首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The content of 13 A‐ and B‐type trichothecenes, zearalenone, as well as α‐ and β‐zearalenol was determined in products processed from raw maize by dry milling in an industrial plant. Two batches of samples were investigated derived from different lots of raw maize. Each of the toxins investigated was found in at least one of the samples analyzed, with up to 13 toxins co‐occurring within one sample. For both batches, toxins were either not detected or their content was low in raw and tempered maize, grits, and two types of flour. Markedly higher concentrations were found in screenings, bran, germ, or germ meal. The results suggest a similar redistribution during dry milling of maize for the whole spectrum of Fusarium toxins analyzed. In germ oil, only 15‐acetyldeoxynivalenol, zearalenone, HT‐2 toxin, and T‐2 toxin were detected due to the higher lipophilic properties of these substances compared with the other toxins found in the basing germ. This is the first time that the redistribution of a spectrum of 16 Fusarium toxins has been measured in a single dry‐milling study.  相似文献   

2.
Two varieties of hulled rice artificially contaminated with aflatoxins at five different levels were processed by dehulling and polishing methods. Contamination levels ranged from 356 to 818 microg/kg and from 244 to 645 microg/kg in medium and long grain rice, respectively. After physical processing, four different milled fractions were obtained (hull, bran, polished broken grains, and polished whole kernels). The fractions were analyzed for total aflatoxins (B1, B2, G1, and G2) by enzyme-linked immunosorbent assay (ELISA). Aflatoxins were removed in fractions intended for human consumption (polished broken grains and polished whole kernels) at rates up to 97%. They were found throughout all fractions, but higher contamination levels were detected in hull and bran fractions than in unprocessed kernels and polished fractions. Regardless of the rice variety, the aflatoxin distribution pattern depended on the initial contamination level and type of milled fraction but not on the duration of polishing.  相似文献   

3.
Corn samples and different commercial dry‐milled fractions collected from an industrial mill in Argentina were surveyed for fungal contamination. The percentage of Fusarium isolates in whole corn kernels among all fungi recovered was 2.0–97.0%; in corn grits, it was 2.6–50.0%. Maximum levels in the other fractions were 5.2 × 105 colony forming units per gram (CFU/g) in germ and bran, 5.0 × 103 CFU/g in C flour, and 2.7 × 103 CFU/g in corn meal. The high initial contamination from whole corn is reflected in germ and bran, which is destined for animal consumption, but not in corn meal. F. verticillioides and Aspergillus flavus were the most frequent species in the whole corn kernel, but F. verticillioides was prevalent in all the other industrial fractions. Other potentially toxigenic fungi that were isolated included Aspergillus parasiticus, Alternaria alternata, Penicillium citrinum, and P. funiculosum. In this first report about mold contamination in corn industrial dry‐milled fractions in Argentina, the high fungal contamination level observed in the stored corn could indicate the necessity to improve the hybrid quality and the storage conditions to diminish the risk of mycotoxin occurrence.  相似文献   

