首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root distribution of the wild jack tree (Artocarpus hirsutus) was determined by selective placement of 32P at various depths and lateral distances from the tree, in Kerala, India. In eight-and-a-half-year-old trees growing on a lateritic site, absorption of 32P from a lateral distance of 75 cm and 30 cm depth was much greater than from 150 and 225 cm lateral distance and 60 and 90 cm depth. Root activity declined with increasing depth and lateral distance. Most of the physiologically active roots were concentrated within a radius of 75 cm and 30 cm depth, although the tap root might reach even deeper. Possibly, surface accumulation of feeder roots may cause considerable overlap of the tree and crop root zones in intercropping situations. However, as the tree roots seldom extend beyond 2.25 m laterally from the trunk, the effect of overlapping root zones and the associated competitive effects may not be a serious problem for intercropping during the first few years (<10 years after planting) of tree growth.  相似文献   

2.
In a field study on bamboo (Bambusa arundinacea (Retz.) Willd.) hedgerow systems of Kerala, we tested the following three hypotheses: (1) Effective root foraging space is a function of crown spread, (2) Proximity of trees depress lateral spread of roots in mixed species systems and (3) The closer the trees are located the greater will be the subsoil root activity which in turn facilitates active absorption of nutrients from deeper layers of the soil profile. Root distribution of boundary planted bamboo and root competition with associated trees in two binary mixtures, teak (Tectona grandis)-bamboo and Malabar white pine (Vateria indica)-bamboo, were evaluated using modified logarithmic spiral trenching and 32P soil injection techniques respectively. Excavation studies indicate that rooting intensity declined linearly with increasing lateral distance. Larger clumps manifested wider foraging zones. Eighty three per cent of the large clumps (>4.0 m dia.) extended roots beyond 8 m while only 33% of the small (<2.5 m dia.) clumps extended roots up to 8 m. Highest root counts were found in the 10–20 cm layer with nearly 30% of total roots. Although nearness of bamboo clumps depressed root activity of teak and Vateria in the surface layers of the soil profile, root activity in the deeper layers was stimulated. 32P recovery was higher when applied at 50-cm depth than at 25-cm depth implying the safety net role of tree roots for leached down nutrients. Inter specific root competition can be regulated by planting crops 8–9 m away from the bamboo clumps and/or by canopy reduction treatments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Initial spacing and pruning are silvicultural strategies that influence the resource acquisition capabilities of trees. A field study was conducted in the humid tropics of peninsular India to test the assumptions that: (1) high stand density of Acacia mangium induces greater root uptake capacity close to the stem and from the subsoil; and (2) crown pruning stimulates greater root uptake capacity at proximal points. Root activity pattern of two-year-old A. mangium was evaluated as a function of three population densities (1,250, 2,500 and 5,000 stems ha−1), with, and without 50% crown pruning, using 32P soil injection. The label was placed at 25, 50 and 75 cm lateral distances and at 30 and 60 cm depth. Low density stands (1,250 stems ha−1) generally showed higher 32P recovery (< 0.01), which was exaggerated by pruning. Pruned low density stands had 34% root activity at 25 cm, as against 23% for unpruned. The low density stands also showed higher root activity at 75 cm, signifying greater root spread. We suggest that high stem densities favour restricted spread of absorbing roots and may facilitate competitive downward displacement of roots. Pruning the lateral shoots at low stem densities may simulate this to some extent. The net outcome of interactions, however, will depend on trade-offs between stem density and tree management over time.  相似文献   

