首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turkey's forests have been continuously facing conversion into both agriculture and pasturelands, causing not only degradation and fragmentation of forested lands but also negative changes in soil properties that have not been thoroughly investigated. In order to determine possible changes in some physical and hydrophysical soil parameters along with the dispersion ratio between natural coppice forests and the neighbouring forest‐to‐grassland converted areas, a foothill of Mount Sacinka in Artvin was chosen as a research area. Besides land use, possible effects of elevation change on soil properties due to the mountainous and moderately steep landscape of the region were also taken into consideration. The soil samples were analysed for soil texture, permeability, field capacity, bulk density, organic matter, pH and dispersion ratio. The results indicated that whereas permeability (43·05 mm h−1 in forest and 18·82 mm h−1 in pasture), field capacity (43·45% in forest and 38·08% in pasture) and organic matter (6·36% in forest and 5·34% in pasture) values turned out to be higher in forest soils, bulk density (0·91 g cm−3 in forest and 1·06 g cm−3 in pasture) and pH (5·89 in forest and 6·55 in pasture) values were low in grassland soils, meaning that conversion has negative effects on soil properties. Additionally, the mean dispersion ratios of 27·55% and 33·58% for forest and pastureland soils, respectively, indicated soil erosion problems in both land uses. In addition, as for elevation effect, forest soils especially showed better characteristics at higher elevations with high permeability, field capacity and organic matter and low pH and dispersion ratio. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
As the acidity of rain diminishes, changes in the pH, ionic strength, and ion activities of the soil solution will influence the charge characteristics of soil. We have investigated the response of cation exchange capacity (CEC) of three acid forest soils of variable charge to small changes in pH, ionic strength, and SO2?4 concentration. The variable charge for these temperate soils has the same significance as for tropical soils and those from volcanic ash. Maximum absolute increase in CEC on increasing pH by 0·2–0·5 units reached 5 cmolc kg-1 in O horizons. The increase in CEC on doubling ionic strength in EA and Bsh horizons of a Cambic Podzol was about half that amount, but relative gains compared to effective CEC were 65 and 46%, respectively. For other soil horizons, absolute changes were smaller, and relative changes were between 10 and 30%. Halving the SO2?4 concentration significantly influenced CEC only in some samples. Both pH and ionic strength must be adjusted with care when determining CECc of acid forest soils. Decreasing acid deposition will not inevitably increase CECc because in some soils pH effects may be balanced by simultaneous decrease in ionic strength.  相似文献   

3.
Solution concentrations of total Al and of mononuclear Al ions were determined as a function of pH for two acid soils. Polynuclear hydroxy-Al was taken as the difference between total and mononuclear Al. Salt concentration at 1 : 5 soil: solution ratio was varied from 0·008 to 1·o equiv/l, for CaCl2, KCl, and NH4OAc at pH 4·8. Polynuclear hydroxy-Al concentrations increased with electrolyte concentration and the valency of the desorbing cation, and rose to 0·2 mM (equivalent to 3 meq/kg soil) in unbuffered salt suspensions, and to 1·0 mM in NH4OAc at pH 4·8. Polynuclear hydroxy-Al thus behaves like a normal exchangeable cation. I.0M NH4OAc released much more total A1 from some of the more acid samples than might have been expected from its pH of 4·8.  相似文献   

4.
pH values in CaCl2 suspensions of some acid Scottish soils increase with time, in some cases by 0·4 units in 24 h. This is attributed to proton uptake by a complex ion displaced into solution, and to obtain unambiguous values, pH in CaCl2 suspensions should be measured within an hour of making up the suspensions. In moderately to strongly acid soils, lime potential (LP) and aluminium hydroxide potential (AHP) vary with salt concentration and soil: solution ratio. Unique values for these ion-activity ratios can be obtained by equilibration with a single solution only when the reference cations, i.e. (Ca2++Mg2+) for LP, and Al3+ for AHP, are the dominant exchangeable cations. Otherwise, equilibrium values should be obtained by interpolation from an exchange isotherm at the point where no exchange occurs, i.e. where Δ(Ca+Mg) = o for LP values and ΔA1 = o for AHP values.  相似文献   

