首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The more and more diffused multifunctional role addressed nowadays to public forests, calls for targeted analysis aimed at highlighting the overall outcome of different practices implemented on the same forest compartment, according to the locally prevailing function. This study was carried out in four Italian beech forests across a latitudinal gradient representative of multiple management history, stand structure, and dominant stand age. We analyze forest structure at the compartment scale before and after silvicultural practices. We aim to explore relationships and similarities between 10 stand attributes (mensurational and structural variables) to identify relevant indicators for the monitoring and management of forest ecosystems. Results indicate changing patterns of correlation and similarity among mensurational variables following practice implementation. A sensitivity gradient to silvicultural practice was finally identified within the four sites investigated as a result of the diverging stand structure. Our approach suggests a way and provides an insight for the design of adaptive forestry management practices required to meet environmental targets, in addition to the already acknowledged supply of primary goods and services.  相似文献   

2.
Forest ecosystem management, based partly on a greater understanding of natural disturbance regimes, has many variations but is generally considered the most promising approach to accommodating biodiversity concerns in managed forested regions. Using the Lake Duparquet Forest in the southeastern Canadian boreal forest as an example, we demonstrate an approach that attempts to integrate forest and stand-level scales in biodiversity maintenance. The concept of cohorts is used to integrate stand age, composition and structure into broad successional or stand development phases. Mean forest age (MFA), because it partly incorporates historic variability of the regional fire cycle, is used as a target fire cycle. At the landscape level, forest composition and cohort objectives are derived from regional natural disturbance history, ecosystem classification, stand dynamics and a negative exponential age distribution based on a 140 year fire cycle. The resulting multi-cohort structure provides a framework for maintaining the landscape in a semi-natural age structure and composition. At the stand level, the approach relies on diversifying interventions, using both even-aged and uneven-aged silviculture to reflect natural stand dynamics, control the passage (“fluxes”) between forest types of different cohorts and maintain forest-level objectives. Partial and selective harvesting is intended to create the structural and compositional characteristics of mid- to late-successional forest types and, as such, offers an alternative to increasing rotation lengths to maintain ecosystem diversity associated with over-mature and old-growth forests. The approach does not however supplant the necessity for complementary strategies for maintaining biodiversity such as the creation of reserves to protect rare, old or simply natural ecosystems. The emphasis on maintaining the cohort structure and forest type diversity contrasts significantly with current even-aged management in the Canadian boreal forest and has implications for stand-level interventions, notably in necessitating a greater diversification of silvicultural practices including more uneven-aged harvesting regimes. The approach also presents a number of operational challenges and potentially higher risks associated with multiply stand entries, partial cutting and longer intervals between final harvests. There is a need for translating the conceptual model into a more quantitative silvicultural framework. Silvicultural trials have been established to evaluate stand-level responses to treatments and operational aspects of the approach.  相似文献   

3.
Silviculture to maintain old-growth forest attributes appears to be an oxymoron since the late developmental phases of forest dynamics, described by the term old-growth, represent forests that have not experienced human intervention or timber removal for a long time. In the past, silvicultural systems applied to old-growth aimed to convert it into simplified, more productive regrowth forests substantially different in structure and composition. Now it is recognised that the maintenance of biodiversity associated with structural and functional complexity of late forest development successional stages cannot rely solely on old-growth forests in reserves. Therefore, in managed forests, silvicultural systems able to develop or maintain old-growth forest attributes are being sought. The degree to which old-growth attributes are maintained or developed is called “old-growthness”. In this paper, we discuss silvicultural approaches that promote or maintain structural attributes of old-growth forests at the forest stand level in (a) current old-growth forests managed for timber production to retain structural elements, (b) current old-growth forests requiring regular, minor disturbances to maintain their structure, and (c) regrowth and secondary forests to restore old-growth structural attributes. While the functions of different elements of forest structure, such as coarse woody debris, large veteran trees, etc., have been described in principle, our knowledge about the quantity and distribution, in time and space, of these elements required to meet certain management objectives is rather limited for most ecosystems. The risks and operational constraints associated with managing for structural attributes create further complexity, which cannot be addressed adequately through the use of traditional silvicultural approaches. Silvicultural systems used in the retention and restoration of old-growthness can, and need, to employ a variety of approaches for managing spatial and temporal structural complexity. We present examples of silvicultural options that have been applied in creative experiments and forestry practice over the last two decades. However, these largely comprise only short-term responses, which are often accompanied by increased risks and disturbance. Much research and monitoring is required still to develop and optimise new silvicultural systems for old-growthness for a wide variety of forest ecosystem types.  相似文献   