4.
Natural abundance of 15N was sampled in young and mature leaves, branches, stem, and coarse roots of trees in a cacao (Theobroma cacao) plantation shaded by legume tree Inga edulis and scattered non-legumes, in a cacao plantation with mixed-species shade (legume Gliricidia sepium and several non-legumes), and in a tree hedgerow bordering the plantations in Guácimo, in the humid Caribbean lowlands of Costa Rica. The deviation of the sample 15N proportion from that of atmosphere (δ15N) was similar in non-legumes Cordia alliodora, Posoqueria latifolia, Rollinia pittieri, and T. cacao. Deep-rooted Hieronyma alchorneoides had lower δ15N than other non-N2-fixers, which probably reflected uptake from a partially different soil N pool. Gliricidia sepium had low δ15N. Inga edulis had high δ15N in leaves and branches but low in stem and coarse roots. The percentage of N fixed from atmosphere out of total tree N (%Nf) in G. sepium varied 56–74%; N2 fixation was more active in July (the rainiest season) than in March (the relatively dry season). The variation of δ15N between organs in I. edulis was probably associated to 15N fractionation in leaves. Stem and coarse root δ15N was assumed to reflect the actual ratio of N2 fixation to soil N uptake; stem-based estimates of %Nf in I. edulis were 48–63%. Theobroma cacao below I. edulis had lower δ15N than T. cacao below mixed-species shade, which may indicate direct N transfer from I. edulis to T. cacao but results so far were inconclusive. Further research should address the 15N fractionation in the studied species for improving the accuracy of the N transfer estimates. The δ15N appeared to vary according to ecophysiological characteristics of the trees.  相似文献   

5.
We present results of individual-based root system measurement and analysis applied for Larix gmelinii trees growing on the continuous permafrost region of central Siberia. The data of root excavation taken from the three stands were used for the analyses; young (26 years old), mature (105 years old), and uneven-aged over-mature stand (220 years old). In this article, we highlight two topics: (1) factors affecting spatio-temporal pattern of root system development, and (2) interactions between aboveground (i.e., crown) and belowground (i.e., root) competition. For the first topic, the detailed observation of lateral roots was applied to one sample tree of the overmature stand. The tree constructed a superficial (<30 cm in depth) and rather asymmetric root system, and each lateral root expanded mainly into elevated mounds rather than depressed troughs. This indicated that spatial development of an individual root system was largely affected by microtopography (i.e., earth hummocks). For these lateral roots, elongation growth curves were reconstructed using annual-ring data, and annual growth rates and patterns were compared among them. The comparison suggested that temporal root system development is associated with differences in carbon allocation among the lateral roots. For the second topic, we examined relationships between individual crown projection area (CA) and horizontal rooting area (RA) for the sample trees of each stand. RA was almost equal to CA in the young stand, while RA was much larger (three or four times) than CA in the mature and overmature stands. Two measures of stand-level space occupation, crown area index (aboveground: CAI; sum of CAs per unit land area) and rooting area index (belowground: RAI; sum of RAs), were estimated in each stand. The estimates of RAI (1.3–1.8 m2 m−2) exceeded unity in all stands. In contrast, CAI exceeded unity (1.3 m2 m−2) only in the young stand, and was much smaller (<0.3 m2 m−2) in the two older stands. These between-stand differences in RAI–CAI relationships suggest that intertree competition for both aboveground and belowground spaces occurred in the young stand, but only belowground competition still occurred in the two older stands. Based on this finding, we hypothesized that competition below the ground may become predominant as a stand ages in L. gmelinii forests. Methodological limitations of our analysis are also discussed, especially for the analysis using the two indices of space occupation (CAI, RAI).  相似文献   

6.
The impacts of elevated atmospheric CO2 concentrations (500 μmol·mol−1 and 700 μmol·mol−1) on total soil respiration and the contribution of root respiration ofPinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration ofPinus koraiensis seedlings were measured by a Li-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil instantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 μmol·m−2·s−1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively. Foundation item: This study was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX1-SW-01) and the National Natural Science Foundation of China (30070158). Biography: LIU Ying (1976-), female, Ph. D. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

7.
The biomass and the spatial distribution of fine and small roots were studied in two Japanese black pine (Pinus thunbergii Parl.) stands growing on a sandy soil. More biomass of fine and small roots was found in the 17-year-old than in the 40-year-old stand. There were 62 g m−2 of fine roots and 56 g m−2 of small roots in the older stand, which represented mean values of 608 g for fine and 552 g for small roots per tree, respectively. In the younger stand, a total of 85 g m−2 of fine roots and 66 g m−2 of small roots were determined, representing a mean of 238 g for fine and 186 g for small roots per tree, respectively. Fine and small root biomasses decreased linearly with a soil depth of 0–50 cm in the older stand. In the younger stand, the fine and small roots developed only up to a depth of 30 cm. Horizontal distributions (with regard to distance from a tree) of both root groups were homogeneous. A positive correlation in the amount of biomass of fine and small roots per m2 relative to tree size was found. Fine and small root biomasses increased consistently from April to July in both stands. The results also indicated earlier growth activity of the fine roots than small roots at the beginning of the growing season. The seasonal increases in fine and small root biomasses were slightly higher in the younger stand than the older stand.  相似文献   

