首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
奶牛性控冻精人工授精影响因素研究   总被引:2,自引:0,他引:2  
用分离X和Y精子的性控精液进行人工授精是控制家畜性别之最简单可行的方法.然而,低密度性控精液输精效果还不如常规人工授精,许多技术环节都有待改进.以常规冻精和稀释常规冻精为对照,研究解冻方法、输精时间和部位、不同精液来源和输精员以及育成和经产牛等因素对性控冻精人工授精妊娠率的影响.结果显示,精液解冻水浴温度和持续时间对人工授精效果有显著影响,性控精液对解冻水浴温度更敏感;性控冻精和稀释常规冻精比常规冻精对输精时间要求更严格;3种精液输精到排卵卵泡同侧子宫角基部受胎率都显著高于输精于子宫体和同侧子宫角前端;3种精液育成牛受胎率(80%)都显著高于经产牛(50%);于输精同时注射促排卵素3号明显提高性控冻精受胎率;经严格挑选、能够从事胚胎移植操作的技术熟练输精员之间性控冻精受胎率差异不显著;在所设计的不同条件下,性控冻精与稀释同样倍数的常规冻精行为相似,说明精子分离过程没有对精子造成特殊损伤.研究结果说明,精确控制人工授精各个技术环节可以实现消除性控与非性控、低密度与高密度精演之间的差别,获得高妊娠率.  相似文献   

2.
The aim of this study was to investigate the expression of progesterone receptor (PR) in the utero‐tubal junction (UTJ) of sows at 24 h after intra‐uterine insemination (IUI) and deep intra‐uterine insemination (DIUI) compared with conventional artificial insemination (AI) in pigs. Fifteen multiparous sows were used: AI (n = 5), IUI (n = 5) and DIUI (n = 5). The sows were inseminated with a single dose of diluted semen during the second oestrus after weaning at 6–8 h prior to ovulation (AI: 3000 × 106 spermatozoa, IUI: 1000 × 106 spermatozoa and DIUI: 150 × 106 spermatozoa). The UTJ was collected and subject to immunohistochemical staining using avidin‐biotin immunoperoxidase technique with mouse monoclonal antibody to PR. In the oviductal part of the UTJ, the intensity of PR in the tunica muscularis and the proportion of PR‐positive cells in the surface epithelium after DIUI were lower than AI (p < 0.05). The intensity and the proportion of PR‐positive cells between AI and IUI in all compartments of the UTJ did not differ significantly (p > 0.05). When comparing between tissue compartments, prominent staining was observed in the muscular layer of the UTJ. It could be concluded that the expression of PR in the UTJ prior to fertilization after DIUI with a reduced number of spermatozoa was lower than that after AI. This might influence sperm transportation and the fertilization process.  相似文献   

3.
The purpose of the present study was to compare the number of spermatozoa obtained from different parts of the oviducts and the uterine horns of sows after intrauterine insemination (IUI) and conventional artificial insemination (AI), 24 h after insemination. Twelve crossbred (Landrace x Yorkshire) multiparous sows were used in the experiment. The sows were examined for standing oestrus using a back pressure test and were examined every 4 h after standing oestrus by real-time B-mode ultrasonography to estimate the time of ovulation. The sows were allocated to two groups, group I sows (n = 6) were inseminated by a conventional AI technique with 3 x 10(9) motile spermatozoa in 100 ml of extended semen, and group II sows (n = 6) were inseminated by an IUI technique using 1 x 10(9) motile spermatozoa in 50 ml of extended semen. A single dose of AI or IUI was given using the same boar, 8-10 h before the expected time of ovulation during the second oestrus after weaning. Twenty four hours after insemination, the sows were ovario-hysterectomized. The oviducts and the uterine horns were removed and divided into seven parts, the cranial, middle and caudal uterine horns, the utero-tubal junction (UTJ), the cranial and caudal isthmus, and the ampulla. All parts of the reproductive tract were flushed and the spermatozoa were counted using a haemocytometer. The results revealed that the spermatozoa were found in both the oviducts and the uterine horns in all animals. The number of flushed spermatozoa in the UTJ of groups I and II, was 142,500 and 131,167 (p > 0.05), and in the caudal isthmus was 1411 and 1280 (p > 0.05), respectively. The proportion of spermatozoa in different parts of the reproductive tract in relation to the total number of spermatozoa within the tract was not significantly different between groups I and II (p > 0.05). It could be concluded that IUI, with a three-time reduction in the number of spermatozoa used resulted in the same number of spermatozoa to be deposited in the sperm reservoir around ovulation time.  相似文献   