4.
In sustained forest management, it is particularly useful to test the adequacy of various silvicultural scenarios, but decision-making is also becoming increasingly complex because forest managers have to simultaneously meet several different objectives in response to society demands. In order to help forest managers make appropriate choices in silvicultural systems, we propose a SDSS (Silvicultural Decision Support System) that applies to pure and even-aged larch stands (Larix sp.) in lowland areas where site conditions are similar to those encountered in Southern Belgium. Its main purpose is (i) to predict the influence of silvicultural treatments on stand evolution and (ii) assist forest managers in comparing different scenarios with respect to predefined goals. This SDSS consists in three modules designed to elaborate silvicultural scenarios involving (i) stand growth prediction and thinning simulation; (ii) assessment of indicators selected to define the scenarios referring to wood production, financial, technico-economic and ecological components, tree stability and wood quality; and (iii) comparison of the scenarios on the basis of the set of previously assessed indicators (multi-criteria analysis). User-friendly “MGC_Larch” software helps managers to formulate, evaluate and compare different silvicultural scenarios for larch.  相似文献   

5.
Major changes in Mediterranean forests have occurred in recent decades, mainly as a result of the abandonment of traditional activities and population decline in rural areas. In this study, we analyzed the short-term (11-year) evolution of forests in the region of Catalonia (NE Spain) and the role of management, by comparing seven biodiversity indicators estimated from 7,664 plots from the Second and Third Spanish National Forest Inventory. We evaluated the changes in unmanaged and managed stands with different silvicultural treatments, and considered the effect of stand density and land ownership on these dynamics. We found a general naturalization and maturation of forests and an increase in all of the biodiversity indicators investigated during the study period, with the increments being greater in unmanaged than in managed plots. Some types of silvicultural treatments, such as selection cutting or thinning, were shown to be compatible with an increase in the analyzed indicators, and thus were more adequate for a multifunctional management that considers forest production together with the maintenance or improvement of the diversity of forest communities. The increases in shrub species richness and in the number of large-diameter trees after silvicultural treatments were more prominent in dense stands. Private lands presented greater short-term increases than public forests in all biodiversity indicators, except for large-diameter trees. From these results, we concluded that the application of silvicultural treatments can be a key tool to shape and maintain diverse and healthy forest structures in the context of socioeconomic and environmental changes in the Mediterranean region, which may induce potentially excessive densification and homogenization of some forest stands and landscapes.  相似文献   

6.

Context

Uneven-aged management systems based on selection silviculture have become popular in European mountain forests and progressively replace other silvicultural practices. In time, this trend could lead to a homogenisation of the forest mosaic with consequences on structural indices recognised as beneficial to forest biodiversity.

Aims

This study was conducted to investigate the potential effects of a generalisation of the selection silvicultural system on structural diversity in the forest landscape with consequences for forest biodiversity conservation.

Methods

We compared four structural indices (tree species richness, diameter heterogeneity, deadwood volume and basal area of mature trees) in five different stand types typical of the northern French Alps, using forest plot data in the Vercors mountain range. Through virtual landscape simulations, we then calculated predicted mean proportions of stand types under two different conservation strategies: (i) maximising mean index values at the landscape level and (ii) maximising the number of plots in the landscape with index values above given thresholds.

Results

Multi-staged forests did not maximise all indices, the best solution being to combine the five stand types in uneven proportions to improve biodiversity conservation.

Conclusion

The expansion of selection silviculture in European heterogeneous forest landscapes could enhance biodiversity conservation if other stand types with complementary structural characteristics are maintained.  相似文献   

