首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.

Purpose

Understanding organic carbon mineralization and its temperature response in subtropical paddy soils is important for the regional carbon balance. There is a growing interest in factors controlling soil organic carbon (SOC) mineralization because of the potential for climate change. This study aims to test the hypothesis that soil clay content impedes SOC mineralization in subtropical paddy soils.

Materials and methods

A 160-day laboratory incubation at temperatures from 10 to 30 °C and 90% water content was conducted to examine the dynamics of SOC mineralization and its temperature response in three subtropical paddy soils with different clay contents (sandy loam, clay loam, and silty clay soils). A three-pool SOC model (active, slow, and resistant) was used to fit SOC mineralization.

Results and discussion

Total CO2 evolved during incubation following the order of clay loam > silty clay > sandy loam. The temperature response coefficients (Q 10) were 1.92?±?0.39, 2.36?±?0.22, and 2.10?±?0.70, respectively, for the sandy loam soil, clay loam soil, and silty clay soil. But the soil clay content followed the order of silty clay > clay loam > sandy loam. The sandy loam soil neither released larger amounts of CO2 nor showed higher temperature sensitivity, as expected, even though it contains lower soil clay content among the three soils. It seems that soil clay content did not have a dominant effect which results in the difference in SOC mineralization and its temperature response in the selected three paddy soils. However, dissolved organic carbon (DOC; representing substrate availability) had a great effect. The size of the active C pool ranged from 0.11 to 3.55% of initial SOC, and it increased with increasing temperature. The silty clay soil had the smallest active C pool (1.40%) and the largest Q 10 value (6.33) in the active C pool as compared with the other two soils. The mineralizable SOC protected in the silty clay soil, therefore, had even greater temperature sensitivity than the other two soils that had less SOC stabilization.

Conclusions

Our study suggests that SOC mineralization and its temperature response in subtropical paddy soils were probably not dominantly controlled by soil clay content, but the substrate availability (represented as DOC) and the specific stabilization mechanisms of SOC may have great effects.  相似文献   

2.
Among factors controlling decomposition and retention of residue C in soil, effect of initial soil organic C (SOC) concentration remains unclear. We evaluated, under controlled conditions, short-term retention of corn residue C and total soil CO2 production in C-rich topsoil and C-poor subsoil samples of heavy clay. Topsoil (0–20 cm deep, 31.3 g SOC kg?1 soil) and subsoil (30–70 cm deep, 4.5 g SOC kg?1 soil) were mixed separately with 13C–15N-labeled corn (Zea mays L.) residue at rates of 0 to 40 g residue C kg?1 soil and incubated for 51 days. We measured soil CO2–C production and the retention of residue C in the whole soil and the fine particle-size fraction (<50 μm). Cumulative C mineralization was always greater in topsoil than subsoil. Whole-soil residue C retention was similar in topsoil and subsoil at rates up to 20 g residue C kg?1. There was more residue C retained in the fine fraction of topsoil than subsoil at low residue input levels (2.5 and 5 g residue C kg?1), but the trend was reversed with high residue inputs (20 and 40 g residue C kg?1). Initial SOC concentration affected residue C retention in the fine fraction but not in the whole soil. At low residue input levels, greater microbial activity in topsoil resulted in greater residue fragmentation and more residue C retained in the fine fraction, compared to the subsoil. At high residue input levels, less residue C accumulated in the fine fraction of topsoil than subsoil likely due to greater C saturation in the topsoil. We conclude that SOC-poor soils receiving high C inputs have greater potential to accumulate C in stable forms than SOC-rich soils.  相似文献   

3.
Two acidic soils (initial pH, 4.6) with contrasting soil organic C (SOC) contents (11.5 and 40 g C kg?1) were incubated with 13C-labelled lime (Ca13CO3) at four different rates (nil, target pH 5, 5.8 and 6.5) and three application depths (0–10, 20–30 and 0–30 cm). We hypothesised that liming would stimulate SOC mineralisation by removing pH constraints on soil microbes and that the increase in mineralisation in limed soil would be greatest in the high-C soil and lowest when the lime was applied in the subsoil. While greater SOC mineralisation was observed during the first 3 days, likely due to lime-induced increases in SOC solubility, this effect was transient. In contrast, SOC mineralisation was lower in limed than in non-limed soils over the 87-day study, although only significant in the Tenosol (70 μg C g?1 soil, 9.15%). We propose that the decrease in SOC mineralisation following liming in the low-C soil was due to increased microbial C-use efficiency, as soil microbial communities used less energy maintaining intracellular pH or community composition changed. A greater reduction in SOC mineralisation in the Tenosol for low rates of lime (0.3 and 0.5 g column?1) or when the high lime rate (0.8 g column?1) was mixed through the entire soil column without changes in microbial biomass C (MBC) could indicate a more pronounced stabilising effect of Ca2+ in the Tenosol than the Chromosol with higher clay content and pH buffer capacity. Our study suggests that liming to ameliorate soil acidity constraints on crop productivity may also help to reduce soil C mineralisation in some soils.  相似文献   