8.
An understanding of the rooting pattern of tree species used in agroforestry systems is essential for the development and management of systems involving them. Seasonal variation, depth wise and lateral distribution of biomass in roots of different diameter classes and their annual production were studied using sequential core sampling. The investigations were carried out in four tree species under tree only and tree+crop situations at ICAR Research Farm, Barapani (Meghalya), India. The tree species were mandarin (Citrus reticulata), alder (Alnus nepalensis), cherry (Prunus cerasoides) and albizia (Paraserianthes falcataria). The contribution of fine roots to the total root biomass ranged from 87% in albizia to 77% in mandarin. The bulk of the fine roots (38% to 47%) in the four tree species was concentrated in the upper 10 cm soil layer, but the coarse roots were concentrated in 10–20 cm soil depth in alder (46%) and albizia (51%) and at 0–10 cm in cherry (41%) and mandarin (48%). In all the four tree species, biomass of both fine- and coarse-roots followed a unimodal growth curve by showing a gradual increase from spring (pre-rainy) season to autumn (post rainy) season. Biomass to necromass ratio varied between 2 to 3 in the four tree species. The maximum (3.2) ratio was observed during spring and the minimum (2) in the rainy season. In alder and albizia, the fine roots were distributed only up to 1 m distance from the tree trunk but in the other two species they were found at a distance up to 1.5 m from the tree trunk. The annual fine root production varied from 3.6 Mg ha–1 to 6.2 Mg ha–1 and total production from 4.2 to 8.4 Mg ha–1 in albizia to mandarin, respectively. Cherry and mandarin had a large number of woody roots in the surface layers which pose physical hindrance during soil working and intercultural operations under agroforestry. But the high biomass of roots of these two species may be advantageous for sequential or spatially separated agroforestry systems. However, alder and albizia have the most desirable rooting characteristics for agroforestry systems.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

9.
Root biomass and distribution of five agroforestry tree species   总被引:1,自引:0,他引:1  
Knowledge of the quantitative assessment and structural development of root systems is essential to improve and optimize productivity of agroforestry systems. Studies on root biomass recovery by sieves of different mesh sizes (2.0, 1.0, 0.5 and 0.25 mm) and root distribution for four-year-old individuals of five agroforestry tree species viz.; Acacia auriculiformis A. Cunn. ex Benth, Azadirachta indica A. Juss, Bauhinia variegata L., Bombax ceiba L. and Wendlandia exserta Roxb. were conducted at the research farm of Rajendra Agricultural University, Pusa, Bihar, India. The results indicated that the 0.5 mm sieve was adequate for recovery of the majority of roots. All the tree species exhibited a large variation in root depth and horizontal root spread four years after planting. The maximum root depth was recorded in W. exserta (2.10 m) and minimum in B. variegata (1.00 m). Horizontal root spread was 2.05 m in B. ceiba and 8.05 m in A. auriculiformis. Root spread exceeded crown cover for all species. The primary roots were more horizontal than the secondary roots. The length and diameter of the main root were highest in A. indica (108.3 cm) and B. ceiba (23.2 cm), respectively. Highest length and diameter of lateral roots were recorded in B. variegata (201.6 cm) and A. indica (1.8 cm), respectively. Total root biomass among different species accounted for 18.2–37.9% of the total tree biomass. Results of this study infer that although all the species have potential to conserve moisture and improve fertility status of the soil, A. auriculiformis is the most effective for promoting soil fertility. The deep rooted W. exserta and A. auriculiformis will be preferred for cultivation under agroforestry systems and could reduce competition for nutrients and moisture with crops by pumping from deeper layers of soil.  相似文献   