7.
The forest industry is increasingly adopting alternative silvicultural systems, involving regeneration beneath an existing forest canopy, rather than clear-felling and replanting. To apply these silvicultural systems in windy regions such as Britain and Ireland, it is essential that the interactions between thinning intensity, stand stability and seedling growth are properly understood. Here, we present a modelling analysis of the three key relationships between: (i) stand density and the proportion of incident radiation transmitted through a forest canopy as a stand is thinned; (ii) transmitted radiation and seedling growth, and (iii) stand density and stand stability. These relationships were examined using separate models of radiative transfer (MAESTRO), seedling growth, and stand stability/wind risk (ForestGALES). Output from the three models was synthesised to calculate whether a given stand thinned to a pre-defined stability limit would allow sufficient light to penetrate the canopy for seedling growth. A minimum transmittance of 20% was identified as a requirement for seedling growth, which corresponds to removing 45% of stand basal area. A thinning of this intensity left some stands susceptible to unacceptable wind damage, especially in old or previously thinned stands on soils where rooting is impeded. The results emphasised the fact that rooting conditions, thinning history and age of intervention are major constraints on the silvicultural options. In general, older stands are not suitable for conversion to continuous cover forestry (CCF) systems, and the transformation process should begin at pole stage, when heavy thinning does not leave the stand unstable. The analysis approach used here illustrates the potential for combining models to address complex forest management issues.  相似文献   

8.
This paper examines factors determining the payment schemes for silvicultural workers when activities are performed in-house rather than contracted out. The payment schemes examined include piece rates, hourly wages and salaries (monthly or bi-weekly). The research is based on data from a 1997 survey of British Columbia forest companies. Results of our analysis indicate that firms choose silvicultural payment schemes to synchronize the attributes of activities with the firms’ characteristics for the purpose of economizing on transaction costs. Generally, larger companies rely more on wages, and especially salaries, than do smaller companies. The latter are more likely to opt for piece-rate payment schemes. The more workers that a company hires directly, the more likely that a piece-rate system is adopted. However, as the length of silvicultural season increases, the greater the chance that the forest companies rely on salaries.  相似文献   

9.
Trade-offs among wood production, wood quality and ecological characteristics in the management of harvested forest stands are explored through model simulation of various silvicultural regimes. Long-term production of merchantable wood, production of various types of high-quality wood, and the level of certain quantitative ecological indicators are projected for coniferous forests of Pacific Northwestern USA. The set of ecological indicators used is based on the species composition and physical structure of old, unlogged forest stands. Simulations are performed with an ecological model of forest stand dynamics that tracks the fate of live and dead trees. Short rotations (<50 years) produce the least amount of high-quality wood over the multi-century simulation period. They also fail to generate ecological attributes resembling those of old forest stands. Production of high-quality wood is moderate to high under all rotations of 80 years or more; however, most ecological indicators require longer rotations unless alternatives to clearcutting are applied. Alternatives examined include retention of 15% cover of live tree canopy at each harvest in combination with artificial thinning between harvests. Thinning from below can expedite the development of large live and dead trees, and canopy height diversity without greatly diminishing wood quantity or quality. Proportional thinning retains understory stems, thereby expediting the recruitment of shade-tolerant trees. A possible drawback to thinning, particularly proportional thinning, is the diminished production of clean-bole wood at rotations of 150 and 260 years. It is concluded that most wood quantity, wood quality and ecological objectives can be met with long rotations (ca. 260 years). Certain objectives can be met with shorter rotations (80–150 years) when treatments of thinning and canopy tree retention are applied.  相似文献   

10.
Converting coppices into high forests with continuous cover has often been established during the last decades as a management goal in hilly and mountainous Mediterranean areas to attenuate the negative effects that frequent clearcutting may have on soil, landscape and biodiversity conservation. The silvicultural tool usually adopted for this purpose is the gradual thinning of sprouts during the long span of time required to complete the conversion, that also allows the owner to keep harvesting some wood. This research compared the effects of various thinning intensities (three treatments plus control) on the stand growth and structure of a beech coppice with standards. The optimal density after thinning was assessed by expressing mean tree spacing as a function of main stand attributes like stand height and stand dbh. This system was preferred to the empirical evaluation of the percentage of basal area to be removed in order to give forest managers general reference guidelines to adapt to the varying environments of the Mediterranean mountains. Results confirmed that the positive effects of thinning on mean stem volume is due more to the higher diameter increment than to different height growth. The acceleration of crown growth in the thinned plots allowed canopy closure to be achieved 13 years after thinning. This reduced the negative effects of the opening of the stand overlayer and the elimination of most suppressed trees on soil protection. Under the conditions examined, the best thinning intensity proved to be a stand density 20% lower than normal prescribed by the yield tables elaborated for beech high forests in Central and Southern Italy.  相似文献   