5.
Flocculation and dispersion of colloidal particles of nine inorganic paddy soils were studied mainly based on turbidity measurements of the suspensions of soils which were previously incubated at 28°C under in vitro waterlogged conditions. After 1-week of incubation, the turbidity of the soils except for 1) two soils containing larger amounts of sodium salts and 2) one soil containing larger amounts of Fe and Al oxides, significantly decreased, and colloidal particles flocculated with 1) a decrease in soil Eh and 2) an increase in electric conductivity (EC). During the 3- to 4-week period of waterlogging, the turbidity of the three soils significantly increased with the 1) decrease in EC and 2) increase in pH of the soils although the Eh remained low. Infrared (IR) absorption analysis showed that the suspended colloidal particles consisted of layer silicates from respective soil clays. Oxidation of suspensions of waterlogged soils by air-bubbling led to an increase in turbidity with the 1) increase in Eh, and 2) decrease in pH, EC, and water-soluble Fe2+ concentration. It was suggested that the stability of the soil colloidal suspensions was affected by soil reduction with alterations in ionic species and their concentrations at clay surfaces and in soil solutions.  相似文献   

6.
Abstract

A close relationship was found between the pH of soil suspensions in the SMP buffer solution (pHsmp) and the potential acidity of soils (H + Al) extracted by a neutral calcium acetate solution (r = 0.98), for twenty six soil samples of the State of Sao Paulo, Brazil, This relationship was represented by the equation lnY = 7.76 ‐ 1.053X, which allowed for the calculation of H + Al directly from the values of pHsmp.

With the values of H + Al and the sum of bases, calcium, magnesium and potassium, the cation exchange capacity (CEC), and the base saturation (V) were calculated. Relationships between the base saturation of the soils and the active acidity of soil suspensions were close, both for pH determined in water (r=0.94) and pH determined in 0.01M CaCl2 solution (r ‐ 0.97). Thus the lime requirement (LR) of soils could be calculated, for given values of pH or base saturation, using the equation LR = CEC (V2 ‐ V1)/100, in which V1 is the base saturation of the soil and V2 is the expected value upon liming.

The predicted values for lime required to increase the soil pH in water to either 5.5 or 6.0 were comparable to those obtained by the direct use of the SMP buffer method, and were, respectively, two and four times higher than the amounts required to neutralize exchangeable aluminum, considering the criterion LR = Al × 1.5.

The proposed method to determine lime requirement of soils is described in detail and the advantages of its use are discussed.  相似文献   

7.
The addition of 0.07 per cent Fe in the form of polycation of molecular weight 10000–50000 flocculated soil suspensions. Higher concentrations of Fe(III) caused redispersion of the clay. Electrophoretic and electron microscopic studies confirmed the flocculation-dispersion phenomena. The soil suspensions with higher concentrations of Fe(III) gave points of zero charge (PZC) between pH values 5.0 and 6.0. The flocculation resulted in microaggregation and created pores 40–100 μm in diameter. This led to an increased water-holding capacity and hydraulic conductivity and lower bulk densities and modulus of rupture. The soils treated with Fe(III) polycations were shown to be more friable than untreated soils.  相似文献   

8.
湘西典型植烟土壤酸碱缓冲特性及影响因素   总被引:3,自引:0,他引:3  
为探明山地植烟土壤酸碱缓冲特性,采集了湘西山区烤烟典型生产区的28个土壤样本,采用酸碱滴定法和灰色关联法分析了湘西山地植烟土壤酸碱缓冲特性以及土壤缓冲容量与各影响因素之间的量化关系。结果表明:湘西山地植烟土壤酸碱缓冲量为11.35~43.29 mmol·kg-1,平均为17.26 mmol·kg-1,黄棕壤的酸碱缓冲量(11.35~43.29 mmol·kg-1)显著高于黄壤(11.79~20.70 mmol·kg-1)。有78.57%的样本对酸碱敏感,黄壤土是否对酸敏感由有机质含量决定,黄棕壤土是否对酸敏感与pH和有机质含量密切相关。对于同一土壤类型,有机质和黏粒含量与酸碱缓冲容量显著正相关;对于黄棕壤,酸碱缓冲容量还与pH和阳离子交换量呈显著正相关,与交换性酸和交换性铝呈显著负相关。主要土壤类型之间缓冲性能存在较大差异,黄壤土酸碱缓冲性能主要受土壤有机质、阳离子交换量和黏粒含量的影响;黄棕壤土酸碱缓冲性能主要受pH、阳离子交换量和有机质的影响。在生产中应采用合理施用化肥、增施有机肥、调节土壤酸性等措施提高植烟土壤酸碱缓冲性能,为优质烟叶生产创造良好的生态环境。  相似文献   