10.
The magnitude of root competition 17 year-old coconut palms suffer from three year-old inter-planted multipurpose trees, Vateria indica L., Ailanthus triphysa (Dennst.) Alston. or Grevillea robusta A. Cunn. and kacholam (Kaempferia galanga L.), a herbaceous medicinal plant, was evaluated based on the extent of absorption of applied 32P by the palms in sole and mixed crop situations. The multipurpose tree (MPT) species were grown under two planting geometries (single row and double row). The hypothesis that, when grown together, widespread root proliferation of coconut and multipurpose trees occurs in the well-fertilised kacholam beds was tested by root excavation. Interplanted MPTs substantially altered absorption of 32P by coconut. Both Ailanthus and Vateria exerted a modest depressing effect, while Grevillea enhanced 32P uptake by coconut. Single rows of MPTs also favoured 32P recovery by coconut, presumably because of the increased root densities in the subsoil. Ailanthus, Vateria and Grevillea absorbed substantial 32P. Overall, high 32P absorption in the coconut-Grevillea plots indicates complementary root-level interactions between these species. 32P absorption by MPTs was generally higher closer to the trees owing to the greater root concentration of the MPTs, which in turn suggests possible root interference between MPTs and coconut. Hence selection of tree species with low root competitiveness and/or trees with complementary root interaction is of strategic importance in agroforestry. Kacholam showed substantial 32P content in its foliage. This 32P appears to have been translocated by coconut into the kacholam beds where new coconut roots were abundant. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Fine-root dynamics (diameter < 2.0 mm) were studied on-farm in associations of Coffea arabica with Eucalyptus deglupta or Terminalia ivorensis and in a pseudo-chronosequence of C. arabica-E. deglupta associations (two, three, four and five years old). Coffee plants were submitted to two fertilisation types. Cores were taken in the 0–40 cm soil profile two years after out-planting and subsequently in the following year in depth layers 0–10 and 10–20 cm, during and at the end of the rainy season, and during the dry season. Fine root density of coffee and timber shade trees was greater in the coffee fertilisation strip as compared to unfertilised areas close to the plants or in the inter-rows. Coffee fine roots were more evenly distributed in the topsoil (0–20 cm) whereas tree fine roots were mostly found in the first 10 cm. Although the two tree species had approximately the same fine root length density, lower coffee / tree fine root length density ratios in T. ivorensis suggest that this shade tree is potentially a stronger competitor with coffee than E. deglupta. Coffee and tree fine root length density for 0–10 cm measured during the rainy season increased progressively from two to five-year-aged associations and coffee fine root length density increased relatively more than E. deglupta fine root length density in the four and five-year-aged plantations suggesting that contrary to expectations, coffee fine roots were displacing tree fine roots.  相似文献   

12.
The sustainability of plantation forests is closely dependent on soil nitrogen availability in short-rotation forests established on low-fertility soils. Planting an understorey of nitrogen-fixing trees might be an attractive option for maintaining the N fertility of soils. The development of mono-specific stands of Acacia mangium (100A:0E) and Eucalyptus grandis (0A:100E) was compared with mixed-species plantations, where A. mangium was planted in a mixture at a density of 50% of that of E. grandis (50A:100E). N2 fixation by A. mangium was quantified in 100A:0E and 50A:100E at age 18 and 30 months by the 15N natural abundance method and in 50A:100E at age 30 months by the 15N dilution method. The consistency of results obtained by isotopic methods was checked against observations of nodulation, Specific Acetylene Reduction Activity (SARA), as well as the dynamics of N accumulation within both species. The different tree components (leaves, branches, stems, stumps, coarse roots, medium-sized roots and fine roots) were sampled on 5–10 trees per species for each age. Litter fall was assessed up to 30 months after planting and used to estimate fine root mortality. Higher N concentrations in A. mangium tree components than in E. grandis might be a result of N2 fixation. However, no evidence of N transfer from A. mangium to E. grandis was found. SARA values were not significantly different in 100A:0E and 50A:100E but the biomass of nodules was 20–30 times higher in 100A:0E than in 50A:100E. At age 18 months, higher δ15N values found in A. mangium tree components than in E. grandis components prevented reliable estimations of the percentage of N derived from atmospheric fixation (%Ndfa). At age 30 months, %Ndfa estimated by natural abundance and by 15N dilution amounted to 10–20 and 60%, respectively. The amount of N derived from N2 fixation in the standing biomass was estimated at 62 kg N ha−1 in 100A:0E and 3 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 16 kg N ha−1 in 50A:100E by the 15N dilution method. The total amount of atmospheric N2 fixed since planting (including fine root mortality and litter fall) was estimated at 66 kg N ha−1 in 100A:0E and 7 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 31 kg N ha−1 in 50A:100E by the 15N dilution method. The most reliable estimation of N2 fixation was likely to be achieved using the 15N dilution method and sampling the whole plant.  相似文献   