11.
Current silvicultural treatments in beech forests are aimed at achieving thick logs without discoloured hardwood. Therefore intensive thinning is applied already in younger stands with the objective of large-sized trunks at an age of 100 years. However, this approach bears the risk that dead wood structures and broken trees are completely removed from the forest. The impact of three different silvicultural management intensity levels on wood-inhabiting fungi over decades was investigated in a large beech forest (>10,000 ha) in southern Germany in 69 sampling plots: A Intensive Thinning and Logging with high-value trees, B Conservation-Oriented Logging with integration of special structures such as dead wood and broken trees and C Strict Forest Reserves with no logging for 30 years. The analysis of community showed marked differences in the fungus species composition of the three treatments, independent of stand age. The relative frequencies of species between treatments were statistically different. Indicator species for naturalness were more abundant at sites with low silvicultural management intensity. Fomes fomentarius, the most common fungus in virgin forests and strict forest reserves, is almost missing in forests with high-management intensity. The species richness seemed to be lower where intensive thinning was applied (P = 0.051). Species characteristic for coarse woody debris were associated to low management intensity, whereas species with a significant preference for stumps became more frequent with increasing management intensity. A total amount of dead wood higher than 60 m3/ha was found to enable significantly higher numbers of species indicators of naturalness (P = 0.013). In conclusion, when applying intensive silvicultural treatment, the role of dead wood needs to be actively considered in order to maintain the natural biocoenosis of beech forests.  相似文献   

12.
Forest regeneration methods such as shelterwood treatments have been shown to substantially increase the diversity of bird species, specifically of species that prefer early seral forests, now rare in the eastern United States. Stand improvement techniques such as thinnings have also been found to increase avian diversity under some conditions. A sustainably managed forest, however, must simultaneously apply regenerative harvesting with stand improvements, and the effect of such treatment combinations on bird community composition is not clear. We compared bird distribution and abundance on shelterwood cuts, crown thinnings, and unmanaged stands at the Yale Myers Forest, a large privately owned and actively managed forest in southern New England. Bird abundance and species diversity was highest in shelterwood cuts and lowest in unmanaged forest, with thinnings being intermediary. Different suites of species inhabited the three treatments, with 18 of 49 common species differing significantly in their abundances between treatments. Characteristics of the vegetation that were directly influenced by silvicultural intervention, including canopy openness, seedling regeneration and vertical structural diversity, appeared to be the dominant drivers of bird abundance. The abundances of some species or groups of species were correlated with the number of trees retained in the implementation of the forestry practices. In conjunction with the conservation of a variety of mature forest habitats, regenerative cuts and stand improvement techniques can be used together to sustain a diverse assemblage of bird species.  相似文献   

13.
林分结构多样性指标研究综述   总被引:55,自引:3,他引:55  
雷相东  唐守正 《林业科学》2002,38(3):140-146
生物多样性保护是森林可持续经营一个重要目标。生物多样性指标 ,大致可分为三类 :物种和群落 ,结构 ,过程。物种只是一个不完整的替代指标。本文综述了林分尺度结构多样性指标的研究进展 ,可分为与距离有关的林分结构多样性指标和与距离无关的林分结构多样性指标 ,它们反映林分的树木大小多样性、树木的水平分布格局、树种的空间隔离程度及空间结构的复杂性。文章最后讨论了进一步要研究的问题  相似文献   

14.
  • ? Stand structure indices would appear to be good surrogate measures for biodiversity in forest ecosystems.
  • ? The vertical structure of Pinus sylvestris L. stands in Central Spain was analysed in order to evaluate their structural diversity. A comparison between two forests with similar ecological conditions but managed under different silvicultural systems was conducted in order to analyse changes in diversity at different stages of stand development. Height diversity was quantified using two non-spatially explicit indices (Shannon’s index and STVI) as well as two spatially explicit indices (Gadow’s differentiation index and the Structure complexity index). A new diversity index was then proposed, based on the sum of square roots of height differences (SQRI).
  • ? Correlations between all vertical structure indices were highly significant. All indices showed that height diversity was greater in the forest with the longer regeneration period and where less intensive thinnings were applied throughout the rotation. Diversity was highest in uneven-aged stands and in the period between the regeneration stage and the first thinning. Thinning from below accounted for the decrease in vertical structure complexity throughout the rotation in even-aged stands.
  • ? The results show that height distribution along with successional stage data enhance the analysis of vertical diversity since structural complexity is highly related to the silvicultural practices that are carried out at different ages.
  •   相似文献   