4.
Aflatoxins in domestic and imported foods and feeds   总被引:4,自引:0,他引:4  
Aflatoxins, metabolic products of the molds Aspergillus flavus and A. parasiticus, may occur in foods and feeds. These toxins cannot be entirely avoided or eliminated from foods or feeds by current agronomic and manufacturing processes and are considered unavoidable contaminants. To limit aflatoxin exposure, the U.S. Food and Drug Administration (FDA) has set action levels for these toxins in foods and feeds involved in interstate commerce. FDA continually monitors food and feed industries through compliance programs. This report summarizes data generated from compliance programs on aflatoxins for the fiscal year 1986. Commodities sampled included peanuts and peanut products, corn and corn products, tree nuts, cottonseed, milk, spices, manufactured products, and miscellaneous foods and feeds. Correlations were highest between aflatoxin contamination and geographical areas for corn/corn products and cottonseed/cottonseed meal. Higher incidences of aflatoxin contamination in corn and corn products designated for human consumption were observed in samples collected in the southeastern states (32 and 28%, respectively). A higher incidence of contamination was observed in corn designated for animal feed from Arkansas-Texas (74%) than from the southeastern states (47%). Only 3% of feed corn from corn belt states contained detectable aflatoxins. All aflatoxin-contaminated cottonseed was collected in the Arizona-California area; 80% of cottonseed meal analyzed from this area also contained detectable levels of aflatoxins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
《Cereal Chemistry》2017,94(3):471-479
Commercial success of whole wheat products has warranted development of new analytical approaches for differentiating whole grain products from conventional food products made from refined grains. Here, we have analyzed three different wheat fractions (namely, bran, germ, and refined flour) of two wheat varieties. In addition, a whole wheat sample containing all three fractions was also included in the study to investigate the application of two spectral fingerprinting methods—proton nuclear magnetic resonance (1H‐NMR) and near‐infrared (NIR) spectroscopy—for differentiating the three fractions and the whole wheat. Results show that both these methods provide unique spectral fingerprints for the bran, germ, refined, and whole wheat flours. In addition, we were able to distinguish whole grain composed of different ratios of the germ, bran, and refined grain, exemplifying the potential applicability of both fingerprinting methods (NIR and NMR) for the differentiation of whole and refined wheat samples. Principal component analysis on 1H‐NMR data with four different bin sizes (0.02, 0.04, 0.08, and 0.16 ppm) did not have significant influence on differentiation of the four fractions.  相似文献   

6.
Millstream flours, bran, pollard, and germ fractions were prepared from two Australian and two New Zealand wheat cultivars using a pilot‐scale roller mill. The distribution of six redox enzymes in milling fractions and the relationship of the enzymes to baking parameters were investigated. Lipoxygenase (LOX), dehydroascorbate reductase (DAR), and protein disulfide isomerase (PDI) tended to be higher in the tail‐end fractions of break and reduction flour streams, but the highest levels were in the bran, pollard, and germ fractions. These enzymes had moderate to strong correlations with ash content of flour. These results indicated that a considerable amount of these enzymes in the tail‐end flour streams were likely to be derived from contamination with bran, aleurone, or germ components of grain. Peroxidase (POX) tended to be higher in the break flours, but polyphenol oxidase (PPO) and ascorbate oxidase (AOX) tended to be evenly distributed in the millstream flours. These three enzymes generally had poor correlations with ash and baking parameters. LOX and DAR had a negative correlation with the baking quality of bread made in the absence of ascorbic acid (AA) but a poor correlation with improvement of bread quality made with AA. The negative correlation probably reflects the high content of ash (hence trichomes), glutathione, and protein thiols in those fractions that have high LOX and DAR, and these high‐reducing‐power components and trichomes in flour may be the actual cause of poor quality bread. PDI generally had a poor correlation with bread quality in the absence of AA but a significant positive correlation with improvement in the quality of bread made with AA. It thus seems that the endogenous levels of these six enzymes were not a limiting factor in the breadmaking process, except for PDI, the levels of which may have positively influenced breadmaking in the presence of AA.  相似文献   

7.
To gain insight into the distribution of arabinoxylans (AX), endoxylanases, and endoxylanase inhibitors in industrial wheat roller milling, all streams, that is, 54 flour fractions, 4 bran fractions, and the germ, were analyzed for ash, starch, and protein contents, alpha-amylase activity levels, total (TOT-AX) and water-extractable arabinoxylan (WE-AX) contents, endoxylanase activity levels, and endoxylanase inhibitor (TAXI and XIP) contents. In general, bran fractions were significantly richer in TOT-AX and WE-AX contents, endoxylanase activity levels, and endoxylanase inhibitor contents than germ and, even more so, than flour fractions. In the 54 different flour fractions, minimal and maximal values for TOT-AX and WE-AX contents differed by ca. 2-fold, whereas they differed by ca. 15-fold for endoxylanase activity levels. The latter were positively correlated with ash and negatively correlated with starch content, suggesting that the endoxylanase activity in flour is strongly influenced by the level of bran contamination. TAXI contents in the flour fractions varied ca. 4-fold and were strongly correlated with bran-related parameters such as ash content and enzyme activity levels, whereas XIP contents varied ca. 3-fold and were not correlated with any of the parameters measured in this study. The results can be valuable in blending and optimizing wheat flour fractions to obtain flours with specific technological and nutritional benefits.  相似文献   

