首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of phosphorus (P) application and arbuscular mycorrhizal fungi (AMF) on growth, arsenic (As) and P accumulation in lettuce plants growing in an As-polluted soil (total As 250 mg kg−1), was investigated. In particular, it was tested whether application of a commercial inoculum (CI), with (+P at 90 kg P ha−1) and without (−P at 0 kg P ha−1) P fertilizer, supported greater plant growth and provided more P, enhancing As tolerance, than indigenous fungi alone. The influence of these treatments on As and P availability in the rhizosphere and bulk soils was also investigated. Greenhouse pot experiments were established where plants were grown with and without commercial inoculum (+CI, −CI) in unsterilized conditions. Inoculation with commercial inoculum and P application together considerably increased plant biomass, by enhancing host plant P nutrition and lowering shoot and root As concentrations compared to plants inoculated only with native AMF. In the rhizosphere of +CI+P plants there was P soil depletion compared to −CI+P. The results evidenced that, with P addition, inoculation with commercial inoculum alleviated the toxicity of excessive As by improving P nutrition without increasing As concentrations in the plant, emphasizing the role of beneficial microbes and P fertilizer to improve soil fertility in As-contaminated soil.  相似文献   

2.
Batch-type leaching experiments were performed on polluted soil contaminated by pyrite cinders to evaluate the effect of indigenous bacteria on arsenic mobilization. The bacteria, under submerged conditions using citrate as the carbon source, enhanced the solubilization of arsenic, iron and manganese. At the same time, 85 mg kg−1 of copper were abiotically released. Iron reduction significantly (p < 0.05) enhanced the release of arsenic. During 7 days of incubation at high redox potential, the arsenite content increased suggesting aerobic arsenic-resistant bacteria bearing arsC genes as key players for arsenate reduction. Arsenate became prevalent in consequence of arsenic liberation from iron oxides and the lowering of redox potential, driven by citrate, inhibited the growth and activity of arsenate-resistant bacteria. Populations of Bacillus, Pseudomonas, and Geobacter were stimulated by the addition of citrate as evidenced by denaturing gradient gel electrophoresis analysis of 16S rRNA genes. Putative ars genes were retrieved in isolates of Bacillus and Pseudomonas. These isolates were able to reduce 2 mmol l−1 of arsenate in liquid cultures. These results confirm that microorganisms play an important role in As cycling in soils and highlight the complex role of citrate on biotic and abiotic transformations of inorganic contaminants. The environmental dispersion of arsenic can be retarded by resorption or coprecipitation processes occurring during flooding. Nevertheless, periodic flooding can be a crucial factor for the groundwater quality and the soil–water–plant systems.  相似文献   

3.
Germinability and virulence of sclerotia of Sclerotium rolfsii were assessed after 50 days of exposure of 14C-labeled sclerotia to soil at 0, −5 and −15 kPa and pH 6.9, or to soil at 15, 25 or 30 °C, pH 5 or 8 and −1 kPa. Evolution of 14CO2 accounted for the greatest share of endogenous carbon loss from sclerotia under all soil conditions, except in water-saturated soil (0 kPa), in which sclerotial exudates contributed the major share of carbon loss. Total evolution of 14CO2 from sclerotia in soil at −15 kPa (42.4% of total 14C) and at −5 kPa (38%) was significantly higher than at 0 kPa (23.8%). Evolution of 14CO2 in soil at 25 or 30 °C was more rapid than at 15 °C with regardless of pH. Loss of endogenous carbon by sclerotia was the greater after 50 days of exposure to soil at 0 kPa, or at 25 or 30 °C and pH 8, than at other soil conditions. Sclerotia exposed to water-saturated soil (0 kPa) showed a more rapid decline in nutrient independent germinability, viability and virulence, than to those exposed to −5 or −15 kPa. Sclerotia became dependent on nutrient for germination and lost viability and virulence within 30–40 days in soil at 25 or 30 °C, pH 8. However, more than 60% of sclerotia retained viability in soil at 15 °C regardless of pH, even after 50 days. Radish shoot growth was increased significantly by the sclerotia that had been exposed to soil at 0 kPa, or to soil at 25 or 30 °C and pH 8 for 50 days. In conclusion, carbon loss by sclerotia during incubation on soil at different pH levels, temperatures and water potentials was inversely correlated with sclerotial ability to infect radish seedlings. The relationship between carbon loss by sclerotia and radish shoot length was positive.  相似文献   