4.
Intensive vegetable production in greenhouses has rapidly expanded in China since the 1990s and increased to 1.3 million ha of farmland by 2016, which is the highest in the world. We conducted an 11‐year greenhouse vegetable production experiment from 2002 to 2013 to observe soil organic carbon (SOC) dynamics under three management systems, i.e., conventional (CON), integrated (ING), and intensive organic (ORG) farming. Soil samples (0–20 and 20–40 cm depth) were collected in 2002 and 2013 and separated into four particle‐size fractions, i.e., coarse sand (> 250 µm), fine sand (250–53 µm), silt (53–2 µm), and clay (< 2 µm). The SOC contents and δ13C values of the whole soil and the four particle‐size fractions were analyzed. After 11 years of vegetable farming, ORG and ING significantly increased SOC stocks (0–20 cm) by 4008 ± 36.6 and 2880 ± 365 kg C ha?1 y?1, respectively, 8.1‐ and 5.8‐times that of CON (494 ± 42.6 kg C ha?1 y?1). The SOC stock increase in ORG at 20–40 cm depth was 245 ± 66.4 kg C ha?1 y?1, significantly higher than in ING (66 ± 13.4 kg C ha?1 y?1) and CON (109 ± 44.8 kg C ha?1 y?1). Analyses of 13C revealed a significant increase in newly produced SOC in both soil layers in ORG. However, the carbon conversion efficiency (CE: increased organic carbon in soil divided by organic carbon input) was lower in ORG (14.4%–21.7%) than in ING (18.2%–27.4%). Among the four particle‐sizes in the 0–20 cm layer, the silt fraction exhibited the largest proportion of increase in SOC content (57.8% and 55.4% of the SOC increase in ORG and ING, respectively). A similar trend was detected in the 20–40 cm soil layer. Over all, intensive organic (ORG) vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated (ING) management.  相似文献   

5.

Purpose

Soil organic carbon (SOC) stock is one of the most important carbon reservoirs on the earth and plays a vital role in the global climate change. However, research on the carbon sequestration and storage of coastal wetland soil is very scarce. Therefore, a study in the coastal wetland was conducted to investigate the SOC distribution, storage, and variation under the influence of human activities.

Materials and methods

Surface soil samples in different seasons and profile soil samples were collected in the Changyi coastal wetland. SOC content, soil physicochemical properties, and sedimentation rate were determined. Organic carbon storage and burial flux were calculated. On the basis of correlation analysis and comparative study, factors affecting the distribution and storage of SOC were investigated.

Results and discussion

The average SOC content of the surface soil in June and November was 4.65 and 6.13 g kg?1, respectively. The distribution of surface SOC content was consistent with the distribution of vegetation and was affected by the soil particle size. In plant-covered area, the relationship between SOC content and depth could be expressed by the power function y?=?ax b . The contribution of plants to SOC was only significant in the shallow layer. As for the deep layer, the SOC content was higher in the mudflat. The organic carbon storage in the upper 1 m soil was estimated at 1.795 kg m?2 in average and the total organic carbon storage of Changyi wetland was estimated at 6.373?×?107 kg. The sedimentation rate was very low and the average organic carbon burial flux of the whole wetland was 17.5 g m?2 a?1.