9.
The long‐term sustainability of forest soils may be affected by the retention of exchangeable nutrient cations such as Ca2+ and the availability of potentially toxic cations such as Al3+. Many of our current concepts of cation exchange and base cation saturation are largely unchanged since the beginnings of soil chemistry over a century ago. Many of the same methods are still in use even though they were developed in a period when exchangeable aluminium (Al) and variable charge were not generally recognized. These concepts and methods are not easily applicable to acid, highly organic forest soils. The source of charge in these soils is primarily derived from organic matter (OM) but the retention of cations, especially Al species, cannot be described by simple exchange phenomena. In this review, we trace the development of modern cation exchange definitions and procedures, and focus on how these are challenged by recent research on the behaviour of acid forest soils. Although the effective cation exchange capacity (CECe) in an individual forest soil sample can be easily shown to vary with the addition of strong base or acid, it is difficult to find a pH effect in a population of different acid forest soil samples. In the very acidic pH range below ca 4.5, soils will generally have smaller concentrations of adsorbed Al3+. This can be ascribed to a reduced availability of weatherable Al‐containing minerals and a large amount of weak, organic acidity. Base cation saturation calculations in this pH range do not provide a useful metric and, in fact, pH is modelled better if Al3+ is considered to be a base cation. Measurement of exchangeable Al3+ with a neutral salt represents an ill‐defined but repeatable portion of organically complexed Al, affected by the pH of the extractant. Cation exchange in these soils can be modelled if assumptions are made as to the proportion of individual cations that are non‐specifically bound by soil OM. Future research should recognize these challenges and focus on redefining our concepts of cation retention in these important soils.  相似文献   

10.
We have examined the charge characteristics, with special emphasis on the role of free Fe and organic matter, of humid tropical soils from Bambouto Mountains, Western Cameroon. The soils, which are formed from tuff, basalt and trachyte, are dominated by kaolinite and sesquioxides. The amounts of Fe oxides in them increase somewhat with depth. Open 2:1 phyllosilicates are present in trace amounts. The point of zero charge of the variable charge components, pH0, is around 4 in the topsoil (0–20 cm) and around 6 at 100–150 cm depth. In the subsoils, pH0 exceeds soil pH presumably because of large quantities of Fe oxides. Deferration increases both soil pH and pH0, but diminishes the anion exchange capacity. Oxides and oxyhydrates of Fe have positive surface charge, so their removal from the soils would result in overall loss of positive charge. Increases in soil pH would bring about an increase in the cation exchange capacity of the soils. Hence, management practices that reduce soil acidity should reduce loss of essential basic cations via leaching.  相似文献   

11.
A study was conducted into the alleviation of the infertility of an acid sulphate by using ground basalt with or without ground magnesium limestone (GML) and organic fertilizer. Fresh soils were treated with the amendments and subjected to two cycles of submergence and drying. The soil was dominated by kaolinite, mica and smectite. The untreated soil pH was <3·5 and solution Al was high. GML application at 4 t ha−1 was able to increase pH and subsequently reduced Al toxicity sufficiently to allow for rice growth. After 4 months of submergence, the pH of the sample treated with 4 t ground basalt ha−1 had increased from 3·61 to 3·94, with concomitant decrease of Al. In the same cycle, the soil pH increase was much higher (reaching 5·22). Ground basalt is thus comparable with GML as an acid soil ameliorant. Within the experimental period, the ground basalt had mostly disintegrated and dissolved. The solution pH had further increased (to 5·94) in the second cycle because of dissolution of more ground basalt. This means that it takes time for ground basalt to completely dissolve and consequently supply Ca, Mg, K and P to the growing crop in the field. Applying 0·25 t organic fertilizer ha−1 into the soil had no significant effect on either pH or Al. This form of organic matter (compost) contains essential nutrients. It is recommended that 4 t ground basalt should be applied in combination with 0·25 t organic fertilizer ha−1 a few months ahead of the growing season for maximal benefit. This study showed that ground basalt can be effectively used to ameliorate highly acidic soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Oxisols, which are highly weathered, occupy a large area of Malaysia. These soils are infertile because of low pH, calcium (Ca), magnesium (Mg), and potassium (K) levels but high aluminum (Al) content. The infertility can be ameliorated by applying soil amendments. A study was conducted to determine the effects of basalt and/or rice husk compost application on cocoa growth planted on an Oxisol. The results showed that either basalt or rice husk compost and their combinations were effective ameliorants. Basalt application increased soil pH and exchangeable Ca and Mg while decreasing exchangeable Al. Accordingly, soil solution Ca, Mg, and K increased and Al and manganese (Mn) concentrations decreased. Silicate released from basalt was able to lower the pHo (the pH at which the net charge of the variable charge minerals is zero), indicating a negative charge was being generated, which led to increase in the cation exchange capacity (CEC) of the Oxisol. The improvement in soil fertility because of application of the amendments had improved cocoa growth. Leaf K and P of the cocoa planted on the basalt-treated soils were within the sufficient range for cocoa growth. Rice husk compost applied at a rate of less than 20 t ha?1 in this trial was not able to supply sufficient N to the cocoa. Basalt application at an appropriate rate effectively ameliorates acidic soil infertility, but it takes time to realize the positive effects of application as it slowly dissolves under field conditions.  相似文献   