    15.
    Managing for stand structural complexity in northern hardwood forests has been proposed as a method for promoting microhabitat characteristics important to eastern red-backed salamanders (Plethodon cinereus). We evaluated the effects of alternate, structure-based silvicultural systems on red-backed salamander populations at two research sites in northwestern Vermont. Treatments included two uneven-aged approaches (single-tree selection and group-selection) and one unconventional approach, termed “structural complexity enhancement” (SCE), that promotes development of late-successional structure, including elevated levels of coarse woody debris (CWD). Treatments were applied to 2 ha units and were replicated two to four times depending on treatment. We surveyed red-backed salamanders with a natural cover search method of transects nested within vegetation plots 1 year after logging. Abundance estimates corrected for detection probability were calculated from survey data with a binomial mixture model. Abundance estimates differed between study areas and were influenced by forest structural characteristics. Model selection was conducted using Akaike Information Criteria, corrected for over-dispersed data and small sample size (QAICc). We found no difference in abundance as a response to treatment as a whole, suggesting that all of the uneven-aged silvicultural systems evaluated can maintain salamander populations after harvest. However, abundance was tied to specific structural habitat attributes associated with study plots within treatments. The most parsimonious model of habitat covariates included site, relative density of overstory trees, and density of more-decayed and less-decayed downed CWD. Abundance responded positively to the density of downed, well-decayed CWD and negatively to the density of poorly decayed CWD and to overstory relative density. CWD volume was not a strong predictor of salamander abundance. We conclude that structural complexity enhancement and the two uneven-aged approaches maintained important microhabitat characteristics for red-backed salamander populations in the short term. Over the long-term, given decay processes as a determinant of biological availability, forestry practices such as SCE that enhance CWD availability and recruitment may result in associated population responses.  相似文献   

    16.
    Temperate forests are an important carbon sink, yet there is debate regarding the net effect of forest management practices on carbon storage. Few studies have investigated the effects of different silvicultural systems on forest carbon stocks, and the relative strength of in situ forest carbon versus wood products pools remains in question. Our research describes (1) the impact of harvesting frequency and proportion of post-harvest structural retention on carbon storage in northern hardwood-conifer forests, and (2) tests the significance of including harvested wood products in carbon accounting at the stand scale. We stratified Forest Inventory and Analysis (FIA) plots to control for environmental, forest structural and compositional variables, resulting in 32 FIA plots distributed throughout the northeastern U.S. We used the USDA Forest Service's Forest Vegetation Simulator to project stand development over a 160 year period under nine different forest management scenarios. Simulated treatments represented a gradient of increasing structural retention and decreasing harvesting frequencies, including a “no harvest” scenario. The simulations incorporated carbon flux between aboveground forest biomass (dead and live pools) and harvested wood products. Mean carbon storage over the simulation period was calculated for each silvicultural scenario. We investigated tradeoffs among scenarios using a factorial treatment design and two-way ANOVA. Mean carbon sequestration was significantly (α = 0.05) greater for “no management” compared to any of the active management scenarios. Of the harvest treatments, those favoring high levels of structural retention and decreased harvesting frequency stored the greatest amounts of carbon. Classification and regression tree analysis showed that management scenario was the strongest predictor of total carbon storage, though site-specific variables were important secondary predictors. In order to isolate the effect of in situ forest carbon storage and harvested wood products, we did not include the emissions benefits associated with substituting wood fiber for other construction materials or energy sources. Modeling results from this study show that harvesting frequency and structural retention significantly affect mean carbon storage. Our results illustrate the importance of both post-harvest forest structure and harvesting frequency in carbon storage, and are valuable to land owners interested in managing forests for carbon sequestration.  相似文献   