Conclusions

Low sedimentation rate, weak downward migration, and high decomposition rate of organic matter caused by poor hydrological condition were the reasons why the SOC storage in Changyi wetland was low. Under intensive human activities, the Changyi wetland was drying and the organic carbon storage was reducing. Strategies were proposed to be taken urgently to restore the wetland for the long-term benefit.
  相似文献   

6.
Our knowledge of effects of land use changes and soil types on the storage and stability of different soil organic carbon (SOC) fractions in the tropics is limited. We analysed the effect of land use (natural forest, pasture, secondary forest) on SOC storage (depth 0–0.1 m) in density fractions of soils developed on marine Tertiary sediments and on volcanic ashes in the humid tropics of northwest Ecuador. The origin of organic carbon stored in free light (< 1.6 g cm?3) fractions, and in two light fractions (LF) occluded within aggregates of different stability, was determined by means of δ13C natural abundance. Light occluded organic matter was isolated in a first step after aggregate disruption by shaking aggregates with glass pearls (occluded I LF) and in a subsequent step by manual destruction of the most stable microaggregates that survived the first step (occluded II LF). SOC storage in LFs was greater in volcanic ash soils (7.6 ± 0.6 Mg C ha?1) than in sedimentary soils (4.3 ± 0.3 Mg C ha?1). The contribution of the LFs to SOC storage was greater in natural forest (19.2 ± 1.2%) and secondary forest (16.6 ± 1.0%) than in pasture soils (12.8 ± 1.0%), independent of soil parent material. The amount of SOC stored in the occluded I LF material increased with increasing silt + clay content (sedimentary soils, r = 0.73; volcanic ash soils, r = 0.58) and aggregation (sedimentary soils, r = 0.52; volcanic ash soils, r = 0.45). SOC associated with occluded I LF, had the smallest proportion of new, pasture‐derived carbon, indicating the stabilizing effect of aggregation. Fast turnover of the occluded II LF material, which was separated from highly stable microaggregates, strongly suggested that this fraction is important in the initial process of aggregate formation. No pasture‐derived carbon could be detected in any density fractions of volcanic ash soils under secondary forest, indicating fast turnover of these fractions in tropical volcanic ash soils.  相似文献   

7.
The effect of medium-term (5 years) application of organic and inorganic sources of nutrients (as mineral or inorganic fertilizers) on soil organic carbon (SOC), SOC stock, carbon (C) build-up rate, microbial and enzyme activities in flooded rice soils was tested in west coast of India. Compared to the application of vermicompost, glyricidia (Glyricidia maculate) (fresh) and eupatorium (Chromolaena adenophorum) (fresh) and dhaincha (Sesbania rostrata) (fresh), the application of farmyard manure (FYM) and combined application of paddy straw (dry) and water hyacinth (PsWh) (fresh) improved the SOC content significantly (p < 0.05). The lowest (p < 0.05) SOC content (0.81%) was observed in untreated control. The highest (p < 0.05) SOC stock (23.7 Mg C ha?1) was observed in FYM-treated plots followed by recommended dose of mineral fertilizer (RDF) (23.2 Mg C ha?1) and it was lowest (16.5 Mg C ha?1) in untreated control. Soil microbial biomass carbon (Cmb) (246 µg g?1 soil) and Cmb/SOC (1.92%) were highest (p < 0.05) in FYM-treated plot. The highest (p < 0.05) value of metabolic quotient (qCO2) was recorded under RDF (19.7 µg CO2-C g?1 Cmb h?1) and untreated control (19.6 µg CO2-C g?1 Cmb h?1). Application of organic and inorganic sources of nutrients impacted soil enzyme activities significantly (p < 0.05) with FYM causing highest dehydrogenase (20.5 µg TPF g?1 day?1), phosphatase (659 µg PNP g?1 h?1) and urease (0.29 µg urea g?1 h?1) activities. Application of organic source of nutrients especially FYM improved the microbial and enzyme activities in flooded and transplanted rice soils. Although the grain yield was higher with the application of RDF, but the use of FYM as an organic agricultural practice is more useful when efforts are intended to conserve more SOC and improved microbial activity.  相似文献   