4.
Actinomycete strains originating from Moroccan phosphate mines (MPM) were selected for their ability to use the insoluble ground hydroxyapatite called rock phosphate (RP), present in their biotope, as sole phosphate (P) source. Physiological studies carried out with these strains and with the reference strains, Streptomyces lividans and Streptomyces griseus, demonstrated that all strains were able to grown in a synthetic minimal medium (SMM) containing either soluble (SP) or insoluble (RP) phosphate as sole P source. The MPM strains and S. griseus took up glucose much more actively and exhaustively than S. lividans, constituting more abundant glycogen reserves than the latter. All strains took up soluble P at comparable rates, storing it as polyphosphates. In SMM + RP, a sharp increase in the concentration of soluble P was detected in the culture broths of all MPM strains and S. griseus, at stationary phase, but not in that of S. lividans. The P peak detected in the supernatant of these strains correlated with the successive appearance of two compounds absorbing at 320 nm and 430 nm, respectively. These compounds are thought to be strong ion chelators involved in the destruction of the hydroxyapatite structure leading to soluble P release. The good growth of S. lividans in SMM + RP indicated that this strain was also able to release P from RP but consummed it as soon as it was released, unlike the other strains. Our study is expected to lead to the development of a novel type of slow release bio-phosphate fertilizer constituted by the association of the MPM strains and ground RP. This novel product would precisely supply plant needs and thus limit the pollution of the environment.  相似文献   

5.
The endogeic earthworm Pontoscolex corethrurus (Müller, 1857) was the most abundant species (75%) in soil contaminated with hydrocarbons, mostly benzo(a)pyrene (BaP), in the state of Tabasco (Mexico). The earthworm P. corethrurus was tested for its capacity to remove 100 mg BaP kg−1 from an Anthrosol soil (sterilized or not) and amended with legume Mucuna pruriens (L.) DC. var. utilis (Wall. ex Wight) Baker ex Burck (3%) or the grass Brachiaria humidicola (L.) DC (3%) (recently renamed as Urochloa humidicola (Rendle) Morrone & Zuloaga) in an aerobic incubation experiment. P. corethrurus removed 26.6 mg BaP kg−1 from the sterilized soil and application of B. humidicola as feed increased this to 35.7 mg BaP kg−1 and M. pruriens to 34.2 mg BaP kg−1 after 112 days. The autochthonous microorganisms removed 9.1 mg BaP kg−1 from the unsterilized soil and application of B. humidicola increased this to 18.0 mg BaP kg−1 and M. pruriens to 11.2 mg BaP kg−1. Adding P. corethrurus to the unsterilized soil accelerated the removal of BaP and 36.1 mg kg−1 was dissipated from soil. It was found that the autochthonous microorganisms removed BaP from soil, but addition of P. corethrurus increased the dissipation 4-fold. The endogeic earthworm P. corethrurus can thus be used to remediate hydrocarbon-contaminated soils in tropical regions.  相似文献   

