首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
Graham J. King 《Euphytica》1994,77(1-2):65-69
Summary The progress of the European Apple Genome Mapping Project is described. Populations segregating for a range of agronomic genes have been established in six European countries. The need for robust methods of analysis has been identified, especially with regard to the development of molecular markers. Isozyme systems, RAPDs, RFLPs and amplified genes are being used to construct a reference genetic linkage map. Standardisation and precise definition of both genotypic and phenotypic measurements has been recognised as being essential for future exploitation of genetic markers in apple breeding. Phenotypic measurements are being replicated in different geographical locations over several years. Statistical and genetic analyses are aimed at defining components of genetic variation which account for ‘genes’, as defined by apple breeders. A relational database is being constructed which will combine disparate sources of data relating to the genetics of apple. Comparative mapping has been identified as an efficient means of expanding genetic knowledge within and between Rosaceae genomes.  相似文献   

2.
Differentiation of cultivars with simple sequence repeat (SSR) markers is a very useful technique for the true-to-type characterization of cultivars and clarification of parent-offspring relationships. We developed an SSR marker set for cultivar identification comprising 15 markers that were screened from 46 previously published SSRs. This marker set could be used for apple varieties including Malus × domestica and/or other Malus species. These SSRs successfully characterized 95 apples, including the leading and major founding cultivars used worldwide for modern apple breeding. Therefore, this marker set could be applied to almost all apple cultivars. We also analyzed the parent-offspring relationships of 69 cultivars by considering allele transmissions. This analysis revealed the true parentage of the following seven cultivars: ‘Kizashi’, ‘Chinatsu’, ‘Honey Queen’, ‘Haruka’, ‘Seirin’, ‘Ozenokurenai’, and Morioka #48. This analysis also revealed a parentage discrepancy for ‘Hacnine’. From the parent-offspring analysis, two microsatellite mutation events at alleles inherited from pollen parents were observed.  相似文献   

3.
The pear cultivar ‘Osa-Nijisseiki’ (S2Ssm 4; sm = stylar-part mutant) has been used as a parent to breed self-compatible cultivars that produce excellent fruits. However, determination of the self-compatibility of ‘Osa-Nijisseiki’ offspring requires a lot of time, 6 years or more, by conventional cross breeding. We have designed a rapid reliable method for the identification of self-compatible varieties of ‘Osa-Nijisseiki’ offspring based on the polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) with S-allele specific restriction endonucleases. By using this method, 8 self-compatible varieties were selected among 16 selections resulting from a cross between the self-compatible cultivar ‘Osa-Nijisseiki’ (S2Ssm 4) and the self-incompatible cultivars ‘Niitaka’ (S3S9), ‘Whasan’ (S3S5), ‘Chuwhangbae’ (S4S6). The S-genotypes of 16 ‘Osa-Nijisseiki’ offsprings were also determined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Framework genetic linkage maps of two progenitor species of cultivated sugarcane, Saccharum officinarum ‘La Striped’ (2n = 80) and S. spontaneum ‘SES 147B’ (2n = 64) were constructed using amplified fragment length polymorphism (AFLP), sequence related amplified polymorphism (SRAP), and target region amplification polymorphism (TRAP) markers. The mapping population was comprised of 100 F1 progeny derived from the interspecific cross. A total of 344 polymorphic markers were generated from the female (S. officinarum) parent, out of which 247 (72%) were single-dose (segregating in a 1:1 ratio) and 33 (9%) were double-dose (segregating in a 3.3:1 ratio) markers. Sixty-four (19%) markers deviated from Mendelian segregation ratios. In the S. spontaneum genome, out of a total of 306 markers, 221 (72%) were single-dose, 43 (14%) were double-dose, and 42 markers (14%) deviated from Mendelian segregation ratios. Linkage maps with Kosambi map distances were constructed using a LOD score ≥5.0 and a recombination threshold of 0.45. In Saccharum officinarum, 146 markers were linked to form 49 linkage groups (LG) spanning 1732 cM whereas, in S. spontaneum, 121 markers were linked to form 45 LG spanning 1491 cM. The estimated genome size of S. officinarum ‘La Striped’ was 2448 cM whereas that of S. spontaneum ‘SES 147B’ was 3232 cM. Based on the two maps, genome coverage was 69% in S. officinarum and 46% in S. spontaneum. The S. officinarum parent ‘La Striped’ behaved like an auto-allopolyploid whereas S. spontaneum ‘SES 147B’ behaved like a true autopolyploid. Although a large disparity exists between the two genomes, the existence of simple duplex markers, which are heterozygous in both parents and segregate 3:1 in the progeny, indicates that pairing and recombination can occur between the two genomes. The study also revealed that, compared with AFLP, the SRAP and TRAP markers appear less effective at generating a large number of genome-wide markers for linkage mapping in sugarcane. However, SRAP and TRAP markers can be useful for QTL mapping because of their ability to target gene-rich regions of the genome, which is a focus of our future research.  相似文献   