8.
Wheat contaminated with teliospores of Tilletia controversa Kühn (TCK) was mixed with uncontaminated wheat and processed through the Kansas State University pilot mill. Two 50-bu lots of the contaminated mixture were cleaned, tempered, and milled. Approximately 500 samples of wheat, cleanings, and mill fractions were collected and examined for the presence of intact and broken TCK teliospores. Whole wheat samples (50 g) were washed, sieved through a 60-μm nylon sieve, and pelleted by centrifugation. Contents of the pellet were examined microscopically for the presence of TCK spores. The procedure was modified as needed to accommodate cleanings and mill fractions. Levels of spore contamination in whole wheat samples decreased at each step during the handling process, and large numbers of spores were found in materials that were sieved or aspirated from the grain. Very few spores were found in bran, germ, and shorts; none were detected in red dog or straight-grade flour. The results showed that a high percentage of spores can be removed from wheat by mechanical cleaning but that it is not feasible to remove all of them.  相似文献   

9.
Fourteen millstream flours, a straight‐run flour, bran, pollard, and germ were prepared separately from two Australian and two New Zealand wheat cultivars using a 650 kg/hr pilot roller mill. Glutathione (GSH) and oxidized glutathione (GSSG) were measured in all samples. The Australian cultivars had higher levels of GSH and GSSG than the New Zealand cultivars, and in all cultivars the levels in pollard and germ were considerably higher than in flour samples. Generally, the early break flours and early reduction flours had lower GSSH/GSSG levels than the tail‐end break and reduction flours. There was a strong correlation between GSH/GSSG and ash content in millstream flours, which indicated that much of the GSH/GSSG in the flour was likely to have derived from contamination by bran, aleurone (pollard), and germ. There were also moderate to strong correlations between GSH/GSSG and the cysteine content of all proteins in flour. GSH/GSSG correlated strongly with the albumin and globulin content of flour but not with gliadin and glutenin. The volume and crumb texture properties of bread made with millstream flours in the absence of ascorbic acid (AA) were negatively correlated with GSH/GSSG. The change in bread volume and texture properties when AA was added to dough (baking improver effect of AA), however, were poorly correlated with GSH/GSSG.  相似文献   

10.
The health-promoting effects of whole-grain consumption have been attributed in part to their unique phytochemical contents and profiles that complement those found in fruits and vegetables. Wheat is an important component of the human diet; however, little is known about the phytochemical profiles and total antioxidant activities of milled fractions of different wheat varieties. The objectives of this study were to investigate the distribution of phytochemicals (total phenolics, flavonoids, ferulic acid, and carotenoids) and to determine hydrophilic and lipophilic antioxidant activity in milled fractions (endosperm and bran/germ) of three different wheat varieties, two of which were grown in two environments. Grain samples of each of the wheat varieties were milled into endosperm and bran/germ fractions. Each fraction was extracted and analyzed for total phenolics, ferulic acid, flavonoids, carotenoid contents, and hydrophilic and lipophilic antioxidant activities. Total phenolic content of bran/germ fractions (2867-3120 micromol of gallic acid equiv/100 g) was 15-18-fold higher (p < 0.01) than that of respective endosperm fractions. Ferulic acid content ranged from 1005 to 1130 micromol/100 g in bran/germ fractions and from 15 to 21 micromol/100 g in the endosperm fractions. The bran/germ fraction flavonoid content was 740-940 micromol of catechin equiv/100 g. On average, bran/germ fractions of wheat had 4-fold more lutein, 12-fold more zeaxanthin, and 2-fold more beta-cryptoxanthin than the endosperm fractions. Hydrophilic antioxidant activity of bran/germ samples (7.1-16.4 micromol of vitamin C equiv/g) was 13-27-fold higher than that of the respective endosperm samples. Similarly, lipophilic antioxidant activity was 28-89-fold higher in the bran/germ fractions (1785-4669 nmol of vitamin E equiv/g). Hydrophilic antioxidant activity contribution to the total antioxidant activity (hydrophilic + lipophilic) was >80%. In whole-wheat flour, the bran/germ fraction contributed 83% of the total phenolic content, 79% of the total flavonoid content, 51% of the total lutein, 78% of the total zeaxanthin, 42% of the total beta-cryptoxanthin, 85% of the total hydrophilic antioxidant activity, and 94% of the total lipophilic antioxidant activity. Our results showed that different milled fractions of wheat have different profiles of both hydrophilic and lipophilic phytochemicals. These findings provide information necessary for evaluating contributions to good health and disease prevention from whole-wheat consumption.  相似文献   