6.
Wheat production (Triticum aestivum L.) has increased across the world during last century with the intensification of agriculture. Phosphorus (P) fertilization is a common practice to improve wheat growth in Argentina. We investigate whether indigenous arbuscular mycorrhizal colonization (AMC) of hard red spring wheat is controlled by shoot P content (SPc) or by available soil P in an agricultural soil from the southeastern Argentine Pampas. In the field, AMC was monitored four times during two growing seasons of a conventional wheat crop. Treatments were: without P supply, annual supply of 11 and 22 kg P ha−1 during the last 5 years, and 164 kg P ha−1 applied once 5 years before the experiment. In the glasshouse, AMC was assessed three times in wheat growing in pots filled with the soil from unfertilized plots; treatments were: P (0 and 20 mg P pot−1), and nitrogen (N) fertilization (0 and 150 mg N pot−1). A range of soil P between 6 and 60 mg P kg−1 was obtained and the AMC ranged from 1% to 67% of root length colonized under both field and glasshouse conditions. P supplied annually increased growth and SPc but decreased AMC. N fertilization did not affect growth or AMC. Variations in SPc did not account for AMC. Variability in AMC was best accounted for local current soil available P content (r2 = 0.59). A linear-plateau relationship between soil P and indigenous AMC was established in wheat plants growing under contrasting environmental and experimental (field and glasshouse) conditions. Indigenous AMC was depressed by available soil P in the range 0–27 mg P kg−1 (a decrease of 2.8% mg P−1 kg−1). Above 27 mg P kg soil−1, AMC was stabilized at about 10%. Grain yield increased with fertilization and the highest relative shoot dry matter in field was obtained at 15.5 mg P kg soil−1. The soil P range that ensures high wheat production without deterring indigenous AMC is discussed.  相似文献   

7.
This study evaluated the interactive effect of arbuscular mycorrhizal fungi (AMF) inoculation and exogenous phosphorus supply on soil phosphotases, plant growth, and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong). We aimed to explore the ecophysiological function of AMF in mangrove wetland ecosystems, and to clarify the possible survival mechanism of mangrove species against nutrient deficiency. K. obovata seedlings with or without AMF inoculation (mixed mangrove AMF), were cultivated for six months in autoclaved sediment medium which was supplemented with KH2PO4 (0, 15, 30, 60, 120 mg kg−1). Then the plant growth, nitrogen and phosphorus content, root vitality, AMF colonization and soil phosphatase activity were analyzed. The inoculated AMF successfully infected K. obovata roots, developed intercellular hyphae, arbuscular (Arum-type), and vesicle structures. Arbuscular mycorrhizal fungi colonization ranged from 9.04 to 24.48%, with the highest value observed under 30 and 60 mg kg−1 P treatments. Soil P supply, in the form of KH2PO4, significantly promoted the height and biomass of K. obovata, enhanced root vitality and P uptake, while partially inhibiting soil acid (ACP) and alkaline phosphotase (ALP) activities. Without enhancing plant height, the biomass, root vitality and P uptake were further increased when inoculated with AMF, and the reduction on ACP and ALP activities were alleviated. Phosphorus supply resulted in the decrease of leaf N–P ratio in K. obovata, and AMF inoculation strengthened the reduction, thus alleviating P limitation in plant growth. Arbuscular mycorrhizal fungi inoculation and adequate P supply (30 mg kg−1 KH2PO4) enhanced root vitality, maintained soil ACP and ALP activities, increased plant N and P uptake, and resulted in greater biomass of K. obovata. Mutualistic symbiosis with AMF could explain the survival strategies of mangrove plants under a stressed environment (waterlogging and nutrient limitation) from a new perspective.  相似文献   