5.
Fourteen developed microsatellite markers were characterized for their use in genotyping and diversity studies of olive varieties. After optimisation of microsatellite assay and allele sizing, ninety-six alleles were found in nineteen varieties, with an average of 6.8 alleles per locus. The characteristics of the microsatellite markers were used to identify markers that can be reliably applied for variety genotyping. Such features were the generation of complex banding patterns supported by underlying allele sequences, `short allele dominance', an unstable repeat structure and a low number of alleles. AFLP analysis was performed on the same set of olive varieties using eight primer pair combinations. The genetic relationships among nineteen olive varieties were compared on the basis of microsatellite and AFLP polymorphisms. Genetic distances between all pairwise combinations of the varieties were calculated using Jaccard's coefficient of similarity and dendrograms were constructed by the UPGMA method. The results of clustering analysis with both molecular systems showed the common genetic background of Tuscan varieties, and genetic divergence within Slovene olive germplasm. Slovenian varieties ‘Buga’, ‘Štorta’ and ‘Samo’ might represent regionally selected olives, while ‘Zelenjak’ and ‘Črnica’ are probably derived from the Central Italian region. The predominant local ‘Istrska belica’ was introduced to Slovenia independently from the other regional varieties and showed the lowest genetic similarity with the other regional varieties. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The availability of genetic linkage maps enables the detection and analysis of QTLs contributing to quality traits of the genotype. Proton Transfer Reaction Mass Spectrometry (PTR-MS), a relatively novel spectrometric technique, has been applied to measure the headspace composition of the Volatile Organic Compounds (VOCs) emitted by apple fruit genotypes of the progeny ‘Fiesta’ × ‘Discovery’. Fruit samples were characterised by their PTR-MS spectra normalised to total area. QTL analysis for all PTR-MS peaks was carried out and 10 genomic regions associated with the peaks at m/z = 28, 43, 57, 61, 103, 115 and 145 were identified (LOD > 2.5). We show that it is possible to find quantitative trait loci (QTLs) related to PTR-MS characterisation of the headspace composition of single whole apple fruits indicating the presence of a link between molecular characterisation and PTR-MS data. We provide tentative information on the metabolites related to the detected QTLs based on available chemical information. A relation between apple skin colour and peaks related to carbonyl compounds was established. The two authors contributed equally to this work.  相似文献   

7.
Self and cross-incompatibility determination by means of fruit and seed set experiments or pollen tube growth observations in the style has been frequently reported to be unclear in pear (Pyrus communis L.). Thus,in order to develop a reliable in vivo method to test pollen-pistil incompatibility in pear, pollen tube performance has been studied along the pistil following self and cross-pollinations. Results show that, while pollen tube growth in the style may be an unclear test, ovule observation at the microscope for the presence of pollen tube in the nucellus is a proper method to test incompatibility in this crop. With this analysis we could identify S-alleles of ‘Williams’ (S1S2) and ‘Coscia’(S3S4), and three of the four possible S-genotypes resulting from the ‘Williams’ × ‘Coscia’ cross, as represented by ‘Butirra Precoz Morettini’ (S1S3), ‘Santa Maria Morettini’ (S2S3)and ‘Tosca’ (S1S4). This result demonstrates that ‘Williams’ and ‘Coscia’ cultivars do not share any allele in common. We also established two new inter-incompatibility groups in pear. Furthermore, the presence of a common allele between ‘Williams’ and ‘Agua de Aranjuez’,and ‘Coscia’ and ‘Agua de Aranjuez’, three apparently unrelated old cultivars, may indicate a narrower genetic base than expected for European pear. This finding together with the fact that 40% of new released cultivars have direct or indirect parental relationship with the cultivars ‘Coscia’ and/or ‘Williams’, anticipates the possibility of new cases of cross-incompatibility for this crop in the future. Both the method described and the determination of the S-genotypes will facilitate the characterisation of self and cross-incompatibility relationships in this species. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
This study compared the meiotic recombination frequency between wheat doubled haploid (DH) populations obtained through two different methods, maize pollination (MP♀) and anther culture (AC♂). The comparison was based on a genetic linkage analysis, performed with DNA markers. Thirty-five polymorphic markers (15 SSR, 15 AFLP, 5 RAPD) were screened in MP♀ and AC♂ doubled haploids populations, derived from the same hybrid genotype (F1 of ‘Eta’ × ‘Darkhan 15’). Nine linkage groups, comprising 35 loci (the MP♀ lines) and 31 loci (the AC♂ lines), were constructed. The linkage groups in both DH populations showed identical orders of markers, except for one group mapping to chromosome 6B. The MP♀ and AC♂ linkage maps differed significantly in recombination frequencies for corresponding intervals. In total, the AC♂ linkage map (495.5 cM) was 40.5% longer than the MP♀ map (352.8 cM), indicating a significantly higher meiotic recombination rate in pollen mother cells. The enhancement in recombination was visible in five of nine linkage groups, and in 7 intervals between individual loci out of 19 compared. Moreover, for 6 other intervals a lack of linkage was observed in the AC♂ population, as compared to the MP♀ map.  相似文献   