11.
Five registered cultivars of hull-less barley (HB) with regular or waxy starch were milled in a Quadrumat Jr. mill to obtain whole grain flour; pearled in a Satake mill (cultivar Condor only), and the pearled fractions examined by microscopy to determine true HB bran. The samples were milled after tempering and drying in a Buhler mill to obtain bran and flour yields. Flour color and composition of HB were unaltered on milling in the Quadrumat Jr. mill. Microscopic evidence showed that a 70% pearl yield was devoid of the grain's outer coverings, including the aleurone and subaleurone layers. Therefore, the balance of 30% constitutes true bran in HB. Dry milling (as-is grain moisture) of regular starch HB in the Buhler mill gave 59% total flour and 41% bran (bran + shorts) yields, the comparative values for the waxy starch HB were 42 and 58%. On tempering HB from 9 to 16% grain moisture, the total flour yield decreased in both types of HB but to a lesser extent in the waxy starch HB due to decreases in reduction flour. On drying HB to 5 or 7% moisture, total flour yields increased due to contamination with bran and shorts. The milling study led to the conclusion that HB, at best, be dry-milled and a bran finisher be used to obtain commercial flour extraction rates. Lower total flour yields in the waxy starch HB than in the regular starch HB milled at the same grain moisture levels seemed due to higher β-glucan rather than grain hardness. Waxy starch HB flour had higher mixograph water absorption and water-holding capacity than regular starch HB or soft white wheat flour milled under identical conditions. Roller-milled HB products offer the best potential for entry into the food market.  相似文献   

12.
Wheat contains phenolic compounds concentrated mainly in bran tissues. This study examined the distribution of phenolics and antioxidant activities in wheat fractions derived from pearling and roller milling. Debranning (pearling) of wheat before milling is becoming increasingly accepted by the milling industry as a means of improving wheat rollermilling performance, making it of interest to determine the concentration of ferulic acid at various degrees of pearling. Eight cultivar samples were used, including five genotypes representing four commercial Canadian wheat classes with different intrinsic qualities. Wheat was pearled incrementally to obtain five fractions, each representing an amount of product equivalent to 5% of initial sample weight. Wheat was also roller milled without debranning. Total phenolic content of fractions was determined using the modified Folin‐Ciocalteau method for all pearling fractions, and for bran, shorts, bran flour, and first middlings flour from roller milling. Antioxidant activity was determined on phenolic extracts by a method involving the use of the free radical 2,2‐diphenyl‐l‐picrylhydrazyl (DPPH). Total phenolics were concentrated in fractions from the first and second pearlings (>4,000 mg/kg). Wheat fractions from the third and fourth pearlings still contained high phenolic content (>3,000 mg/kg). A similar trend was observed in antioxidant activity of the milled fractions with ≈4,000 mg/kg in bran and shorts, ≈3,000 mg/kg in bran flour, and <1,000 mg/kg in first middlings flour. Total phenolic content and antioxidant activity were highly correlated (R2 = 0.94). There were no significant differences between red and white wheat samples. A strong influence of environment (growing location) was indicated. Pearling represents an effective technique to obtain wheat bran fractions enriched in phenolics and antioxidants, thereby maximizing health benefits associated with wheat‐based products.  相似文献   