13.
Understanding the proximate causes of post-fire conifer mortality due to smoldering duff fires is essential to the restoration and management of coniferous forests throughout North America. To better understand duff fire-caused mortality, we investigated tree stress and radial growth following experimental fires in a long-unburned forest on deep sands in northern Florida, USA. We burned basal fuels surrounding 80 mature Pinus palustris Mill. in a randomized experiment comparing the effects of basal burning treatments on stem vascular meristems; surficial roots; root and stem combinations; and a non-smoldering control. We examined the effects of duration of lethal temperatures (>60 °C) on subsequent pine radial growth and root non-structural carbohydrates (starch and sugar). Duff and mineral soil temperatures in the experimental fires consistently exceeded 60 °C for over an hour following ignition, with lethal temperatures of shorter duration recorded 20 cm below the mineral soil surface. Duff heating was best explained by day-of-burn Oe horizon moisture (P = 0.01), although little variation was explained (R2 = 0.24). Post-fire changes in latewood radial increment in the year following fires was related to duration of temperatures >60 °C 10 cm deep in the mineral soil (P = 0.07), but explained little variability in post-fire growth (R2 = 0.17). In contrast, changes in non-structural carbohydrate content in coarse roots (2–5 mm diameter) 120 days following burning were more strongly correlated with the duration of lethal heating 5 cm below the mineral soil surface (P = 0.02; R2 = 0.53). Results from this study implicate the role of mineral soil heating in the post-fire decline of mature longleaf pine following restoration fires in sandy soils.  相似文献   

14.
The soil-plant system is a very important subsystem of the soil-plant-atmosphere continuum (SPAC). The water uptake by plant roots is an important subject in the research on water transport in this SPAC and is also the most active study direction in the fields of ecology, hydrology and environment. The study of the spatial distribution pattern of fine roots of plants is the basis of constructing a water absorption model of plant roots. Our study on the spatial distribution pattern of fine roots of Populus euphratica in a desert riparian forest shows that the density distribution of its root lengths can be expressed horizontally as a parabola. The fine roots are concentrated within the range of 0–350 cm from the tree trunk and their amount accounts for 91.9% of the total root mass within the space of 0–500 cm. In the vertical direction, the density distribution of the fine root lengths shows a negative exponential relation with soil depth. The fine roots are concentrated in the 0–80 cm soil layer, accounting for 96.8% of the total root mass in the 0–140 cm soil layer. __________ Translated from Chinese Journal of Ecology, 2007, 26(1): 1–4 [译自: 生态学杂志]  相似文献   

15.
The above-ground biomass and production, below-ground biomass, nutrient (NPK) accumulation, fine roots and foliar characteristics of a 8-year-old silver birch (Betula pendula) natural stand, growing on abandoned agricultural land in Estonia, were investigated. Total above-ground biomass and current annual production after eight growing seasons was 31.2 and 11.9 t DM ha−1, respectively. The production of stems accounted for 62.4% and below-ground biomass accounted for 19.2% of the total biomass of the stand. Carbon sequestration in tree biomass reaches roughly 17.5 t C ha−1 during the first 8 years. The biomass of the fine roots (d < 2 mm) was 1.7 ± 0.2 t DM ha−1 and 76.2% of it was located in the 20 cm topsoil layer. The leaf area index (LAI) of the birch stand was estimated as 3.7 m2 m−2 and specific leaf area (SLA) 15.0 ± 0.1 m2 kg−1. The impact of the crown layer on SLA was significant as the leaves are markedly thicker in the upper part of the crown compared with the lower part. The short-root specific area (SRA) in the 30 cm topsoil was 182.9 ± 9.5 m2 kg−1, specific root length (SRL), root tissue density (RTD) and the number of short-root tips (>95% ectomycorrhizal) per dry mass unit of short roots were 145.3 ± 8.6 m g−1, 58.6 ± 3.0 kg m−3 and 103.7 ± 5.5 tips mg−1, respectively. In August the amount of nitrogen, phosphorus and potassium, accumulated in above ground biomass, was 192.6, 25.0 and 56.6 kg ha−1, respectively. The annual flux of N and P retranslocation from the leaves to the other tree parts was 57.2 and 3.7 kg ha−1 yr−1 (55 and 27%), respectively, of which 29.1 kg ha−1 N and 2.8 kg ha−1 P were accumulated in the above-ground part of the stand.  相似文献   