9.
Disease resistance is a sought-after trait in plant breeding programmes. One strategy to make resistance more durable is to increase the number of resistance genes, thereby increasing the number of pathotypes withstood. One of the most important diseases on roses is powdery mildew (PM) (Podosphaera pannosa). Recent studies show that pathotypes of PM and different types of resistances in roses exist. The results of this study aim to contribute to PM resistance in roses by the development of pathotype-specific markers on a genetic map. A diploid rose population (90 genotypes) derived from a cross between Rosa wichurana and Rosa ‘Yesterday’ was used to construct a genetic linkage map encompassing 20 AFLP primer combinations, 43 SSR, and 2 morphological markers. By applying the F1 pseudo test cross population strategy, two parental linkage maps were constructed (parent ‘Yesterday’ 536 cM; parent R. wichurana 526 cM). Both parental maps consisted of seven linkage groups with an average length of 70 cM (Kosambi) corresponding to the seven haploid rose chromosomes. These new maps were used to identify QTLs controlling disease resistance. The offspring population was screened for resistance to two PM pathotypes, R–E and R–P. QTLs for controlling pathotype-specific disease resistance were mapped by applying Kruskal–Wallis rank-sum tests and simple interval mapping. With two pathotypes analysed, nine QTL loci were detected on linkage groups 2, 3, 5 and 6, explaining 15–73% of the phenotypic variance for pathotype-specific disease response. The genetic maps developed here will be useful for future rose breeding, pathotype-specific resistance research and development of a consensus map for roses.  相似文献   

10.
In the presented study, the existing AFLP and SSR maps of barley were used to find chromosomal position of four genes controlling different stages of root hair development. Four barley mutants were used in the analysis: the root hairless mutant rhl1.b, mutant rhp1.b with root hair development blocked at the initial bulge formation, mutant rhi1.a with irregular pattern of sparsely located root hairs and mutant rhs1.a with very short root hairs. Each mutant was crossed with parents of ‘Steptoe’/‘Morex’ mapping population and F2 progenies of crosses: mutant × ‘Steptoe’ and mutant × ‘Morex’ were analyzed for segregation of root hair phenotype and polymorphic AFLP and SSR markers. It was possible to map all the analyzed genes on barley chromosomes: rhl1 gene on the short arm of chromosome 7H, rhp1 gene on chromosome 1H, rhs1 locus in the pericentromeric region of chromosome 5H and rhi1 gene on the long arm of chromosome 6H. Subsequently, the Bulk Segregant Analysis and AFLP technique were used for saturation of the identified regions with new markers. The joint maps were constructed using as common points the SSR markers located in the target regions. Linkage maps of the regions around the four genes involved in the root hair formation in barley were composed of 8–11 markers and spanned over 16.1–49.0 cM. The distances between localized genes and the closest markers ranged from 1.0 to 3.8 cM. The identified chromosomal locations of genes can be used for their fine mapping and future map-based cloning.  相似文献   