13.
We evaluated the effect of 1 N NH4OAc and sodium-citrate dithionite extractable forms of soil Fe, Al, and Mn on P-sorption of a flooded acid sulfate soil (Sulfic Tropaquepts) and a non-acid sulfate soil (Typic Tropaquepts) under different soil oxidation-reduction and pH conditions. We used Maha-Phot soil (Sulfic Tropaquepts) and Bangkok soil (Typic Tropaquepts) from the Bangkok Plain, Thailand, and incubated them with 0.2% rice straw under aerobic (O2 atmosphere) and anaerobic (N2 atmosphere) conditions at three different levels of pH (4.0, 5.0, and 6.0) for 6 weeks in stirred soil suspensions with a soil to 0.01 M CaCl2 solution ratio of 1:7. After the incubation period, the soil suspensions in the first treatment (control) were not washed or pretreated with any extractants. For the second treatment (II), the soil suspensions were treated with 1 N NH4OAc (buffered to pH 4.0) to remove Fe, Al, and Mn in exchangeable form. In the third treatment (III), the soils suspensions were treated with sodium citrate dithionite solution (20%) to remove Fe, Al, and Mn in the form of free oxides. The soil residues were then equilibrated with KH2PO4 ranging from 0 to 500 mg P kg-1 soil. Sorption isotherms were described by the classical Langmuir equation. The P-sorption parameters under study were standard P requirement (SPR), Langmuir maximum sorption capacity (X m), Langmuir sorption constant (k), and buffering index (BI). Treating soils with 1 N NH4OAc reduced X m by 32–55%, SPR by 68–84%, and also decreased the differences in P-sorption due to the effects of pH and oxidation-reduction conditions. Significant correlations between the P-sorption parameters and the amount of free iron oxides indicated the primary role of iron oxides in P-sorption of acid sulfate soils. Aluminium oxides seemed to play a secondary role in P-sorption of these soils. Manganese also showed an important effect on P-sorption, but the mechanism is ambiguous.This is a contribution from the Wetland Biogeochemistry Institute, Louisiana State University, Baton Rouge, LA 70803-7511  相似文献   

14.
Abstract

Highly weathered tropical soils are characterized by having a predominantly variable charge. Many management practices commonly used in the exploitation of these soils (e.g., liming, phosphate application, and manuring) are known to modify their electrical charge and the sorption/desorption behavior of cations and anions. This process is, at least, partially governed by the charges existing in the soil system. Available information on this subject comes mainly from short‐term laboratory and greenhouse experiments. There is a lack of data regarding the cumulative and long‐term effects of those practices used at farm‐scale levels and on the dynamics and availability of nutrients to the plants under field conditions. In the present work, changes in some electrochemical attributes of a variable charge soil (Oxisol) were studied, as influenced by treatments with phosphate + green manure (Cajanus cajan), phosphate + lime, and phosphate + lime + green manure, applied during a six‐year period. In this period, rice, bean, wheat, or corn, were grown in seventeen successive crops. Phosphate (total 334 ppm P) and phosphate + lime (total 5.5 t ha‐1) were shown to increase net electric charge and soil cation exchange capacity (CEC) at the field pH, and not to affect zero point of charge (ZPC), CEC at pH 7.0, or anion exchange capacity (AEC) of the soil at the field pH. The effects of phosphate + lime were more pronounced than those of phosphate alone. Green manure (total 16 t ha‐1 dry matter), associated to crop residues and phosphate or phosphate + lime, did not influence electrochemical properties.  相似文献   

