve approximately a 100% increase in testosterone concentration by two hours after GnRH administration, could be further pursued either by treatment with increasing dosages of GnRH, or repeated administration of GnRH at hourly intervals, as has been suggested by other workers.  相似文献   

8.
Eight long-term ovariectomized pony mares were treated with either dihydrotestosterone (DHT) benzoate (400 micrograms/kg body weight) in safflower oil or an equivalent amount of oil every other day for 21 d to determine the effects of DHT on follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations in blood samples drawn once daily and after administration of three successive injections of gonadotropin releasing hormone (GnRH). The GnRH injections were given at 4-h intervals on the day following the last DHT or oil injection. Treatment with DHT benzoate did not alter (P greater than .10) concentrations of FSH or LH in daily blood samples relative to controls. The FSH and LH response, assessed by areas under the GnRH curves, decreased (P less than .05) from the first to third injection of GnRH when averaged over both groups of mares. There was no effect of DHT treatment on FSH response to GnRH. There was an interaction (P less than .05) between treatment and GnRH injection for LH areas; areas decreased (P less than .05) for DHT-treated mares from the first to third GnRH injection but were unchanged for control mares. It seems that DHT alone cannot mimic the stimulatory effects of testosterone on FSH production and secretion as observed in previous experiments with ovariectomized and intact mares. Moreover, because intact mares have been shown previously to respond to DHT treatment with an increase in GnRH-induced FSH secretion, it appears that some mechanism is lost in long-term ovariectomized mares, making them unresponsive to DHT treatment.  相似文献   

9.
Five lighthorse mares were actively immunized against gonadotropin releasing hormone (GnRH) conjugated to bovine serum albumin (BSA) to study the involvement of GnRH in luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion following ovariectomy (OVX) and after administration of testosterone propionate (TP). Five mares immunized against BSA served as controls. Immunizations were started on November 1, and OVX was performed in June (d 1). All mares were treated with TP from d 50 to 59 after OVX. On the day of OVX, concentrations of LH were lower (P less than .05) in GnRH-immunized mares than in BSA-immunized mares and were generally nondetectable; FSH concentrations were reduced (P less than .05) by 50% in GnRH-immunized mares relative to BSA-immunized mares. In contrast to BSA-immunized mares, plasma concentrations of LH or FSH did not increase after OVX in GnRH-immunized mares. The LH response to GnRH analog (less than .1% cross-reactive with GnRH antibodies) on d 50 was reduced (P less than .05) by 97% in GnRH-immunized mares relative to BSA-immunized mares, whereas the FSH response was similar for both groups. Treatment with TP for 10 d reduced (P less than .01) the LH response and increased (P less than .01) the FSH response to GnRH analog in BSA-immunized mares, but it had no effect (P greater than .1) on the response of either gonadotropin in GnRH-immunized mares.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Effects of season and photoperiod on the anterior pituitary gland and testes were studied by responses to exogenous GnRH. Stallions were assigned to one of three treatments: 1) control, exposed to natural day length; 2) S-L, 8 h of light and 16 h dark (8:16) for 20 wk beginning July 16, 1982 then 16:8 from December 2, 1982 until March 5, 1984; or 3) S-S, 8:16 from July 16, 1982 until March 5, 1984. Approximately every 8 wk, stallions were administered GnRH (2 micrograms/kg BW) and blood was sampled at 20-min intervals for 2 h before and 8 h after GnRH administration. Concentrations of LH, FSH and testosterone were determined. Baseline concentrations (mean of pre-GnRH samples) of all hormones fluctuated seasonally (P less than .05), but only LH and testosterone displayed seasonal changes (P less than .05) in maximum response to GnRH (highest concentration above baseline after GnRH). The FSH response to GnRH was not affected (P greater than .05) by season, photoperiod or the season X treatment interaction. Exposure of S-L stallions to 16:8 in December resulted in early recrudescence of baseline concentrations of LH, FSH and testosterone. Maximum concentration of testosterone in response to GnRH was stimulated by 16:8, but the increase in baseline LH concentrations in S-L stallions was not associated with an increase in maximum LH response to GnRH. Seasonal patterns of baseline concentrations of FSH and testosterone and maximum LH response to GnRH in S-S stallions were similar to those for control stallions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of GnRH stimulation on plasma testosterone and luteinizing hormone (LH) levels in Cape porcupine males were examined by analysing plasma collected before and after an intravenous injection of GnRH. In six mature males and one subadult, which were given an intravenous injection of 0,5 ml saline, levels of plasma testosterone and LH did not increase. Four weeks later an intravenous GnRH challenge (40 μ?) caused plasma testosterone to rise three-fold and LH to rise 10-15-fold within 180 min in five of the mature males. Peaks of plasma testosterone and LH occurred 90 and 120 min, respectively, after stimulation, and baseline and peak levels of both hormones were significantly related.  相似文献   