13.
A previously published method for ochratoxin A was evaluated and proved appropriate for simultaneous determination of aflatoxins, ochratoxin A, sterigmatocystin, and zearalenone, with considerable savings in time and reagent costs. The detection limits were 2, 5, 15, and 55 micrograms/kg, respectively. The recoveries and coefficients of variation obtained with artificially contaminated samples were 91-101% and 0-16% for aflatoxin B1, 98-117% and 0-17% for sterigmatocystin, and 96-107% and 0-17% for zearalenone, respectively. The coefficients of variation for naturally contaminated samples (aflatoxins in rice and ochratoxin A in beans) ranged from 0 to 8%. The method was used to survey 296 samples that included 10 cultivars of dried beans, 8 types of corn products, 3 types of cassava flour, and both polished and parboiled rice between May 1985 and June 1986 in Campinas, Brazil. Only aflatoxin B1 (9 samples, 20-52 micrograms/kg), aflatoxin G1 (4 samples, 18-31 micrograms/kg), and ochratoxin A (5 samples, 32-160 micrograms/kg) were found. The average contamination percentage was 4.7%; beans showed the highest (6.6%) and rice showed the lowest (3.3%) incidence rates. Zearalenone and sterigmatocystin were not detected. Positive samples were confirmed by chemical derivatization, corroborated by development in 3 solvent systems.  相似文献   

14.
Distiller's dried grains with solubles (DDGS) is a major coproduct of the fuel-ethanol industry and is becoming a popular low-cost ingredient for animal feed. Uncertainties regarding the risk factors in DDGS, such as level of mycotoxins, could limit its application in the animal feed industry. To provide a scientifically sound assessment of the prevalence and levels of mycotoxins in U.S. DDGS, we measured aflatoxins, deoxynivalenol, fumonisins, T-2 toxin, and zearalenone in 67 DDGS samples collected from 8 ethanol plants in the midwestern United States from 2009 to 2011. Among the five mycotoxins, deoxynivalenol was the main focus of the study because the crop year of 2009 was favorable for deoxynivalenol occurrence in corn. We learned that no more than 12% of the samples contained deoxynivalenol levels higher than the minimum advisory level for use in animal feed provided by the U.S. FDA, and the deoxynivalenol levels in all DDGS collected in 2011 were <2 mg/kg. Besides, intensive study showed that the enrichment of deoxynivalenol from contaminated corn to DDGS was about 3.5 times. With regard to the other mycotoxins in DDGS, the study suggested that (1) almost none of the DDGS samples produced in 2010 contained detectable aflatoxins and the highest level of aflatoxins in DDGS was 5.7 μg/kg; (2) no more than 6% of the samples contained fumonisin levels higher than the guidance level for feeding equids and rabbits provided by the U.S. FDA; (3) none of the samples contained T-2 higher than the detection limit; (4) most samples contained zearalenone levels between 100 and 300 μg/kg. This study was based on representative DDGS samples from the U.S. ethanol industry, and the data were collected using state-of-the-art analytical methodology. This study provided a comprehensive and scientifically sound assessment of the occurrence and levels of mycotoxins in DDGS produced from 2009 to early 2011 by the U.S. ethanol industry.  相似文献   