    17.
    Light is the most common limiting factor in forest plant communities,influencing species composition,stand structure,and stand productivity in closed canopy stands.Stand vertical light structure is relatively simple under a closed canopy because most light is captured by overstory trees.However,wind disturbance events create canopy openings from local to landscape scales that increase understory light intensity and vertical light structural complexity.We studied the effects of an EF-1 tornado on horizontal and vertical(i.e.three-dimensional)light structure within a Quercus stand to determine how light structure changed with increasing disturbance severity.We used a two-tiered method to collect photosynthetic photon flux density at 4.67 m and 1.37 m above the forest floor to construct three-dimensional light structure across a canopy disturbance severity gradient to see if light intensity varied with increasing tornado damage.Results indicate that increased canopy disturbance closer to the tornado track increased light penetration and light structure heterogeneity at lower forest strata.Increased light intensity correlated with increased sapling density that was more randomly distributed across the plot and had shifted light capture higher in the stand structure.Light penetration through the overstory was most strongly correlated with decreased stem density in the two most important tree species(based on relative dominance and relative density)in the stand,Quercus alba L.(r=-0.31)and Ostrya virginiana(Mill.)K.Koch(r=-0.27,p<.01),and indicated that understory light penetration was most affected by these two species.As managers are increasingly interested in patterning silvicultural entries on natural disturbances,they must understand residual stand and light structures that occur after natural disturbance events.By providing spatial light data that quantifies light structure post-disturbance,managers can use these results to improve planning required for long-term management.The study also provides comparisons with anthropogenic disturbances to the midstory that may offer useful comparisons to natural analogs for future silvicultural consideration.  相似文献   

    18.
    基于粗糙集的林分经营决策因子分类研究   总被引:3,自引:0,他引:3  
    以湖南涟源龙山森林公园次生林林分为研究对象,以森林生态系统近自然经营为目标,以林分空间结构理论为指导,选取影响林分经营决策的多个主要因子作为条件属性,以主要经营措施择伐作为决策属性,应用粗糙集理论(Rough Set)进行属性约简,获得各因子的决策优先度和指标权重,精简和优化林分经营决策的指标体系。结果表明:应用优化的经营决策指标体系指导林分经营,有利于林分空间结构的优化和生态系统的稳定,且实际使用简单,操作性强。  相似文献   

    19.
    Timber and biodiversity are considered two antagonistic ecosystem services (ES), largely influenced by silviculture and site ecological conditions. In order to address the trade-offs between these two ES over time, we performed a retrospective study at compartment level in the Pinus sylvestris forests of the Spanish Central Mountain System. Archival data from Management Plans for eight forests with contrasting silvicultural systems (uniform shelterwood system, group shelterwood system, irregular shelterwood system,) and three different site quality classes were analysed. Timber production was assessed through stand volume, harvested timber volume and a stand volume index. Biodiversity was examined through structural diversity (Gini index, Shannon tree size diversity index, Simpson’s reciprocal index and evenness index, all applied to diameter classes) and the abundance of large living trees. For all silvicultural systems investigated, stand volume and harvested timber volume have grown since the beginning of the management plans (beginning of the twentieth century in some forests). The largest yields of timber corresponded to the best quality sites with more intensive silvicultural treatments (uniform and group shelterwood systems). The uniform shelterwood system showed lower figures for structural diversity, though not always significant. The best site qualities maintained notable structural diversity values, even under the most intensive management system. The application of the different management systems over decades has revealed a synergy between timber production and structural diversity, particularly in those systems maintaining more than one age class, although results are conditioned by forest harvesting history. The interaction between historical silvicultural treatment and site quality has been identified as an important source of information to understand forest dynamics and functioning of ES provision.  相似文献   

    20.
    《林业研究》2021,32(4)
    Forest management may have significant effects on forest connectivity and natural population sizes.Harvesting old-growth single trees may also change natural patterns of genetic variation and spatial genetic structure.This study evaluated the impacts of forest management using a silvicultural system of seed trees on the genetic diversity and spatial genetic structure of Eremanthus erythropappus(DC.)MacLeish.A complete survey of 275 trees on four plots was undertaken out to compare the genetic variation of a managed stand with an unmanaged stand.We genotyped all adult and juvenile individuals 60 months after the management and compared the genetic diversity and the spatial genetic structure parameters.Genetic diversity was considered high because of an efficient gene flow between stands.There were no genetic differences between stands and no evidence of inbreeding.Genetic clustering identified a single population(K=1),indicating no genetic differentiation between managed and unmanaged stands.Adult and juvenile individuals of the unmanaged stand were more geographically structured than individuals from the managed one.There was a tendency of coancestry among juveniles at the first class of distance of the managed stand,suggesting a drift of genetic structure possibly caused by management.Understanding early responses to management on genetic diversity and stand structure is a first step to ensuring the effectiveness of conservation practices of tree species.The sustainability of forest management of E.erythropappus on genetic diversity,and more accurately,on spatial genetic structure needs evaluation over time to promote effective conservation of the population size and genetic variability.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号