12.
The luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone response of bull calves implanted with estradiol-17 beta to continuous and pulsatile infusion of luteinizing hormone releasing hormone (LHRH) has been examined. Estradiol-17 beta reduced serum LH and FSH concentrations and suppressed testosterone secretion and testicular growth when compared with sham-implanted bulls. Pulsatile iv infusion of LHRH [500 ng every 2 h (6 micrograms/d)] for a 4-wk period to estradiol-17 beta-implanted bulls resulted in elevated mean serum LH and testosterone concentrations that were characterized by discrete secretory episodes. Mean serum FSH was also increased by LHRH pulse infusion, but LHRH-coupled secretory episodes were not apparent. Continuous infusion of LHRH (6 micrograms/d) did not increase the low serum gonadotropin levels observed in estradiol-17 beta-implanted calves. Testicular growth was normal in LHRH pulse-infused calves, but was markedly curtailed in continuously infused calves. These results suggest that estradiol-17 beta inhibits testicular development by blocking gonadotropin release at the level of the hypothalamus because pulsatile administration of LHRH can override the inhibitory effect by increasing LH and FSH secretion.  相似文献   

13.
The effects of a long-acting gonadotropin-releasing hormone (GnRH) agonist, [D-Trp6]-GnRH (GnRH-A) on developmental profiles of plasma luteinizing hormone (LH), follicle stimulation hormone (FSH) and testosterone (T), and pituitary responsiveness to exogenous GnRH were studied in male Dutch Landrace x Large White crossbred pigs from 1 to 30 wk of age. Group 1 control animals (control; n = 12) were injected subcutaneously in the neck with vehicle at 1 and 16 wk of age. Group 2 animals (early treatment; n = 10) were injected with 600 micrograms [D-Trp6]-GnRH at 1 wk and with vehicle at 16 wk. Group 3 animals (late treatment; n = 8) were injected with vehicle and 3 mg GnRH-A at 1 and 16 wk, respectively. Group 4 animals (early plus late treatment; n = 9) were injected at both 1 and 16 wk with GnRH-A. Blood was collected by brachiocephalic puncture at weekly or biweekly intervals, and through brachiocephalic cannulae, to determine longitudinal profiles of LH, FSH and T, and plasma gonadotropin responses to intravenous injection of GnRH (0.1 microgram/kg), respectively. In control animals, LH and FSH declined over the first 5 wk of postnatal life and peaked again at 10-14 wk. Levels of both hormones were basal from 18 to 30 wk. Plasma T was high in the first week, declined progressively over the next few weeks and remained low until 24 wk when a transient increment was noted. The LH and FSH responses to acute GnRH stimulation were similar at 7 and 14 wk and declined significantly at 23 wk of age.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Twenty ovariectomized pony mares were used to determine if dihydrotestosterone propionate (DHTP) administration, with or without estradiol benzoate (EB) pretreatment, would have the same effects on follicle stimulating hormone (FSH) and luteinizing hormone (LH) secretion as testosterone propionate (TP) administration. All mares were given an initial injection of gonadotropin releasing hormone (GnRH) to characterize their LH and FSH response, and then two groups of mares (n = 4/group) were administered EB (22 micrograms/kg of body weight), two groups were administered vehicle (safflower oil) and a fifth group was administered TP (175 micrograms/kg of body weight) daily for 10 days. Following a second injection of GnRH, one group of EB-treated mares and one group of oil-treated mares were administered DHTP (175 micrograms/kg of body weight) daily for 10 days; the other EB- and oil-treated mares were administered oil and the TP-treated mares were continued on the same dose of TP for 10 days. A final injection of GnRH was then given. Treatment with EB increased (P less than .01) concentrations of LH in daily blood samples and increased (P less than .05) the LH response to exogenous GnRH. Administration of TP or DHTP reduced (P less than .05) both daily LH concentrations and the LH response to exogenous GnRH. Concentrations of FSH in daily blood samples were reduced (P less than .05) and the FSH response to exogenous GnRH was increased (P less than .05) by administration of EB alone, DHTP alone or TP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Four groups of mares, representing anestrus (AN; n = 8), early transition (ET; n = 7), late transition (LT; n = 8) and estrus (EST; n = 12) were used to examine release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) after a bolus injection of gonadotropin releasing hormone (GnRH) during the transition from anestrus into the breeding season. Estrous mares received GnRH on d 2 or 3 of estrus in the cycle immediately preceding slaughter. Anestrous, ET and LT mares received GnRH exactly 1 wk prior to slaughter. A single injection of GnRH (Sigma LHRH, L-0507, 2.0 micrograms/kg body weight in .9% saline, iv) was given to each mare. Blood samples were collected at -2, h, -1 h, directly prior to GnRH, then 15, 30, 45, 60, 90, 120, 150, 180, 210, 240, 300, 360, 420 and 480 min post-injection. Maximum release of LH and FSH was observed within 30 min after injection of GnRH. Except for the LH response in EST mares, concentrations of both hormones had returned to pre-injection baseline levels within 8 h. Group means for area under the curve (AUC) of concentrations of LH in serum, and the maximum amount (MAX) of LH quantified in serum, post-GnRH, increased (P less than .05) progressively from AN to the breeding season. The AUC and MAX responses for FSH showed a reverse pattern, decreasing (P less than .05) from AN to the breeding season.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Ten lighthorse stallions were used to determine 1) whether prolactin (PRL) and cortisol responses previously observed after acute exercise in summer would occur in winter when PRL secretion is normally low, 2) whether subsequent treatment with a dopamine receptor antagonist, sulpiride, for 14 d would increase PRL secretion and response to thyrotropin-releasing hormone (TRH) and exercise, and 3) whether secretion of LH, FSH, and cortisol would be affected by sulpiride treatment. On January 11, blood samples were drawn from all stallions before and after a 5-min period of strenuous running. On January 12, blood samples were drawn before and after an i.v. injection of GnRH plus TRH. From January 13 through 26, five stallions were injected s.c. daily with 500 mg of sulpiride; the remaining five stallions received vehicle. The exercise and secretagogue regimens were repeated on January 27 and 28, respectively. Before sulpiride injection, concentrations of both cortisol and PRL increased (P less than .05) 40 to 80% in response to exercise; concentrations of LH and FSH also increased (P less than .05) approximately 5 to 10%. Sulpiride treatment resulted in (P less than .05) a six- to eightfold increase in daily PRL secretion. The PRL response to TRH increased (P less than .05) fourfold in stallions treated with sulpiride but was unchanged in control stallions. Sulpiride treatment did not affect (P greater than .05) the LH or FSH response to exogenous GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
With the goal of hastening puberty, we evaluated the effects of dose of gonadotropin releasing hormone (GnRH) during pulsatile injection on luteinizing hormone (LH) secretion in bulls 6, 10 or 14 wk old, and of pulsatile administration of GnRH every 2 h to bulls from 6 to 12 wk of age on reproductive development. Based on response to the last three of 12 bihourly injections of 20, 200 or 2,000 ng GnRH/kg, only the two higher doses of GnRH induced secretion of LH at 6 wk. At all ages, 200 ng GnRH/kg induced maximal discharges of LH. Based on comparisons between seven treated bulls and their identical twins, bihourly injections of GnRH starting on d 42 elicited discharge of LH for less than or equal to 4 d in progeny of one sire and greater than 28 d but less than 42 d in progeny of another sire. After 14 d of treatment, both elicited and spontaneous discharges of LH were smaller in all treated bulls. Within 2 d after cessation of GnRH injections on d 84, LH discharges were similar in frequency and amplitude in treated and control twins. Testicular and body growth were similar in treated and control bulls, but puberty was delayed (P less than .05) in bulls in which exogenous GnRH suppressed endogenous discharges of LH.  相似文献   