15.
To investigate possible co-occurrences of type B trichothecenes and zearalenone within a Fusarium culmorum-infected wheat harvest lot, kernels were fractionated into six groups by visual criteria. The Fusarium-damaged kernels were subdivided into white, shrunken, and red kernel groups, and the remaining kernels were sorted into healthy, black spotted, and nonspecific groups. The distribution patterns of nivalenol, deoxynivalenol, zearalenone, and ergosterol were determined for possible correlations. Significant correlations between the distribution patterns were found for the mycotoxins and ergosterol for the grouped kernels (r = 0.997-0.999, p < 0.0001). Additionally, remarkably outstanding levels of nivalenol (24-fold more than the mean at 1.16 mg/kg), deoxynivalenol (27-fold more than the mean at 0.16 mg/kg), zearalenone (25-fold more than the mean at 77 microg/kg), and ergosterol (17-fold more than the mean at 13.4 mg/kg) were found in the red kernel group. Further, detailed mycotoxin and ergosterol analyses were carried out on various segments (kernel surface, conidia, bran, and flour) of the red kernels. However, the mycotoxin and ergosterol distribution profiles revealed nonsignificant correlations for these kernel segments, with the exception of deoxynivalenol and nivalenol, which were moderately correlated (r = 0.948, p = 0.035).  相似文献   

16.
Wheat samples (102 lots) were collected from Virginia, North Carolina, southeastern Missouri, southern Illinois, and Kentucky. Soybean samples (180 lots) were collected from Virginia, Illinois, Iowa, Minnesota, Nebraska, Alabama, Arkansas, and Texas. Samples of both commodities were analyzed for zearalenone, aflatoxin, and ochratoxin by the Eppley method. None of the 3 mycotoxins was detected in soybeans. Aflatoxins and ochratoxin A were not detected in wheat, but zearalenone was detected in 19 of 42 samples collected in Virginia. Half of the Virginia samples were collected because they were mold-damaged. Zearalenone levels ranged from 0.36 to 11.05 ppm; the identity of the zearalenone was confirmed by gas-liquid chromatography and mass spectroscopy. Gibberella zea infection (6-60%) was detected in all of the zearalenone-positive samples; 6-60% of the kernels in the samples tested contained G. zea.  相似文献   

17.
《Cereal Chemistry》2017,94(6):963-969
Single‐pass and multipass milling systems were evaluated for the quality of whole wheat durum flour (WWF) and the subsequent whole wheat (WW) spaghetti they produced. The multipass system used a roller mill with two purifiers to produce semolina and bran/germ and shorts (bran fraction). The single‐pass system used an ultracentrifugal mill with two configurations (fine grind, 15,000 rpm with 250 μm mill screen aperture; and coarse grind, 12,000 rpm with 1,000 μm mill screen aperture) to direct grind durum wheat grain into WWF or to regrind the bran fraction, which was blended with semolina to produce a reconstituted WWF. Particle size, starch damage, and pasting properties were similar for direct finely ground WWF and multipass reconstituted durum flour/fine bran blend and for direct coarsely ground WWF and multipass reconstituted semolina/coarse bran blend. The semolina/fine bran blend had low starch damage and had desirable pasting properties for pasta cooking. WW spaghetti was better when made with WWF produced using the multipass than single‐pass milling system. Mechanical strength was greatest with spaghetti made from the semolina/fine bran or durum flour/fine bran blends. The semolina/fine bran and semolina/coarse bran blends made spaghetti with high cooked firmness and low cooking loss.  相似文献   

18.
Our report shows the calcium ion diffusion process through the different parts of maize kernels (pericarp, endosperm, and germ) during the traditional nixtamalization process as a function of steeping time (t) 0–24 hr. The cooking step of the nixtamalization process used 3 kg of maize kernels in 6L of water and 2% calcium hydroxide (w/w). The cooking temperature was 92°C for 40 min. The calcium content of the samples was measured using atomic absorption spectroscopy. We found that the whole instant corn flour, pericarp, endosperm, and germ, had a nonlinear relationship to steeping time, showing a local maximum at 9 hr. Analysis of the different parts of the nixtamalized kernels showed that in short steeping times (0–5 hr) calcium diffusion took place mainly in the pericarp. Calcium diffusion in the endosperm and germ occurred gradually over longer steeping times. However, the physical state of the kernels (broken kernels) accelerated the diffusion process. Calcium diffusion occurred first in the pericarp, followed by the endosperm and germ. Immediately after cooking (t = 0 hr), we found a 1.148% calcium content in the pericarp, 0.007% in the germ, and 0.028% in the endosperm. After 24 hr of steeping, the calcium contents were 2.714% in the pericarp, 0.776% in the germ, and 0.181% in the endosperm. In another study, the calcium content in the endosperm was measured by first separating the 10% from the outermost, followed by another 10% from the next endosperm tissue, and concluding with the remaining 80%. Calcium ions were present mainly in the outermost layers of the endosperm. The damaged kernels steeped for more than 5 hr showed greater calcium concentrations than the undamaged counterparts.  相似文献   