11.
Hop powdery mildew [Podosphaera macularis (Wallr.) U. Braun & S. Takam.] is best controlled via the production of resistant varieties. Recent evidence supports selection against plant susceptibility genes to fungal pathogens as a more durable resistance mechanism than selection for resistance genes. The objective of this study was to identify molecular-based QTLs, their genetic effects and epistasis among QTLs associated with susceptibility to powdery mildew. Parents and offspring from the cross, ‘Perle’ × ‘USDA 19058M’, were clonally replicated and inoculated in a greenhouse using a CRD experimental design in Corvallis, OR. DNA was extracted, purified and analyzed via three different marker systems. Analysis of the resulting markers was based upon the “two-way pseudo-testcross” procedure. QTL mapping using multiple interval mapping and Bayesian interval mapping analyses were performed using WinQTL Cartographer 2.5_003. Comparison amongst mapping analyses identified three persistent QTLs on three linkage groups without significant epistatic effect upon expression. The persistent QTL on linkage group C7 had both additive and dominant effects controlling phenotype expression. The presence or absence of the two AFLP markers bordering the QTL on C7 defined susceptibility in offspring. This is the first report in hop identifying molecular markers linked to QTLs associated with disease susceptibility.  相似文献   

12.
Sequence-related amplified polymorphism (SRAP), simple sequence repeats (SSR), inter-simple sequence repeat (ISSR), peroxidase gene polymorphism (POGP), resistant gene analog (RGA), randomly amplified polymorphic DNA (RAPD), and a morphological marker, Alternaria brown spot resistance gene of citrus named as Cabsr caused by (Alternaria alternata f. sp. Citri) were used to establish genetic linkage map of citrus using a population of 164 F1 individuals derived between ‘Clementine’ mandarin (Citrus reticulata Blanco ‘Clementine) and ‘Orlando’ tangelo’ (C. paradisi Macf. ‘Duncan’ × C. reticulata Blanco ‘Dancy’). A total of 609 markers, including 385 SRAP, 97 RAPD, 95 SSR, 18 ISSR, 12 POGP, and 2 RGA markers were used in linkage analysis. The ‘Clementine’ linkage map has 215 markers, comprising 144 testcross and 71 intercross markers placed in nine linkage groups. The ‘Clementine’ linkage map covered 858 cM with and average map distance of 3.5 cM between adjacent markers. The ‘Orlando’ linkage map has 189 markers, comprising 126 testcross and 61 intercross markers placed in nine linkage groups. The ‘Orlando’ linkage map covered 886 cM with an average map distance of 3.9 cM between adjacent markers. Segregation ratios for Cabsr were not significantly different from 1:1, suggesting that this trait is controlled by a single locus. This locus was placed in ‘Orlando’ linkage group 1. The new map has an improved distribution of markers along the linkage groups with fewer gaps. Combining different marker systems in linkage mapping studies may give better genome coverage due to their chromosomal target site differences, therefore fewer gaps in linkage groups.  相似文献   