8.
Abstract

Plant-available P was first extracted in soils 114 years ago and a number of different analytical methods have since been developed, but for good reasons none of these methods has been adopted as a standard for all soils. With increasing cooperation within research, there is a need to harmonise the interpretation of analytical data for fertiliser recommendations, research, and environmental control. This paper evaluates the compatibility of the Swedish standard ammonium lactate (PAL) method and the widely used Olson's sodium bicarbonate (POls) method in 82 topsoil samples taken from Swedish long-term soil fertility field trials. The PAL-values were usually larger than POls, with a mean PAL/POls quotient of 2.30±1.04 (0.67–6.58). The PAL and POls means and ranges were 126±89 (5–360) and 55.1±33 (3.1–122.8) mg P kg?1 dry soil, respectively. Stepwise multiple linear regression analysis was used to evaluate the relationship between PAL and POls and how this relationship was affected by clay content, pH, and soil organic carbon content (SOC). After statistical transformation, it emerged that the square root of clay content (17.4%±13.82, range 1–54.4) and pH (6.45±0.54, range 5.5–7.7) significantly affected the relationship at partial R 2-values of 2 and 12%, respectively, while ln(SOC) (2.54%±1.21, range 1–6.03) did not, apparently due the narrow range. The regressions of predicted vs. measured values explained 95 and 94% of the variation in PAL and POls, respectively. The mean deviation of predicted compared with measured values was 21.3 and 8.3 mg P kg?1 dry soil for PAL and POls, respectively, corresponding to 20 or 19% of the measured values. We conclude that a data set consisting of PAL-values can be converted into POls-values and vice versa with reasonably high accuracy when accounting for clay content and pH.  相似文献   

9.
The influence of differing soil management practices on changes seen in soil organic carbon (SOC) content of loamy Haplic Luvisol was evaluated. The field experiment included two types of soil tillage: 1. conventional tillage (CT) and 2. reduced tillage (RT) and two treatments of fertilization: 1. crop residues with nitrogen, phosphorus, and potassium (NPK) fertilizers (PR+NPK) and 2. NPK fertilizers (NPK). The results of SOC fluctuated from 9.8 to 14.5 g kg?1 and the tillage systems employed and fertilization status did not have a statistically significant influence on SOC. The SOC content was higher in RT (12.4 ± 0.86 g kg?1) than in CT (12.2 ± 0.90 g kg?1). On average, there was a smaller higher value of SOC in PR+NPK (12.4 ± 1.02 g kg?1) than in NPK (12.3 ± 0.88 g kg?1). During a period of 18 years, reduced tillage and application of NPK fertilizers together with crop residues build up a SOC at an average speed of 7 and 16 mg kg?1 year?1, respectively, however conventional tillage and NPK fertilizer applications caused a SOC decline at an average speed of 104 and 40 mg kg?1 year?1, respectively.  相似文献   

10.

Purpose

The best method for determining soil organic carbon (SOC) in carbonate-containing samples is still open to debate. The objective of this work was to evaluate a thermal gradient method (ThG), which can determine simultaneously inorganic carbon (SIC) and SOC in a wide range of soil samples.

Materials and methods

The determination of SOC by ThG (SOCThG) was compared to the following widespread standard methods: (1) acidification (ACI) as pretreatment and subsequent dry combustion (SOCACI) and (2) volumetric quantification of SIC by a calcimeter (CALC) and subtraction of the total carbon content as determined by dry combustion (SOCCALC). Precision (F test) and bias (t test) were tested on a subset of seven samples (n?=?3). Comparison of the ThG and CALC methods was performed by regression analysis (n?=?76) on samples representing a wide range of SOC (5.5 to 212.0 g kg?1) and SIC (0 to 59.2 g kg?1) contents.

Results and discussion

Tests on the replicated subset showed that the precision of ThG was not significantly different from ACI or CALC (F values?<?39, n?=?3) for SOC and SIC measurements. However, SOCACI and SOCCALC contents were systematically and significantly lower compared to SOCThG contents. The positive bias for SOCThG relative to SOCCALC contents appeared also in the regression analysis (given numbers?±?standard errors) of the whole data set (y?=?(4.67?±?0.70)?+?(0.99?±?0.01)x, R 2?=?0.99, n?=?76). When performing a regression with carbonate-free samples, the bias between the methods was negative (?2.90?±?0.63, n?=?29) but was positive in the set with carbonate-containing samples (3.95?±?1.41, n?=?47). This observation corroborated the suspicion that the use of acid for carbonate decomposition can lead to an underestimation of SOC.

