首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beating the standard quantum limit with four-entangled photons   总被引:1,自引:0,他引:1  
Precision measurements are important across all fields of science. In particular, optical phase measurements can be used to measure distance, position, displacement, acceleration, and optical path length. Quantum entanglement enables higher precision than would otherwise be possible. We demonstrated an optical phase measurement with an entangled four-photon interference visibility greater than the threshold to beat the standard quantum limit-the limit attainable without entanglement. These results open the way for new high-precision measurement applications.  相似文献   

2.
Two beams of light can be quantum mechanically entangled through correlations of their phase and intensity fluctuations. For a pair of spatially extended image-carrying light fields, the concept of entanglement can be applied not only to the entire images but also to their smaller details. We used a spatially multimode amplifier based on four-wave mixing in a hot vapor to produce twin images that exhibit localized entanglement. The images can be bright fields that display position-dependent quantum noise reduction in their intensity difference or vacuum twin beams that are strongly entangled when projected onto a large range of different spatial modes. The high degree of spatial entanglement demonstrates that the system is an ideal source for parallel continuous-variable quantum information protocols.  相似文献   

3.
Real-time feedback performed during a quantum nondemolition measurement of atomic spin-angular momentum allowed us to influence the quantum statistics of the measurement outcome. We showed that it is possible to harness measurement backaction as a form of actuation in quantum control, and thus we describe a valuable tool for quantum information science. Our feedback-mediated procedure generates spin-squeezing, for which the reduction in quantum uncertainty and resulting atomic entanglement are not conditioned on the measurement outcome.  相似文献   

4.
Long-distance free-space distribution of quantum entanglement   总被引:1,自引:0,他引:1  
We demonstrate the distribution of quantum entanglement via optical free-space links to independent receivers separated by 600 m, with no line of sight between each other. A Bell inequality between those receivers is violated by more than four standard deviations, confirming the quality of the entanglement. This outdoor experiment represents a step toward satellite-based distributed quantum entanglement.  相似文献   

5.
Optically induced entanglement is identified by the spectrum of the phase-sensitive homodyne-detected coherent nonlinear optical response in a single gallium arsenide quantum dot. The electron-hole entanglement involves two magneto-excitonic states differing in transition energy and polarization. The strong coupling needed for entanglement is provided through the Coulomb interaction involving the electrons and holes. The result presents a first step toward the optical realization of quantum logic operations using two or more quantum dots.  相似文献   

6.
Multidimensional quantum walks can exhibit highly nontrivial topological structure, providing a powerful tool for simulating quantum information and transport systems. We present a flexible implementation of a two-dimensional (2D) optical quantum walk on a lattice, demonstrating a scalable quantum walk on a nontrivial graph structure. We realized a coherent quantum walk over 12 steps and 169 positions by using an optical fiber network. With our broad spectrum of quantum coins, we were able to simulate the creation of entanglement in bipartite systems with conditioned interactions. Introducing dynamic control allowed for the investigation of effects such as strong nonlinearities or two-particle scattering. Our results illustrate the potential of quantum walks as a route for simulating and understanding complex quantum systems.  相似文献   

7.
8.
Quantum mechanics, through the Heisenberg uncertainty principle, imposes limits on the precision of measurement. Conventional measurement techniques typically fail to reach these limits. Conventional bounds to the precision of measurements such as the shot noise limit or the standard quantum limit are not as fundamental as the Heisenberg limits and can be beaten using quantum strategies that employ "quantum tricks" such as squeezing and entanglement.  相似文献   

9.
Interferometers with atomic ensembles are an integral part of modern precision metrology. However, these interferometers are fundamentally restricted by the shot noise limit, which can only be overcome by creating quantum entanglement among the atoms. We used spin dynamics in Bose-Einstein condensates to create large ensembles of up to 10(4) pair-correlated atoms with an interferometric sensitivity -1.61(-1.1)(+0.98) decibels beyond the shot noise limit. Our proof-of-principle results point the way toward a new generation of atom interferometers.  相似文献   

10.
Toward Heisenberg-limited spectroscopy with multiparticle entangled states   总被引:1,自引:0,他引:1  
The precision in spectroscopy of any quantum system is fundamentally limited by the Heisenberg uncertainty relation for energy and time. For N systems, this limit requires that they be in a quantum-mechanically entangled state. We describe a scalable method of spectroscopy that can potentially take full advantage of entanglement to reach the Heisenberg limit and has the practical advantage that the spectroscopic information is transferred to states with optimal protection against readout noise. We demonstrate our method experimentally with three beryllium ions. The spectroscopic sensitivity attained is 1.45(2) times as high as that of a perfect experiment with three non-entangled particles.  相似文献   