13.
A restriction fragment length polymorphism (RFLP) based linkage map of a cross between two diploid Hordeum bulbosum (2n = 2x = 14) clones, PB1 and PB11, was constructed from 46 recombinant progeny clones. Since both parents are heterozygous, separate and combined parental maps were constructed. All of the RFLP markers screened had previously been mapped in barley (H. vulgare L.) so that comparative maps could be produced. The PB1 linkage map consists of 20 RFLP marker loci assigned to four linkage groups covering 94.3 cM. The PB11 linkage map consists of 27 RFLP marker loci assigned to six linkage groups covering 149.1 cM. Thirteen markers polymorphic in both parents were used as ‘anchors’ to create a combined linkage map consisting of 38 loci assigned to six linkage groups and covering a genetic distance of 198 cM. Marker order was highly conserved in a comparison with the linkage map of H. vulgare (Laurie etal., 1995). However, in contrast, the genetic distances for the same markers were very different being 649 cM and 198 cM respectively, a genetic distance ratio of 1: 3.3. Thus although the map was short, it can be presumed to cover half the genome of H. bulbosum. This study provides further confirmation of the close relationship between the two species and gives a basis for the development of marker mediated introgression through interspecific hybridisation between the two species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A new S 9-allele was discovered in 6 Japanese pear cultivars, ‘Shinkou’, ‘Shinsei’, ‘Niitaka’, ‘Amanogawa’, ‘Nangetsu’ and ‘Nansui’. cDNA encoding S 9-RNase, a stylar product of S 9-allele, was cloned from pistils of ‘Shinkou’ and ‘Shinsei’ by 3' and 5' RACE. The S 9-RNase gene had an open reading frame of 684 nucleotides encoding 228 amino acid residues. S 9-RNase had a hypervariable (HV) region different from S 1- to S 8-RNase and shared higher similarity (95.2%) with apple S 3-RNase than with 8 Japanese pear S-RNases (from 61.0% to 70.7%). Genomic PCR with primers ‘FTQQYQ’ and ‘anti-(I/T) IWPNV’ provided S 1- to S 9-amplicon (product), but could not discriminate the S 2 from the S 9 of ca. 1.3 kb. The S 2 and S 9 were distinguished by digestion with AflII and BstBI, respectively. The digestion with nine S-allele-specific restriction endonucleases, SfcI, AflII, PpuMI, NdeI,AlwNI, HincII, AccII, NruI and BstBI, distinguished S 1 to S 9, establishing that this PCR-RFLP system is useful for S-genotype assignments in Japanese pear harboring S 1- to S 9-allele. ‘Shinkou’, ‘Shinsei’, ‘Nangetsu’ and ‘Nansui’ assigned as S 4 S 9 were determined to be cross incompatible. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
S. H. Jalikop 《Euphytica》2007,158(1-2):201-207
Summary Inheritance of fruit acidity in pomegranate (Punica granatum L.) was studied in 3 sweet or low acid (‘Ganesh’, ‘Ruby’ and ‘Kabul Yellow’) and 3 sour or high acid (‘Nana’, ‘Daru’ and ‘Double Flower’) varieties and their progenies. The F1 and F2 data of ‘Ganesh’ × ‘Nana’ showed that fruit acidity is monogenically controlled and the sour nature is dominant over sweet. Further, whether a genotype produces sweet or sour fruit is determined by a major gene (SS) while a few modifiers with small effects cause fluctuations in the acidity levels within sour and sweet types. All the trees of 3 crosses involving ‘Daru’ produced acidic fruits but those of (‘Ganesh’ × ‘Nana’) × ‘Daru’ reached acidity as high as 71.2 g/l which could be because of cumulative influence of modifying genes derived from the two acidic varieties ‘Nana’ and ‘Daru’. Pollination of functionally sterile ‘Double Flower’ variety with single (normal) flower types revealed that ‘Double Flower’ is a dominant mutant from an acidic fruited genotype (Ss). The segregation pattern in F1 indicated the possible linkage between genes governing total acidity and flower type. All the F1 hybrids between ‘Kabul Yellow’ and ‘Ganesh’ (sweet × sweet) were sour fruited with almost 8-fold jump in fruit acidity over the mid-parental value. The steep increase in acidity cannot be convincingly attributed to overdominance which is certainly rare at major gene level. Alternatively, linked dominant alleles or epistatic effect of neighboring loci which readily simulate overdominance (pseudo-overdominance) could have caused a major shift in F1 fruit acidity.  相似文献   

16.
A consensus genetic linkage map with 447 SSR markers was constructed for zoysiagrass (Zoysia japonica Steud.), using 86 F1 individuals from the cross ‘Muroran 2’ × ‘Tawarayama Kita 1’. The consensus map identified 22 linkage groups and had a total length of 2,009.9 cM, with an average map density of 4.8 cM. When compared with a previous AFLP-SSR linkage map, the SSR markers from each linkage group mapped to similar positions in both maps. Eight pairs of linkage groups from the AFLP-SSR map were joined into eight new groups in the current map. This zoysiagrass consensus map contained 35 SSR markers exhibiting high homology with rice genomic sequences from known chromosomal locations. This allowed synteny to be identified between Zoysiagrass linkage groups 2, 3, 9, 19 and rice chromosomes 3, 12, 2, 7 respectively. These results provide important comparative genomics information and the new map is now available for quantitative trait locus analysis, marker-assisted selection and breeding for important traits in zoysiagrass.  相似文献   