19.
The nutritional value of breadmaking cereal spelt (Triticum aestivum ssp. spelta) is said to be higher than that of common wheat (Triticum aestivum ssp. vulgare), but this traditional view is not substantiated by scientific evidence. In an attempt to clarify this issue, wholemeal and milling fractions (sieved flour, fine bran, and coarse bran) from nine dehulled spelt and five soft winter wheat samples were compared with regard to their lipid, fatty acid, and mineral contents. In addition, tocopherol (a biochemical marker of germ) was measured in all wholemeals, whereas phytic acid and phosphorus levels were determined in fine bran and coarse bran samples after 1 month of storage. Results showed that, on average, spelt wholemeals and milling fractions were higher in lipids and unsaturated fatty acids as compared to wheat, whereas tocopherol content was lower in spelt, suggesting that the higher lipid content of spelt may not be related to a higher germ proportion. Although milling fractionation produced similar proportions of flour and brans in spelt and wheat, it was found that ash, copper, iron, zinc, magnesium, and phosphorus contents were higher in spelt samples, especially in aleurone-rich fine bran and in coarse bran. Even though phosphorus content was higher in spelt than in wheat brans, phytic acid content showed the opposite trend and was 40% lower in spelt versus wheat fine bran, which may suggest that spelt has either a higher endogenous phytase activity or a lower phytic acid content than wheat. The results of this study give important indications on the real nutritional value of spelt compared to wheat. Moreover, they show that the Ca/Fe ratio, combined with that of oleate/palmitate, provides a highly discriminating tool to authenticate spelt from wheat flours and to face the growing issue of spelt flour adulteration. Finally, they suggest that aleurone differences, the nature of which still needs to be investigated, may account for the differential nutrient composition of spelt and wheat.  相似文献   

20.
Six commercially grown samples of hard spring wheat were milled using a tandem Buhler laboratory mill. Individual flour streams and branny by‐products, as well as whole‐grain wheat and straight‐grade flour, were characterized in terms of total (TP), water‐extractable (WEP), and water‐unextractable (WUP) pentosans. One representative cultivar sample was analyzed for its ratio of arabinose to xylose (A/X). TP and WEP of whole grain wheat of the six samples had ranges of 5.45–7.32% and 0.62–0.90% (dm), respectively. Neither TP nor WEP of whole grain was related to ash content variation. There was significant variation in the distribution and composition of pentosans in 16 millstreams of all the wheat samples, including bran and shorts fractions; TP and WEP contents had ranges of 1.69–32.4% and 0.42–1.76% (dm), respectively. When ash contents exceeded ≈0.6% (dm), strong positive correlations were obtained between ash and TP contents, and between ash and WUP contents for all the millstreams. Among bran and shorts fractions, TP and WUP content increased in the order of coarse bran > fine bran > shorts; while WEP, WEP/WUP and A/X showed the opposite pattern of variation of shorts > fine bran > coarse bran. Bran and shorts fractions had pentosan contents several times higher than would be predicted from the relationship between pentosan and ash contents of the flour streams. Pentosans therefore represented a much more sensitive marker of flour refinement compared with ash content. Pentosans of endosperm were substantially different in their extractability and composition from those of bran. On this basis, different functionalities of pentosans of bran and endosperm would be expected. Results demonstrated the importance of milling extraction and millstream blending in the functionality and quality of wheat flour for breadmaking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号