8.
《Soil biology & biochemistry》2012,44(12):2441-2449
High rates of atmospheric nitrogen (N) deposition have raised questions about shifting patterns of nutrient limitation in northern hardwood forests. Of particular interest is the idea that increased supply of N may induce phosphorus (P) limitation of plant and microbial processes, especially in acid soils where P sorption by Al is high. In this study, we established field plots and plant-free laboratory mesocosms with P and Ca additions to test the hypotheses that 1) microbial biomass and activity are limited by P in the northern hardwood forest soils at the Hubbard Brook Experimental Forest in NH USA; 2) elevated Ca increases inherent P availability and therefore reduces any effects of added P and 3) P effects are more marked in the more carbon (C) rich Oie compared to the Oa horizon. Treatments included P addition (50 kg P ha−1), Ca addition (850 kg Ca ha−1) and Ca + P addition (850 kg Ca ha−1 and 50 kg P ha−1). The P treatments increased resin-available P levels and reduced phosphatase activity, but had no effect on microbial biomass C, microbial respiration, C metabolizing enzymes, potential net N mineralization and nitrification in the Oie or Oa horizon of either field plots or plant free mesocosms, in either the presence or absence of Ca. Total, prokaryote, and eukaryote PLFA were reduced by P addition, possibly due to reductions in mycorrhizal fungal biomass. These results suggest that increased N deposition and acidification have not created P limitation of microbial biomass and activity in these soils.  相似文献   

9.
Phosphorus deficiency is wide-spread due to the poor solubility of soil P and the rapid formation of poorly available P after P addition. Microbes play a key role in soil P dynamics by P uptake, solubilisation and mineralisation. Therefore a better understanding of the relationship between type of P amendment, microbial activity and changes in soil P pools is important for a better management of soil P. A P deficient soil was amended with two composts (low P or high P), two crop residues (low P or high P), and inorganic P (KH2PO4) at low and high P, and incubated for 56 days. Composts were added at 20 g kg−1 resulting in a total P addition of 4.1 mg kg−1 soil with the low P compost and 33.2 mg kg−1 soil with the high P compost. The same amount of P was added with the other amendments (residues and inorganic P). All amendments increased cumulative respiration, but microbial biomass and the abundance of bacteria and fungi (assessed by phospholipid fatty acid analysis) increased significantly only in soils with organic amendments, with greater increases with residues. The concentration of the inorganic P pools NaHCO3-Pi, NaOH-Pi and HCl-P increased significantly within 5 h after amendment, particularly with high P amendments. Over the following 56 days, labile inorganic P was converted mainly into non-labile inorganic P with inorganic P addition whereas labile and non-labile organic P was formed with organic amendments. It is concluded that organic P sources, particularly those with high P concentration can stimulate the formation of organic P forms in soils which may provide a long-term slow release P source for plants and soil organisms.  相似文献   

10.
The sweet herb of Paraguay, Stevia rebaudiana (Bertoni), is becoming more important worldwide in herbal care for diabetes, as it produces the zero-calorie sweeteners steviol glycosides (SGs)—stevioside and rebaudioside-A. While arbuscular mycorrhizal fungi (AMF) have been shown to enhance production of secondary metabolites in many plant species, their effect on S. rebaudiana has not been studied. Moreover, relatively little is known about the mechanisms that may be involved in the increased accumulation of phytochemicals in mycorrhizal plants. Therefore, this study was performed to test the ability of Rhizophagus fasciculatus (Thaxt.) C. Walker & A. Schüßler to improve the yield of SGs in S. rebaudiana and to relate this with some AMF-induced physiological changes in addition to improved phosphorus (P) uptake. The performance of plants inoculated with R. fasciculatus was compared with that of non-mycorrhizal plants with similar P concentrations. Mycorrhizal (M) and non-mycorrhizal plants with P-supplementation (NM + P) produced higher concentrations of SGs compared with control plants. However, M plants had more SGs than did NM + P plants. The higher content of SGs in M plants is due to increased concentrations of SGs and to the enhanced biomass of the shoots. The increase in biomass is directly due to the improved uptake of nutrients (N, K, Mg, Cu, Fe, Mn and Zn), and chlorophyll and carbohydrate concentrations in M plants. Higher concentrations of total carbohydrates and jasmonic acid in M plants than in NM + P plants contribute to more biosynthesis of SGs via the methyl erythritol phosphate pathway. This study suggests that AMF-mediated increases in SGs involve both nutritionally and non-nutritionally linked mechanisms.  相似文献   