Conclusions

All methods were suitable for differentiation between SIC and SOC, but the use of acid resulted in lower estimates of SOC contents. When comparing soil samples with different carbonate concentrations, the use of the ThG method is more reliable.  相似文献   

11.
This study evaluates soil properties in organically managed olive groves and natural zones in a mountainous area of Andalusia, Spain. Two soil types (Eutric Regosol and Eutric Cambisol) and the most common soil management methods (tillage and two intensities of grazing) were studied. Both soil types in the groves had values not much lower than those in the natural areas. Average (±SE) values in the groves were 1.58 ± 0.71% for organic carbon, 323 ± 98 g kg?1 for macroaggregate stability, 1.11 ± 0.16 g cm?3 for bulk density, 3.5 ± 1.6 mm h?1 for saturated hydraulic conductivity and 1209 ± 716 mg CO2 kg?1 for soil respiration. Overall, these values tended to be lower in the tilled compared with that in the grazed groves. The average phosphorus soil content (5.83 ± 5.22 mg kg?1) was low for olive production and within adequate ranges for N (0.12 ± 0.05%) and K (142 ± 81 mg kg?1). Soil erosion was high in the tilled groves (35.5 ± 18.2 t ha?1 year?1) with soil loss correlating with indicators of soil degradation such as organic carbon content and water stable macroaggregates. In the grazed groves, soil loss was moderate with no clear indications of soil degradation. Overall, there was significant farm‐to‐farm variability within the same soil and land management systems. Olive production had a moderate effect on soil degradation compared with natural areas and olive cultivation could be sustained in future if cover crop soil management replaced tillage, especially in the most sloping areas.  相似文献   

12.
Nitrous oxide emission (N2O) from applied fertilizer across the different agricultural landscapes especially those of rainfed area is extremely variable (both spatially and temporally), thus posing the greatest challenge to researchers, modelers, and policy makers to accurately predict N2O emissions. Nitrous oxide emissions from a rainfed, maize-planted, black soil (Udic Mollisols) were monitored in the Harbin State Key Agroecological Experimental Station (Harbin, Heilongjiang Province, China). The four treatments were: a bare soil amended with no N (C0) or with 225?kg?N ha?1 (CN), and maize (Zea mays L.)-planted soils fertilized with no N (P0) or with 225?kg?N ha?1 (PN). Nitrous oxide emissions significantly (P?<?0.05) increased from 141?±?5?g N2O-N?ha?1 (C0) to 570?±?33?g N2O-N?ha?1 (CN) in unplanted soil, and from 209?±?29?g N2O-N?ha?1 (P0) to 884?±?45?g N2O-N?ha?1 (PN) in planted soil. Approximately 75?% of N2O emissions were from fertilizer N applied and the emission factor (EF) of applied fertilizer N as N2O in unplanted and planted soils was 0.19 and 0.30?%, respectively. The presence of maize crop significantly (P?<?0.05) increased the N2O emission by 55?% in the N-fertilized soil but not in the N-unfertilized soil. There was a significant (P?<?0.05) interaction effect of fertilization?×?maize on N2O emissions. Nitrous oxide fluxes were significantly affected by soil moisture and soil temperature (P?<?0.05), with the temperature sensitivity of 1.73–2.24, which together explained 62–76?% of seasonal variation in N2O fluxes. Our results demonstrated that N2O emissions from rainfed arable black soils in Northeast China primarily depended on the application of fertilizer N; however, the EF of fertilizer N as N2O was low, probably due to low precipitation and soil moisture.  相似文献   

13.
ABSTRACT

Sandy soils are usually dominant in tropical monsoon regions, due to the high weathering potential associated with high temperatures and precipitation. The organic matter content of sandy soils is low due to low clay content and high microbial activity. Therefore, soil management practices that alter the soil organic carbon (SOC) content may be important for the sustainable management of crop yields. Thus, the present study investigates the distribution of rice yield and SOC content under different land management practices and analyzes the relationship between rice yield and SOC with pertinent management practices (manure and fertilizer applications). The soil horizons from 0- to 40-cm depths were collected in each layer to measure SOC and soil properties at 64 sites. At each sampling site, farmers were given questionnaires and the record book for the standards for good agricultural practices of farm owners were gathered to assimilate information on rice yield and their practices during 2010–2014. The mean rice yield of the whole crop year and SOC were 2.93 Mg ha?1 and 47.09 Mg C ha?1, respectively, in the irrigated areas, and were 2.38 Mg ha?1 and 32.08 Mg C ha?1 in the rain-fed areas. Significantly higher values were obtained in the irrigated areas (p < 0.05). There was a significant positive correlation between rice yield and SOC in both the irrigated areas (R2 = 0.72, p < 0.01) and the rain-fed areas (R2 = 0.85, p < 0.01); however, the slopes of these regression equations were significantly different. In both irrigated and rain-fed areas, manure should be applied every year, with an optimal application rate of N, P, and K fertilizers being selected. The combination of manure, fertilizer, and increasing irrigation facilities the maintenance of SOC levels and substantially increases rice yields.  相似文献   