4.
The objective of this study was to compare the number of recovered spermatozoa, in different parts of the uterine horn and oviduct in gilts, after insemination with fractionated (experiment) and non-fractionated (control) liquid stored semen. The number of spermatozoa and volume of backflow was also investigated. Twenty three cross-bred gilts were used in the study. They were divided into 2 groups, a control group (non-fractionated liquid stored semen, n=10) which were inseminated with 100 ml of liquid stored semen containing 3,000 million spermatozoa per dose and an experimental group (fractionated liquid stored semen, n=10) which were inseminated with 50 ml of liquid stored semen, with 3,000 million spermatozoa per dose and followed by another 50 ml of semen dilutor (Beltsville Thawing Solution, BTS). Thereafter, backflow semen was collected and measured every 15 min for a period of 1 hr. Three or 12 hr after insemination, 5 gilts from each group had the uterus, the horn of the uterus, the oviducts and the ovaries removed under general anaesthesia. The horn of uterus and the oviducts were seperated by ligation into 6 segments. All 6 segments were flushed with BTS to collect all spermatozoa within the segment. Recovered spermatozoa were counted, using a haemocytometer and the volume recorded. It was seen that the percentage of spermatozoa in the backflow semen in the experimental group was less than in the control group. The difference was not significant in the gilts that were operated on 3 hr after insemination, the mean number of spermatozoa in the uterine horn and the utero-tubular junction (UTJ) was more in the experimental than in the control group, but less in the isthmus and the ampulla of the oviduct. The gilts which were operated on 12 hr after insemination, had relativity more ovulating gilts in the control group than in the experimental group (3 of 4 gilts compare to 3 of 5 gilts). The control group had more spermatozoa in the oviduct than the experimental group, but less in UTJ and in the horn of the uterus. Again the difference was not significant. It can be concluded that fractionated (experimental) or non-fractionated (control) insemination of semen with the same number of spermatozoa provides no significant difference in the number of spermatozoa either in the horn of the uterus, the UTJ or the oviduct of gilts.  相似文献   

5.
The aim of this study was to investigate the number of spermatozoa in the crypts of the utero‐tubal junction (UTJ) and the oviduct of sows approximately 24 h after intrauterine insemination (IUI) and deep intrauterine insemination (DIUI) and compared with that of conventional artificial insemination (AI). Fifteen crossbred Landrace × Yorkshire (LY) multiparous sows were used in the experiment. Transrectal ultrasonography was performed every 4 h to examine the time of ovulation in relation to oestrous behaviour. The sows were inseminated with a single dose of diluted fresh semen by the AI (n = 5), IUI (n = 5) and DIUI (n = 5) at approximately 6–8 h prior to the expected time of ovulation, during the second oestrus after weaning. The sperm dose contained 3000 × 106 spermatozoa in 100 ml for AI, 1,000 × 106 spermatozoa in 50 ml for IUI and 150 × 106 spermatozoa in 5 ml for DIUI. The sows were anaesthetized and ovario‐hysterectomized approximately 24 h after insemination. The oviducts and the proximal part of the uterine horns (1 cm) on each side of the reproductive tracts were collected. The section was divided into four parts, i.e. UTJ, caudal isthmus, cranial isthmus and ampulla. The spermatozoa in the lumen in each part were flushed several times with phosphate buffer solution. After flushing, the UTJ and all parts of the oviducts were immersed in a 10% neutral buffered formalin solution. The UTJ and each part of the oviducts were cut into four equal parts and embedded in a paraffin block. The tissue sections were transversely sectioned to a thickness of 5 μm. Every fifth serial section was mounted and stained with haematoxylin and eosin. The total number of spermatozoa from 32 sections in each parts of the tissue (16 sections from the left side and 16 sections from the right side) was determined under light microscope. The results reveal that most of the spermatozoa in the histological section were located in groups in the epithelial crypts. The means of the total number of spermatozoa in the sperm reservoir (UTJ and caudal isthmus) were 2296, 729 and 22 cells in AI, IUI and DIUI groups, respectively (p < 0.01). The spermatozoa were found on both sides of the sperm reservoir in all sows in the AI and the IUI groups. For the DIUI group, spermatozoa were not found on any side of the sperm reservoir in three out of five sows, found in unilateral side of the sperm reservoir in one sow and found in both sides of the sperm reservoir in one sow. No spermatozoa were found in the cranial isthmus, while only one spermatozoon was found in the ampulla part of a sow in the IUI group. In conclusion, DIUI resulted in a significantly lower number of spermatozoa in the sperm reservoir approximately 24 h after insemination compared with AI and IUI. Spermatozoa could be obtained from both sides of the sperm reservoir after AI and IUI but in one out of five sows inseminated by DIUI.  相似文献   