11.
The potential for microorganisms to affect the quantity and quality of organic and condensed forms of phosphorus (P) in soils was investigated by repeated addition of different carbon sources (glucose, starch, cellulose; 2.5 g C kg?1) with or without inorganic P (50 mg P kg?1) to acid and calcareous soils which were either natural soils or clay–sand mixtures free of organic matter. Forms of P after five amendments and subsequent incubation periods of 5 weeks each were analyzed by 31P solution nuclear magnetic resonance (NMR) spectroscopy, and the microbial community composition was assessed by selective plate counts and fatty acid methyl ester (FAME) analysis. All carbon additions induced a redistribution of P from inorganic to organic and condensed forms, which was only little affected by the addition of inorganic P. Compared to non-carbon-amended controls, the greatest increase (7–38 mg P kg?1) in organic P was observed in the monoester region. In the acid clay–sand mixture, there was a large accumulation of pyrophosphate (101 mg P kg?1) after glucose addition and smaller accumulations (6–25 mg P kg?1) after addition of starch and cellulose. Carbon additions increased the microbial biomass in all cases and except in the natural calcareous soil also the proportion of fungi. Redundancy analysis with Monte Carlo permutation tests revealed that for carbon-amended soils, the microbial community composition was more strongly influenced by soil type than by carbon source. Pyrophosphate was positively related to fungi, and diester P was positively related to soil pH. A large proportion of organic and condensed forms of P may still have been in microbial cells at the time of extraction. We have shown that soil organic P consists of some discrete and simple compounds along with some more complex forms, and that organic P recently synthesized by microbes consists almost exclusively of and thus is a likely source for the simple compounds found in natural soils.  相似文献   

12.
《Applied soil ecology》2007,35(1):128-139
We tested the effect of soil moisture on the performance of four entomopathogenic nematodes species that have recently shown promise for the control of white grubs, i.e., Heterorhabditis bacteriophora, H. zealandica, Steinernema scarabaei, and S. glaseri. Experiments for all four nematodes were conducted in sandy loam, for S. scarabaei also in loamy sand and silt loam. Infectivity was tested by exposing third-instar Japanese beetle, Popillia japonica, to nematodes in laboratory experiments and determining nematode establishment in the larvae and larval mortality. Nematode infectivity was the highest at moderate soil moistures (−10 to −100 kPa), and tended to be lower in wet (−1 kPa) and moderately dry (−1000 kPa) soil. In dry soil (−3000 kPa), only S. scarabaei showed some activity. S. scarabaei was active from −1 to −3000 kPa in all soil types but the range of highest activity was wider in loamy sand (−1 to −1000 kPa) than in loamy sand and silt loam (−10 to −100 kPa). Persistence was determined in laboratory experiments by baiting nematode-inoculated soil with larvae of the greater wax moth, Galleria mellonella. For both Heterorhabditis spp. persistence was short at −10 kPa, improved slightly at −100 kPa, significantly at −1000 kPa, and was the highest at −3000 kPa. Both Steinernema spp. persisted very well at −10 kPa. However, S. glaseri persistence was the shortest at −10 kPa but did not differ significantly at −100 to −3000 kPa, whereas S. scarabaei persistence was not affected by soil moisture. Our observations concur with previous observations on the effect of soil moisture on entomopathogenic nematodes but also show that moisture ranges for infectivity and persistence vary among species. Differences among species may be based on differences in size and behavioral and physiological adaptations.  相似文献   