11.
The measurement sensitivity of the pointing direction of a laser beam is ultimately limited by the quantum nature of light. To reduce this limit, we have experimentally produced a quantum laser pointer, a beam of light whose direction is measured with a precision greater than that possible for a usual laser beam. The laser pointer is generated by combining three different beams in three orthogonal transverse modes, two of them in a squeezed-vacuum state and one in an intense coherent field. The result provides a demonstration of multichannel spatial squeezing, along with its application to the improvement of beam positioning sensitivity and, more generally, to imaging.  相似文献   

12.
The exceptional spin coherence of nitrogen-vacancy centers in diamond motivates their function in emerging quantum technologies. Traditionally, the spin state of individual centers is measured optically and destructively. We demonstrate dispersive, single-spin coupling to light for both nondestructive spin measurement, through the Faraday effect, and coherent spin manipulation, through the optical Stark effect. These interactions can enable the coherent exchange of quantum information between single nitrogen-vacancy spins and light, facilitating coherent measurement, control, and entanglement that is scalable over large distances.  相似文献   

13.
Unconditional quantum teleportation   总被引:5,自引:0,他引:5  
Quantum teleportation of optical coherent states was demonstrated experimentally using squeezed-state entanglement. The quantum nature of the achieved teleportation was verified by the experimentally determined fidelity Fexp = 0.58 +/- 0.02, which describes the match between input and output states. A fidelity greater than 0.5 is not possible for coherent states without the use of entanglement. This is the first realization of unconditional quantum teleportation where every state entering the device is actually teleported.  相似文献   

14.
We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.  相似文献   

15.
We introduce a spectroscopic method that determines nonlinear quantum mechanical response functions beyond the optical diffraction limit and allows direct imaging of nanoscale coherence. In established coherent two-dimensional (2D) spectroscopy, four-wave-mixing responses are measured using three ingoing waves and one outgoing wave; thus, the method is diffraction-limited in spatial resolution. In coherent 2D nanoscopy, we use four ingoing waves and detect the final state via photoemission electron microscopy, which has 50-nanometer spatial resolution. We recorded local nanospectra from a corrugated silver surface and observed subwavelength 2D line shape variations. Plasmonic phase coherence of localized excitations persisted for about 100 femtoseconds and exhibited coherent beats. The observations are best explained by a model in which coupled oscillators lead to Fano-like resonances in the hybridized dark- and bright-mode response.  相似文献   

16.
Electron beams with helical wavefronts carrying orbital angular momentum are expected to provide new capabilities for electron microscopy and other applications. We used nanofabricated diffraction holograms in an electron microscope to produce multiple electron vortex beams with well-defined topological charge. Beams carrying quantized amounts of orbital angular momentum (up to 100?) per electron were observed. We describe how the electrons can exhibit such orbital motion in free space in the absence of any confining potential or external field, and discuss how these beams can be applied to improved electron microscopy of magnetic and biological specimens.  相似文献   

17.
We demonstrated entanglement distribution between two remote quantum nodes located 3 meters apart. This distribution involves the asynchronous preparation of two pairs of atomic memories and the coherent mapping of stored atomic states into light fields in an effective state of near-maximum polarization entanglement. Entanglement is verified by way of the measured violation of a Bell inequality, and it can be used for communication protocols such as quantum cryptography. The demonstrated quantum nodes and channels can be used as segments of a quantum repeater, providing an essential tool for robust long-distance quantum communication.  相似文献   

18.
Quantum entanglement in the motion of macroscopic solid bodies has implications both for quantum technologies and foundational studies of the boundary between the quantum and classical worlds. Entanglement is usually fragile in room-temperature solids, owing to strong interactions both internally and with the noisy environment. We generated motional entanglement between vibrational states of two spatially separated, millimeter-sized diamonds at room temperature. By measuring strong nonclassical correlations between Raman-scattered photons, we showed that the quantum state of the diamonds has positive concurrence with 98% probability. Our results show that entanglement can persist in the classical context of moving macroscopic solids in ambient conditions.  相似文献   

19.
Entanglement is the essential feature of quantum mechanics. Notably, observers of two or more entangled particles will find correlations in their measurement results that cannot be explained by classical statistics. To make it a useful resource, particularly for scalable long-distance quantum communication, the heralded generation of entanglement between distant massive quantum systems is necessary. We report on the creation and analysis of heralded entanglement between spins of two single rubidium-87 atoms trapped independently 20 meters apart. Our results illustrate the viability of an integral resource for quantum information science, as well as for fundamental tests of quantum mechanics.  相似文献   

20.
Measurement-induced relative-position localization through entanglement   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号