16.
A method of classifying woody perennials based on the effective foraging space (EFS) is described. EFS of a plant is defined as the soil space which accounts for 80% or more of root activity. The lateral and vertical dimensions of EFS of a plant can be determined from the study of root activity pattern of the plant employing 32P-soil injection technique. Based on the dimensions of the EFS, the perennial plant species may be grouped into 16 classes ranging from plants with very compact-very shallow active root system (less than 100 cm lateral extension and less than 30 cm deep) to very extensive — very deep root system (more than 300 cm lateral spread and more than 90 cm deep). The soil and genetic factors which can influence root activity pattern of a plant can also alter its EFS. Nevertheless, given the soil type and the variety, the concept of EFS can be very fruitfully applied in several situations such as selection of plant species for a given land use system, spacing of the component species in agroforestry and other mixed production systems, deciding the planting geometry, developing the most efficient method of fertilizer application, choosing the most appropriate crop combinations for stratified exploitation of below-ground resources, etc. Although this classification system is primarily intended for woody perennials, it can be extended to other plant species as well.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
The bark ofPteroceltis tatarinowii is a raw material for manufacturing Xuan Paper. The effects of Ca2+ concentrations on the accumulation of mineral elements in the bark, leaf and root ofPteroceltis tatarinowii were studied under controlled conditions. The types of Hoagland nutrient solution with three Ca2+ concentrations levels (200, 400 and 600 μg·g−1) and a control (without Ca2+ were designed to culturePteroceltis tatarinowii. After 6 months, contents of seven mineral elements including Ca, K, Mg, Mn, Zn, Cu and Na in the root, leaf and bark were analyzed. The results indicated that Ca accumulations content in the root, leaf and bark had positively relation with Ca2+ concentrations (200, 400, 600 μg·g−1), and the order of the Ca content in the three components was root>leaf>bark. Ca content in the root treated with 600 μg·g−1 Ca2+ concentrations was 5.5 times as high as that of the control, and about 1.4 times as high as that of the root treated in 200 and 400 μg/g Ca2+ concentrations respectively. On the contrary, K and Mg contents in the root, leaf and bark were negatively related to Ca2+ concentrations, especially in the bark, and their accumulation trend followed the order of leaf>root>bark. K content in the bark treated with 600 μg·g−1 Ca2+ concentrations was 39.3% of that of the control, and was 79.0% and 91.8% of that of the bark treated with 200μg·g−1 and 400μg·g−1 Ca2+ concentrations respectively; Mg content in the bark treated with 600μg·g−1 Ca2+ concentrations was 23.4% of that of the control, and was 27.1% and 35.4% of that of the bark treated with 200 and 400 μg·g−1 Ca2+ concentrations respectively. Compared with the control, the general tendency of Mn, Zn and Cu content decreased with increasing of Ca2+ concentrations and their contents were in the order: root>leaf>bark. Based on the results of this study, the experiment has been useful for providing academic bases in improving the bark quality ofPteroceltis tatarinowii on non-limestone soil. Foundation item: This paper is supported by National Natural Science Foundation of China (No. 39970608). Biography: Fang Shengzun (1963), male, Professor in Stiiviculture, Nanjing Forestry University, Nanjing 210027, P.R. China. Responsible editor: Zhu Hong  相似文献   