13.
《Applied soil ecology》2001,16(1):11-21
The natural abundance of 13C was used to estimate the turnover of the soil organic matter in a vertisol re-grassed with Digitaria decumbens (C4 plant) following intensive market gardening (C3 plants). In addition, the experimental design allowed us to determine the respective roles of roots and earthworms (Polypheretima elongata) in soil C stock restoration in D. decumbens pasture.The C stock increased from 31 to 37 Mg C ha−1 in 5 years and the δ13C increased from −18.1‰ in market gardening soil to −15.5‰ in the 5-year-old pasture soil in the upper 20 cm. Below the 20 cm soil layer, the C stock and the δ13C did not change significantly in 5 years. The net gain of 6 Mg C ha−1 was the balance of a loss of 5 Mg C ha−1 derived from market gardening and a gain of 11 Mg C ha−1 derived from D. decumbens. Effects of earthworms on the C dynamics were not discernible.  相似文献   

14.
Shewanella alga BrY, a dissimilatory iron reducing bacterium (DIRB), transformed inert ferric oxides that are common in sediments, aquifer material and passivated permeable reactive iron barriers (PRBs), producing dissolved and sorbed Fe(II) capable of rapidly reducing and immobilizing Cr(VI). The effect of groundwater chemistry on the formation and reactivity of such microbial-produced, abiotic reductants was investigated. Batch reactors with high carbonate concentration (10 mM) were the most reactive, removing 66.0% ± 2.8 of Cr (VI) (76 mg/l) from liquid phase within 5 min. Treatments with high concentrations of sulfate (5.2 mM), chloride (10 mM), phosphate (1 mM) or silica (0.75 mM) were less reactive (about 40% removal). Loss of reactivity was observed possibly due to oxidation of Fe(II) (sorbed and dissolved) by Cr(VI). Normalization of Cr(VI) removal to the mass of biogenic solid present showed the following molar Cr/Fe ratios in solid phase: 0.185 ± 0.041 (carbonate), 0.146 ± 0.013 (sulfate), 0.092 ± 0.010 (silica), 0.075 ± 0.012 (phosphate) and 0.062 ± 0.012 (chloride). Overall, these results show that bacterial transformation of inert ferric oxides can contribute to the (abiotic) natural attenuation of Cr(VI) in and around PRBs, and that groundwater chemistry is an important determinant of biogenic solids reactivity.  相似文献   

15.
A short-term incubation study was carried out to investigate the effect of biochar addition to soil on CO2 emissions, microbial biomass, soil soluble carbon (C) nitrogen (N) and nitrate–nitrogen (NO3–N). Four soil treatments were investigated: soil only (control); soil + 5% biochar; soil + 0.5% wheat straw; soil + 5% biochar + 0.5% wheat straw. The biochar used was obtained from hardwood by pyrolysis at 500 °C. Periodic measurements of soil respiration, microbial biomass, soluble organic C, N and NO3–N were performed throughout the experiment (84 days). Only 2.8% of the added biochar C was respired, whereas 56% of the added wheat straw C was decomposed. Total net CO2 emitted by soil respiration suggested that wheat straw had no priming effect on biochar C decomposition. Moreover, wheat straw significantly increased microbial C and N and at the same time decreased soluble organic N. On the other hand, biochar did not influence microbial biomass nor soluble organic N. Thus it is possible to conclude that biochar was a very stable C source and could be an efficient, long-term strategy to sequester C in soils. Moreover, the addition of crop residues together with biochar could actively reduce the soil N leaching potential by means of N immobilization.  相似文献   