17.
Summary The segregation and linkage between glufosinate (transgenes ‘Rf3’ and ‘T177’) and blackleg resistance genes in canola (Brassica napus L.) were assessed using F1 microspore-derived doubled haploid (DH) populations from four crosses including reciprocals, two involving the transgene ‘Rf3’ and the other two involving the transgene ‘T177’. To relax the assumption of no segregation distortion required for the conventional analysis of segregation and linkage, we employed Bailey's analysis that allows detecting segregation distortion at linked loci. The significant departures from the 1:1 segregation were detected in the crosses involving the transgene ‘T177’ but not in the crosses involving the transgene ‘Rf3’. The apparent deficit of the herbicide tolerant DH lines in the crosses with the transgene ‘T177’ is likely due to differential selection against the gametes carrying ‘T177’ during microspore culture. The linkage was strong between blackleg resistance and the transgene ‘Rf3’ but weak or absent between blackleg resistance and the transgene ‘T177’, suggesting that the two transgenes are probably inserted into distant regions of the genome. The observed linkage offers an opportunity to develop new canola cultivars with both glufosinate tolerance conferred by transgene ‘Rf3’ and blackleg resistance.  相似文献   

18.
Water yam (Dioscorea alata L.) is the most widely cultivated food yams. Despite its importance, its production is limited by anthracnose disease caused by Colletotrichum gloeosporioides (Penz.). The use of resistant yam varieties is the most reliable approach of management of this disease. The speed and precision of breeding can be improved by the development of genetic linkage maps which would provide the basis for locating and hence manipulating quantitative traits such as anthracnose resistance in breeding programmes. An F1 diploid population was developed by crossing ‘Boutou’ a female clone (with field resistance to anthracnose) with ‘Pyramide’ (susceptible). A linkage map was generated with 523 polymorphic markers from 26 AFLP primer combinations. The resulting map covered a total length of 1538 cM and included 20 linkage groups. It is the most saturated of all genetic linkage maps of yam to date. QTL analysis of anthracnose resistance was performed based on response to two isolates of C. gloeosporioides. Resistance to anthracnose appeared to be inherited quantitatively. Using a LOD significance threshold of 2.6 we identified a total of nine QTLs for anthracnose resistance. The phenotypic variance explained by each QTL ranged from 7.0 to 32.9% whereas the total amount of phenotypic variation for anthracnose resistance explained by all significant QTLs varied from 26.4 to 73.7% depending on the isolate and the variable considered. These QTLs displayed isolate-specific resistance as well as broad spectrum resistance. The availability of molecular markers linked to the QTLs of anthracnose resistance will facilitate marker-assisted selection in breeding programmes.  相似文献   

19.
The first genetic linkage map of macadamia (Macadamia integrifolia and M. tetraphylla) is presented. The map is based on 56 F1 progeny of cultivars ‘Keauhou’ and ‘A16’. Eighty-four percent of the 382 markers analysed segregated as Mendelian loci. The two-way pseudo-testcross mapping strategy allowed construction of separate parental cultivar maps. Ninety bridging loci enabled merging of these maps to produce a detailed genetic map of macadamia, 1100 cm in length and spanning 70–80% of the genome. The combined map comprised 24 linkage groups with 265 framework markers: 259 markers from randomly amplified DNA fingerprinting (RAF), five random amplified polymorphic DNA (RAPD), and one sequence-tagged microsatellite site (STMS). The RAF marker system unexpectedly revealed 16 codominant markers, one of them a putative microsatellite locus and exhibiting four distinct alleles in the cross. This molecular study is the most comprehensive examination to date of genetic loci of macadamia, and is a major step towards developing marker-assisted selection for this crop. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The European Prunus mapping project Progress in the almond linkage map   总被引:2,自引:0,他引:2  
Summary Six European research groups are collaborating to develop genetic markers and linkage maps for use inPrunus breeding programmes. A basic map with 200 RFLPs and 50 more markers including isozymes and RAPDs will be constructed using two highly segregating populations: an interspecific peach × almond F2 and a cherry F2. Then, the parents of eleven almond, cherry, peach or plum breeding progenies segregating for target characters will be screened for polymorphisms at the marker loci, and a set of reduced maps, one per progeny, will be constructed with markers spaced 20–30 cM and covering the whole genome. Cosegregation analysis of markers and characters of interest will allow us to find linkages between markers and major genes or quantitative trait loci responsible for the expression of these traits. A map with 72 markers, 7 isozymes and 65 RFLPs, has been developed at the IRTA-Cabrils laboratory using an intraspecific almond progeny, ‘Ferragnes’ × ‘Mono’. Probes for the analysis of RFLPs were obtained from almond genomic and cDNA libraries. The level of polymorphism for RFLPs and the distribution of markers in the chromosomes of almond are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号