15.
The susceptibility of some soils in the high rainfall zone of Nigeria to soil erosion must be measured regularly for better soil management. A number of techniques have been adopted for the determination of this soil loss parameter. The aim of this study is to determine the soil characteristics that relate significantly to erodibility. Soil samples collected from 0–20 cm depth from 10 different locations in the upper rainforest area were analysed for particle size distribution, water‐stable aggregates, exchangeable cations, organic carbon, soil dispersion and aggregating indices. The soils are mainly Acrisols, Nitosols, Gleysols and Ferralsol in the FAO classification while their textures are sands to sandy‐clay‐loam. They are very unstable in water as reflected in the higher values of WSA >0·50 mm and the mean‐weight diameter that ranged from 0·50 to 2·03 mm. The dispersion ratio for the soils are between 0·26 and 0·69 while clay dispersion ratio also ranged from 0·24 to 0·80. Revised universal soil loss equation (RUSLE) erodibility model values (K) were from 0·03 to 0·06 Mg h MJ−1 mm−1. These parameters can be effectively used in predicting soil erodibility, though their predictability varied in ranking of soil erodibility. In spite of this variability these indices can be used for potential erosion hazard determination by agricultural extension staff to avoid crop failures and other negative influence of soil erosion. The soil parameters are easy to determine and will be a valuable instrument when faster approaches to erosion control measures are required. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The fine earth (<2 mm) and rock fragments (>2 mm) fractions of two soils derived from Oligocene sandstone have been examined to assess the origin of the discrepancies between cation exchange capacity (CEC) and effective CEC (ECEC). The soils differ in terms of acidity: soil A is more acid than soil B. When the A samples are treated with BaCl2, the solution became sufficiently acid (pH < 4·5) to dissolve and to maintain Al in solution. From these samples more Al is released than base cations. Aluminium was continuously replenished even after 192 h, so that the ECEC was always larger than the CEC. Samples from soil B contain less H and Al ions, and the BaCl2 solution could not lower the pH below 5·0. In these samples little Al is released, and the base cations dominate the exchangeable pool of ions. This Al can be considered to be exchangeable, and a good agreement exists between the ECEC and the CEC. The source of non-exchangeable Al in the A samples is the OH-Al polymers of the hydroxy-interlayered vermiculite (HIV) and hydroxy-interlayered smectite (HIS) that tend to dissolve during the BaCl2 treatments. In the less acid B samples the Al polymers are not affected by BaCl2 treatment. Different results were obtained when the clays, extracted from an Na-dispersed suspension, were treated with BaCl2 solution. Because the clays are no longer acid, no H+ is released, and the OH-Al polymers are not dissolved. Therefore, the saturating ions play an important role in the dissolution of the OH-Al polymers and cause differences between the CEC and ECEC. We discount organic matter and specifically Al-organo complexes as a source of non-exchangeable Al. Both A and B soils contain very similar pyrophosphate-extractable Al, but show substantial differences in the amount of exchangeable Al.  相似文献   

17.
Using a soil from a newly reclaimed area where high dispersibility of fine particles had led to poor physical properties in the field, changes in dispersibility and charge characteristics after artificial precipitation of Al hydroxides onto the soil were investigated. Al hydroxides were precipitated by neutralization with NaOH of an acidic A1C13 solution in which the soil samples were placed.