16.
《Geoderma》2007,137(3-4):394-400
The field tension infiltrometer (TI) and the laboratory unit hydraulic gradient (UHG) methods are widely applied to determine the near-saturated soil hydraulic conductivity, K. Comparison between the two methods is relevant given that they differ in the explored soil volume (undetached or detached) and in the flow process (unconfined or confined). The objective of this investigation was to compare unconfined and confined measurements of unsaturated hydraulic conductivity. Twenty TI experiments were conducted in a relatively coarse-textured soil having an appreciable hysteretic behavior by using two different dry-to-wet-to-dry (DTWTD) sequences of pressure head, h0, values that differed by the highest h0 value imposed within the sequence (i.e. h0 =  150, − 75, − 30, + 5, − 30, − 75, − 150 in site A or h0 =  150, − 75, − 30, − 10, − 30, − 75, − 150 in site B). The same pressure head sequences were applied on twenty undisturbed soil cores, collected at the exact location of the TI measurements, to perform the laboratory UHG measurements. Regardless of the type of experiment (i.e. unconfined or confined) and the applied pressure head sequence (i.e. site A or B), higher K0 values were obtained with a drying sequence of h0 values (K0,d) than with a wetting one (K0,w)and the discrepancies between K0,w and K0,d decreased as the imposed h0 value increased, as it was expected due to hysteresis. A tendency of the UHG method to overestimate the K0 values was detected (ratios of mean K0,1D to mean K0,3D values ranging from 0.93 to 4.35), but the statistical significance of the observed differences varied with the considered sequence of pressure head values. It was concluded that both the TI and the UHG methods were effective in detecting hysteresis effects on K0, but the laboratory method resulted in K0 values that were higher and more variable probably as a consequence of a more substantial effect of macropore flow on the measured flow rates.  相似文献   

17.
《Applied soil ecology》2001,16(3):229-241
Changes in the proportions of water-stable soil aggregates, organic C, total N and soil microbial biomass C and N, due to tillage reduction (conventional, minimum and zero tillage) and crop residue manipulation (retained or removed) conditions were studied in a tropical rice–barley dryland agroecosystem. The values of soil organic C and total N were the highest (11.1 and 1.33 g kg−1 soil, respectively) in the minimum tillage and residue retained (MT+R) treatment and the lowest (7.8 and 0.87 g kg−1, respectively) in conventional tillage and residue removed (CT−R) treatment. Tillage reduction from conventional to minimum and zero conditions along with residue retention (MT+R,ZT+R) increased the proportion of macroaggregates in soil (21–42% over control). The greatest increase was recorded in MT+R treatment and the smallest increase in conventional tillage and residue retained (CT+R) treatment. The lowest values of organic C and total N (7.0–8.9 and 0.82–0.88 g kg−1 soil, respectively) in macro- and microaggregates were recorded in CT−R treatment. However, the highest values of organic C and total N (8.6–12.6 and 1.22–1.36 g kg−1, respectively) were recorded in MT+R treatment. The per cent increase in the amount of organic C in macroaggregates was greater than in microaggregates. In all treatments, macroaggregates showed wider C/N ratio than in microaggregates. Soil microbial biomass C and N ranged from 235 to 427 and 23.9 to 49.7 mg kg−1 in CT−R and MT+R treatments, respectively. Soil organic C, total N, and microbial biomass C and N were strongly correlated with soil macroaggregates. Residue retention in combination with tillage reduction (MT+R) resulted in the greatest increase in microbial biomass C and N (82–104% over control). These variables showed better correlations with macroaggregates than other soil parameters. Thus, it is suggested that the organic matter addition due to residue retention along with tillage reduction accelerates the formation of macroaggregates through an increase in the microbial biomass content in soil.  相似文献   

18.
Salinity is the major environmental factor limiting crop production. Alfalfa is a legume with high nutritional value that establishes a symbiosis relation with Ensifer meliloti. Under saline conditions the alfalfa yield decreases and this symbiosis is affected. The aim of this work is to study the effect of the co-inoculation of alfalfa plants with Halomonas maura (a moderately halophile bacterium) and E. meliloti in saline soils to improve their productivity and growth under greenhouse and field conditions. Alfalfa plants were grown in Leonard jar under greenhouse conditions, using a N-free mineral solution to mimic the conditions of an Orthic Solonchak. Then alfalfa plants were grown in the field in the same soil type. Seeds were inoculated with E. meliloti, H. maura, co-inoculated with E. meliloti and H. Maura, or non-inoculated as a control in both experiments. In greenhouse experiments the co-inoculation of alfalfa plants increased significantly the shoot dry weight (0.64 ± 0.02 vs. 0.79 ± 0.02), the leghaemoglobin content (10.17 ± 0.03 vs. 11.25 ± 0.06) and water potential (−3.12 ± 0.02 vs. −2.79 ± 0.02) compared with the single inoculation with E. meliloti. In the field experiments, biomass of co-inoculated plants clearly outyielded those of plants inoculated with any inoculant. The co-inoculation of H. maura and E. meliloti enhances alfalfa productivity in saline soils, thus contributing to the agricultural exploitation of low productive areas. H. maura and E. meliloti could be considered in formulation of bioinoculants to contribute in the reduction of the overuse of chemical fertilizers and their environmental impacts.  相似文献   