18.
The effects of unilateral castration (UC) and induced unilateral cryptorchidism (CR) on plasma hormones and testis anatomy were studied in 36 Holstein bulls altered at either 3, 6 or 9 mo of age (n = 12). Plasma hormone concentrations were determined in six samples collected at hourly intervals on d 0, 1, 3, 7, 14 and 30, and then at monthly intervals through 6 mo after gonadal manipulation. Although plasma testosterone (T) showed a transient decrease (P less than .05) immediately after treatment, mean plasma concentrations of luteinizing hormone (LH) and T were unaffected by UC or CR over the 6-mo period (P greater than .05). Both hormones increased (P less than .05) in concentration with advancing age. Plasma follicle stimulating hormone (FSH) concentration was greater (P less than .05) in UC than in intact (IN) bulls overall, while FSH in CR bulls did not differ (P greater than .05) from either group. At slaughter, 11 mo after gonadal alteration, mean testis weight, ratio of testis weight to body weight and mean testis sperm cell numbers were increased (P less than .05) in UC bulls compared with mean testis values in intact (IN) bulls. Unilateral castration increased (P less than .05) seminiferous tubuler diameter and seminiferous epithelial cell height from basement membrane to the border of the lumen, but did not alter the ratio of tubuler to interstitial space within the testis. Seminiferous tubuler diameter and epithelial cell height were increased (P less than .05) in CR compared with IN bulls. Unilateral gonadal alteration at 3 mo of age caused a greater (P less than .05) hypertrophy of the scrotal testis in both UC and CR bulls than alteration at 6 or 9 mo of age. Results indicate that unilateral gonadal disruption is followed by rapid compensation in testis T production, little change in systemic LH and a rapid increase in secretion of FSH in the bull within those ages investigated. Further, UC elicits a greater compensatory hypertrophy than CR and the pituitary-testis endocrine axis is more responsive to alteration at 3 mo than at 6 or 9 mo of age in the bull.  相似文献   

19.
Chronic elevation of glucocorticoid concentrations is detrimental to health. We investigated effects of chronic increase in plasma cortisol concentrations on energy balance and endocrine function in sheep. Because food intake and reproduction are regulated by photoperiod, we performed experiments in January (JAN) and August (AUG), when appetite drive is either high or low, respectively. Ovariectomized ewes were treated (intramuscularly) daily with 0.5 mg Synacthen Depot® (synthetic adrenocorticotropin: ACTH) or saline for 4 wk. Blood samples were taken to measure plasma concentrations of cortisol, luteinising hormone (LH), follicle-stimulating hormone (FSH), growth hormone (GH), leptin, insulin, and glucose. Adrenocorticotropin treatment increased concentrations of cortisol. During JAN, treatment reduced food intake transiently, but increased food intake in AUG. Leptin concentrations were reduced and glucose concentrations were greater in AUG, and insulin concentrations were similar throughout the year. Treatment with ACTH increased leptin concentrations in AUG only, whereas insulin concentrations increased in JAN only. Synacthen treatment increased glucose concentrations, with a greater effect in JAN. Changes in truncal adiposity and ACTH-induced cortisol secretion were positively correlated in JAN and negatively correlated in AUG. Treatment reduced the plasma LH pulse frequency in JAN and AUG, with an effect on pulse amplitude in JAN only. Treatment did not affect plasma GH or FSH concentrations. We conclude that chronically elevated cortisol concentrations can affect food intake, adiposity, and reproductive function. In sheep, effects of chronically elevated cortisol concentrations on energy balance and metabolism depend upon metabolic setpoint, determined by circannual rhythms.  相似文献   

20.
Ovarian function in 91 dairy cows with cystic ovarian disease was assessed by rectal palpation and by plasma hormone analysis before and after treatment. Plasma analysis showed that 84% of the cysts were correctly classified clinically and only these cows are considered further. Luteinised cysts occurred in 59 cows whereas only 18 had non-luteinised cysts. The mean plasma concentrations of luteinising hormone (LH), follicular stimulating hormone (FSH), progesterone, oestradiol and testosterone were not significantly different when compared with values at relevant stages of the oestrous cycle in normal cows. Success of treatment with progesterone, a synthetic prostaglandin, human gonadotrophin (HCG), or gonadotrophin releasing hormone (GnRH) was not dependent upon prior hormone concentrations, except for the prostaglandin which required active luteal tissue. LH and FSH concentrations in cows with luteinised cysts were not significantly different before and after successful treatment with GnRH or progesterone. Normal luteal function was not always established after treatment of non-luteinised cysts with GnRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号