14.
Forests represent an important resource for mitigating the greenhouse effect, but which is the contributions of the different forest types in sequestering and keeping soil C for a longer time is still uncertain, particularly in the Mediterranean area. The aim of this work is to quantify the soil organic C (SOC) stock in the 0–30 and 0–100?cm depths of mineral soil, according to the main forest types—conifers, broadleaf and evergreen broadleaf—and the different climatic zones of Spain, using a database comprising records of 1,974 pedons. Conifers and broadleaf forests show a trend in SOC stock distribution, with the stocks decreasing with increasing Mediterranean conditions. On average, in the 0–30?cm depth, the soils under broadleaf store the highest amount of SOC (5.9?±?0.1?kg?m?2), followed by conifers (5.6?±?0.1?kg?m?2) and evergreen broadleaf soils with an amount always lower (3.4?±?0.2?kg?m?2). Climate and forest cover are the principal factors in determining the amount of SOC stored in Spanish forests. The significantly higher amount of SOC found in conifers and broadleaf forests than the evergreen broadleaf forests leads us to hypothesize a decrease in the SOC if climate change will increase drought periods with a consequent expansion of this latter forest type. Correlations between the SOC stocks under the different forest types, climate and soil features support the major role of climate and vegetation in controlling SOC sequestration in the Mediterranean area, while the effect of texture is less pronounced. Assigning a precise SOC stock to the different forest types, according to each climatic zone, would notably help to obtain an accurate SOC estimate at national level and for future assessments of the status of this large C reservoir.  相似文献   

15.
Acetylene blockage was evaluated as a method for measuring losses of N2O + N2 from two Denchworth series clay soils. The denitrification potential in anaerobic, dark incubations at 20°C with nitrate (equivalent to 100 kg N ha?1 0–20 cm depth), maximum water holding capacity, and acetylene (1%), was equivalent to 32 ± 11 and 39 ± 6 kg N ha?1 per day for the two 0–20 cm soils and was positively correlated with carbon content (r= 0.98). After 4 days N2O was reduced to N2 in the presence of C2H2. In April 1980 following irrigation (24 mm) and applications of ammonium nitrate (70 kg N ha?1) and acetylene, the mean nitrous oxide flux from soil under permanent grass was 0.05 ± 0.01 kg N2O-N ha?1 per day for 8 days. In June 1980, the losses of nitrogen from cultivated soils under winter wheat after irrigation (36 mm) and acetylene treatment were 0.006 ± 0.002 and 0.04–0.07 ± 0.01 kg N ha?1 per day respectively before and after fertilizer application (70 kg N ha?1). The nitrous oxide flux in the presence of acetylene decreased briefly, indicating that nitrification was rate determining in drying soil.  相似文献   

16.
Soil amendment with hydrochar produced by hydrothermal carbonization of biomass is suggested as a simple, cheap, and effective method for increasing soil C. We traced C derived from corn silage hydrochar (δ13C of ?13?‰) added to “coarse” and “fine” textured soils (δ13C of ?27?‰ for native soil C (SOC)) over two cropping seasons. Respiration rates increased in both soils (p?<?0.001) following hydrochar addition, and most of this extra respiration was derived from hydrochar C. Dissolved losses accounted for ~5 % of added hydrochar C (p?<?0.001). After 1 year, 33?±?8 % of the added hydrochar C was lost from both soils. Decomposition rates for the roughly two thirds of hydrochar that remained were very low, with half-life for less estimated at 19 years. In addition, hydrochar-amended soils preserved 15?±?4 % more native SOC compared to controls (negative priming). Hydrochar negatively affected plant height (p?<?0.01) and biomass (p?<?0.05) in the first but not the second crop grown on both soils. Our results confirm previous laboratory studies showing that initially, hydrochar decomposes rapidly and limits plant growth. However, the negative priming effect and persistence of added hydrochar C after 1 year highlight its soil C sequestration potential, at least on decadal timescales.  相似文献   