19.
Reducing the environmental risk of soluble P loss from sludge-amended soils is essential for increasing soils capacity to utilize sewage sludge beneficially. Fresh dewatered anaerobically digested sewage sludge (FSS), stabilized with ferrous sulphate (FeSul–SS), calcium oxide (CaO–SS) and aluminum sulphate (alum–SS), each at three chemical-to-FSS ratios, or by composting (BSC), was applied to alluvial soil at rates of 150 and 300 mg P kg? 1 soil. Changes in P phytoavailability in comparison to KH2PO4-amended soil were probed during 100 days of incubation by a P-bioassay and were compared to the concentration of water-soluble P (WSP) and Olsen-P. P phytoavailability was notably linked to the incubation duration and the stabilization process. In general, P phytoavailability at equal P-addition rates was KH2PO4 > > alum–SS > BSC  FSS > CaO–SS > > FeSul–SS; and it was positively related to the added P rates, although with quite different patterns among the various sludge products. The concentration of inorganic WSP (WSPi) extracted from the soil increased following the application of FSS or BSC, and additional P mineralization further increased its concentration during incubation. In contrast, in most cases the chemically stabilized sludges, especially the FeSul–SS, showed considerably reduced inorganic WSP concentrations relative to the untreated soil. The total WSP, Olsen-P and organic WSP (WSPo) positively correlated to P phytoavailability, indicating that WSPo plays a role in plant P utilization in these soils. It is concluded that all the chemically stabilized sewage sludge studied effectively controlled WSPi in soil while still supplying P to support plant growth.  相似文献   

20.
Underestimation of nocturnal CO2 respiration using the eddy covariance method under calm conditions remains an unsolved problem at many flux observation sites in forests. To evaluate nocturnal CO2 exchange in a Japanese cypress forest, we observed CO2 flux above the canopy (Fc), changes in CO2 storage in the canopy (St) and soil, and trunk and foliar respiration for 2 years (2003–2004). We scaled these chamber data to the soil, trunk, and foliar respiration per unit of ground area (Fs, Ft, Ff, respectively) and used the relationships of Fs, Ft, and Ff with air or soil temperature for comparison with canopy-scale CO2 exchange measurements (=Fc + St). The annual average Fs, Ft, and Ff were 714 g C m−2 year−1, 170 g C m−2 year−1, and 575 g C m−2 year−1, respectively. At small friction velocity (u*), nocturnal Fc + St was smaller than Fs + Ft + Ff estimated using the chamber method, whereas the two values were almost the same at large u*. We replaced Fc + St measured during calm nocturnal periods with a value simulated using a temperature response function derived during well-mixed nocturnal periods. With this correction, the estimated net ecosystem exchange (NEE) from Fc + St data ranged from −713 g C m−2 year−1 to −412 g C m−2 year−1 in 2003 and from −883 g C m−2 year−1 to −603 g C m−2 year−1 in 2004, depending on the u* threshold. When we replaced all nocturnal Fc + St data with Fs + Ft + Ff estimated using the chamber method, NEE was −506 g C m−2 year−1 and −682 g C m−2 year−1 for 2003 and 2004, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号