18.
Accurate quantitative assessment of roots is key to understanding the belowground plant productivity as well as providing an insight of the plant-soil interactions. In this study, root recoveries by sieves of different mesh sizes (2.0, 1.0, 0.5 and 0.25 mm) were measured for five tropical tree and shrub species grown in monoculture stands: crotalaria (Crotalaria grahamiana Wight and Arn.), pigeonpea [Cajanus cajan (L.) Millsp.], sesbania [Sesbania sesban (L.) Merr.], tephrosia (Tephrosia vogelii Hook F.), siratro [Macroptilium atropurpureum (DC.) Urb.] and tithonia [Tithonia diversifolia (Hemsl.) Gray]. Root samples were take from 0-15 cm soil depth. Recovery of coarser roots (>1.0 mm) ranged from 70 to 93% and 90 to 98% of the cumulative root length and biomass respectively. The proportion of root length of the finer roots (<1.0 mm) was greater for pigeonpea (30%), tithonia (22%) and siratro (18%) compared with other species, but contributed negligibly to the cumulative total root biomass for all species. The use of 0.5 mm sieve improved the recovery of root length for most species but had little effect on root biomass. The 0.25 mm sieve was most effective in capturing finer roots (<0.5 mm) of pigeonpea which represented 16% of cumulative root length and 4% of root biomass recorded for this species. Recovery of roots of different diameter classes depended on species, suggesting that for an improved estimation of root parameters especially when sieves of large mesh sizes (>0.25 mm) are used, a correction factor could be useful for root length measurements but not root biomass measurements for a particular species in each site and for a specific study. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Besides aboveground interactions, pruning of trees may also modify their rooting pattern for which a better understanding is needed for the optimisation of agroforestry systems. Thus, variation in fine root (d 2 mm) distribution of pruned trees and crops were assessed during three cropping seasons by sampling soil layers at 10 cm intervals up to 50 cm and at four distances from tree trunk. Three crown pruning treatments (totally-pruning, half-pruning and no-pruning) were applied to karité (Vitellaria paradoxa) and néré (Parkia biglobosa). In 1999, 59% (0.477 cm cm–3) and 69% (0.447 cm cm–3) of fine roots for karité and néré respectively occurred in the upper 20 cm with a significant decrease in root length density with soil depth. However, in 2000, totally-pruned trees of néré and karité showed 32% (0.051 cm cm–3) and 34% (0.078 cm cm–3) of their density in the upper 20 cm whereas root distribution in 2001 was similar to that of 1999. Thus, pruning to reduce belowground competition for the benefit of associated crops can be recommended in the light of the temporary reduction of root density in crop rooting zone and consequently the increase in crop production.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
We present a field study on the drought effects on total soil respiration (SRt) and its components, i.e., “autotrophic” (SRa: by roots/mycorrhizosphere) and “heterotrophic” respiration (SRh: by microorganisms and soil fauna in bulk soil), in a mature European beech/Norway spruce forest. SRa and SRh were distinguished underneath groups of beech and spruce trees using the root exclusion method. Seasonal courses of SRa and SRh were studied from 2002 to 2004, with the summer of 2003 being extraordinarily warm and dry in Central Europe. We (1) analyzed the soil temperature (T s) and moisture sensitivity of SRa and SRh underneath both tree species, and (2) examined whether drought caused differential decline of SRa between spruce and beech. Throughout the study period, SRa of beech accounted for 45–55% of SRt, independent of the soil water regime; in contrast, SRa was significantly reduced during drought in spruce, and amounted then to only 25% of SRt. In parallel, fine-root production was decreased during 2003 by a factor of six in spruce (from 750 to 130 mg l−1 a−1), but remained at levels similar to those in 2002 in beech (about 470 mg l−1 a−1). This species-specific root response to drought was related to a stronger decline of SRa in spruce (by about 70%) compared to beech (by about 50%). The sensitivity of SRa and SRh to changing T s and available soil water was stronger in SRa than SRh in spruce, but not so in beech. It is concluded that SRa determines the effect of prolonged drought on the C efflux from soil to a larger extent in spruce than beech, having potential implications for respective forest types. This article belongs to the special issue "Growth and defence of Norway spruce and European beech in pure and mixed stands."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号