17.
Understanding the photosynthetic carbon (C) dynamics in the plant–soil–microbe continuum is critical to the C sequestration in soils. However, such information is limited in maize (Zea mays L.) in Mollisols. Pot-grown maize was labelled with 13CO2 at the 10-leaf, 15-leaf, heading, milk and dent stages to investigate the photosynthetic C flow in a maize–soil system and its contribution to soil organic carbon (SOC) in Mollisols. The majority of fixed 13C was recovered in shoots, ranging from 44.7% to 78.6%. The allocation of 13C fixed at different growth stages to belowground (roots and soil) gradually decreased over the growing period, indicating that the strength of root C sink is stronger at the early stages. However, the proportion of 13C in dissolved organic C and microbial biomass C to that in SOC significantly increased as the growth stages advanced. Over the entire growth period, the contribution of root-derived C to SOC was estimated to be 5461 mg C plant?1 growth period?1, of which approximately 79% was synthesized during the vegetative stages. Therefore, the input of photosynthetic C by maize plants into SOC mainly occurred during the younger stages of the plant, favouring the storage of SOC in Mollisols.  相似文献   

18.
To evaluate the effects of thirty years of manure and chemical fertilizer applications on metal accumulations in soil and soil aggregates, fresh soils were separated by wet sieving into four aggregate fractions and heavy-metal concentrations in soil and aggregates were determined. The soil organic carbon (SOC) concentration in microaggregates ranged from 20.2 to 39.6 g carbon (C) kg?1, which was significantly greater than those in the other fractions. The proportion of heavy metals in small macroaggregates and the silt + clay fraction accounted for 45.5 ± 10.6% and 35.8 ± 14.1% of the total amount in soil, respectively, which might be due primarily to their greater mass percentages in soil. Both chemical fertilizer and manure significantly stimulated iron (Fe) and zinc (Zn) accumulation; horse manure also increased copper (Cu), lead (Pb), and chromium (Cr) concentration in bulk soils as compared with the control. The results also indicated that heavy-metal distribution in aggregates was not controlled by SOC but possibly by soil clay.  相似文献   

19.

Purpose

The purpose of this study was to better understand how both the content and flux of soil carbon respond to forest succession and anthropogenic management practices in forests in subtropical China.

Materials and methods

We assembled from the literature information on soil organic carbon (SOC) and soil respiration (Rs) covering the forest successional chronosequence from pioneer masson pine (Pinus massoniana) forest (MPF) to medium broadleaf and needleleaf mixed forest (BNMF) and the climax evergreen broadleaf forest (EBF), along with the two major forest plantation types found in subtropical China, Chinese fir (Cunninghamia lanceolata) forest (CFF) and Moso bamboo (Phyllostachys pubescens) forest (MBF).

Results and discussion

Both SOC and Rs increased along the forest successional gradient with the climax EBF having both the highest SOC content of 33.1?±?4.9 g C kg?1(mean?±?standard error) and the highest Rs rate of 46.8?±?3.0 t CO2?ha?1 year?1. It can be inferred that when EBF is converted to any of the other forest types, especially to MPF or CFF, both SOC content and Rs are likely to decline. Stand age did not significantly impact the SOC content or Rs rate in either types of plantation.

Conclusions

Forest succession generally increases SOC content and Rs, and the conversion of natural forests to plantations decreases SOC content and Rs in subtropical China.
  相似文献   

20.
Partition coefficients K P of nonylphenol (NP) in soil were determined for 193 soil samples which differed widely in content of soil organic carbon (SOC), hydrogen activity, clay content, and in the content of dissolved organic carbon (DOC). By means of multiple linear regression analysis (MLR), pedotransfer functions were derived to predict partition coefficients from soil data. SOC and pH affected the sorption, though the latter was in a range significantly below the pKa of NP. Quality of soil organic matter presumably plays an important but yet not quantified role in sorption of NP. For soil samples with SOC values less than 3 g kg?1, model prediction became uncertain with this linear approach. We suggest that using only SOC and pH data results in good prediction of NP sorption in soils with SOC higher than 3 g kg?1. Considering the varying validity of the linear model for different ranges of the most sensitive parameter SOC, a more flexible, nonlinear approach was tested. The application of an artificial neuronal network (ANN) to predict sorption of NP in soils showed a sigmoidal relation between K P and SOC. The nonlinear ANN approach provided good results compared to the MLR approach and represents an alternative tool for prediction of NP partitioning coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号