When the titration rates were changed, no significant differences in dispersibility were observed in the resultant soils. In the systems with the addition of 2 g kg-1 or less of A1(OH)3, dispersion ratios of clays were almost identical with those of blank samples although the specific surface areas were reduced. In the systems with 5 g kg-1 or more of A1(OH)3, considerable effects of Al hydroxides on reduction of clay dispersibility were recognized (e.g. 10 g kg-1 addition yielded less than one-third of the original ratio of the clay dispersion). A slightly larger decrease in dispersion was observed by the addition of 15 g kg-1 or more. As the amount of added Al increased, the amount of negative charges of the soil decreased while that of positive charges increased. The charge characteristics of the system with the addition of 20 g kg-1 of A1(OH)3 were closer to those of the adjacent forest soil which was characterized by a very low dispersibility. It was inferred that added Al hydroxides polymerized to form Al polycation species that were not readily exchangeable, neutralizing negative charges of clays, and acting as interparticle bonding between the clays. On the other hand, forest soils were considered to have acquired a physical stability against the dispersion of fine particles as free Al oxides had been accumulated in the process of natural weathering. It was concluded that charge characteristics primarily determined the dispersion and flocculation behavior of soils and that Al hydroxides were important modifiers of charge characteristics of soils.  相似文献   

18.
Impact of organic matter addition on pH change of paddy soils   总被引:1,自引:1,他引:0  

Purpose

The objective of the present study was to explore the effect of initial pH on the decomposition rate of plant residues and the effect of residue type on soil pH change in three different paddy soils.

Materials and methods

Two variable charge paddy soils (Psammaquent soil and Plinthudult soil) and one constant charge paddy soil (Paleudalfs soil) were used to be incubated at 45 % of field capacity for 105 days at 25 °C in the dark after three plant residues (Chinese milk vetch, wheat straw, and rice straw) were separately added at a level of 12 g?kg?1 soil. Soil pH, CO2 escaped, DOC, DON, MBC, MBN, NH 4 + , and NO 3 ? during the incubation period were dynamically determined.

Results and discussion

Addition of the residues increased soil pH by 0.1–0.8 U, and pH reached a maximum in the Psammaquent and Plinthudult soils with low initial pH at day 105 but at day 3 in the Paleudalfs soil with high initial pH. Incorporation of Chinese milk vetch which had higher concentration of alkalinity (excess cations) and nitrogen increased soil pH more as compared with incorporation of rice and wheat straws. Microbial activity was the highest in Chinese milk vetch treatment, which resulted in the highest increase of soil pH as compared with addition of rice and wheat straws. However, nitrification seemed to be inhibited in the variable charge soils of Psammaquent and Plinthudult but not in the constant charge soil of Paleudalfs.

Conclusions

The effectiveness of increasing soil pH after incorporation of the plant materials would be longer in low initial pH soils of Psammaquent and Plinthudult than in high initial pH soil of Paleudalfs. In order to achieve the same degree of pH improvement, higher amounts of plant residues should be applied in constant charge soils than in variable charge soils.  相似文献   

19.
Large quantities of mussel shells(66 000-94 000 t year 1),an alkaline material that can be used as a soil amendment,are generated as waste in Galicia,NW Spain.A field trial was carried out by planting different pasture species in a Haplic Umbrisol using a randomized block design with four blocks and six treatments(not amended control or soil amended with lime,finely ground shell,coarsely ground shell,finely ground calcined shell or coarsely ground calcined shell) to compare the effects of lime and mussel shells additions on a soil with a low cation exchange capacity and high Al saturation.The trial was established in March 2007,and samples of plants and soil were collected when plots were harvested in summer 2008(separating the bulk and rhizosphere soil).The soils were analyzed for pH,total C,total N,available P,exchangeable cations,effective cation exchange capacity and available micronutrients.Dry matter yield was measured in all plots and plants were analyzed for nutrients.Application of mussel shells and the commercial lime resulted in an increase in pH and exchangeable Ca and a decrease in exchangeable Al and Al saturation.The stability of pH over time was high.These effects were most noticeable in the rhizosphere.The amendment also had a positive effect on dry matter yield and concentration of Ca in the plant.  相似文献   

20.
The Zn adsorption/desorption in some Algerian soils, which are under orange cultivation, was studied and the results obtained were analyzed using Langmuir equation. The maximum amount of Zn adsorbed, in majority of cases, varies between 60 and 80 % of the cation exchange capacity. As regards sequential desorption, the EDTA desorbed about 80 %of the Zn adsorbed, whereas, the desorption through 1 N KCI averaged about 15 % only. The adsorption maximum (Sm) and desorption maximum (Rm) correlate significantly with various soils properties, like clay content, cation exchange capacity and pH. The calculation of distribution coefficient (Kd) and adsorption density of Zn (r) indicates that the metal above 2.5 · 10 ions/m2 is adsorbed through ion exchange, whereas below this value, the ion is most possibly adsorbed due to specific adsorption mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号