6.

The objective of this study was to evaluate the fertility of sexed semen compared with conventional semen with regard to the puberty and breeding ages of Holstein dairy heifers subjected to double Ovsynch protocol with fixed time of artificial insemination. A total of 468 Holstein heifers were divided into two groups. The first group was 122 dairy heifers inseminated via conventional semen, while the second group was 346 heifers inseminated with sexed semen. The puberty and breeding ages of heifers were determined from the farm records. Estrus was synchronized using the double Ovsynch protocol. Numbers were estimated for pregnancy at 40 and 60 days post insemination, embryonic loss, and abortion. The results revealed that the heifers inseminated with sexed semen had a significantly lower first-service pregnancy rate (51.45%) than those inseminated with conventional semen (61.47%). Heifers achieving puberty before 350 days old had a higher pregnancy rate. Embryonic losses and abortion rates did not differ between the two types of semen. Holstein heifers subjected to Ovsynch protocol with sexed semen had an acceptable first-insemination pregnancy rate. Even the applications of sexed semen reduce the reproductive fertility and pregnancy rate in Holstein heifers.

  相似文献   

7.
Flow cytometrically sex sorted spermatozoa are reduced in their fertilizing capacity, particularly when stored either in cooling extender or after freezing in liquid nitrogen. So far, preservation methods for sorted spermatozoa have differed only marginally from procedures used for unsorted semen. In the present study, a TRIS extender was modified to balance major cell damage caused by the sorting process and by liquid storage of the sorted spermatozoa. The new extender, containing a combination of antioxidants (AO) and bovine serum albumin (BSA), significantly increased the lifespan and fertilizing capacity of sex sorted spermatozoa. No significant differences were observed between unsorted controls and sorted samples for motility and status of sperm membranes as tested by fluorescein-isothiocyanat-peanut agglutinin/propidium iodide (FITC-PNA/PI). Acrosome integrity of spermatozoa was significantly better when semen was stored at 15 degrees C for 24 and 48 h in an extender containing AO with or without BSA as compared with controls (p < 0.05). There were no significant differences, in pregnancy rates of heifers inseminated at a natural oestrus, between unsorted controls (16/24, 66.7%) and both sorted groups (AO + BSA: 18/31, 58.1% and AO-BSA: 12/22, 54.5%). Additionally, it was shown for the first time that artificial insemination (AI) with liquid sexed bull spermatozoa stored for 72 h after sorting can result in pregnancy rates similar to AI with non-sorted semen.  相似文献   

8.
The present study aimed to investigate the fertility of ewes artificially inseminated with three different methods using a synthetic semen extender, AndroMed. The three methods of artificial insemination (AI) were cervical AI with fresh-diluted or frozen-diluted semen at observed estrus, and an intrauterine AI with frozen-thawed semen. A total of 80 ewes were treated with a controlled internal drug release (CIDR) containing 0.3 g progesterone per device for 12 days. In Experiment 1 (26 Suffolk ewes), superovulation was induced with 20 mg follicle-stimulating hormone and 250 IU equine chorionic gonadotropin (eCG) two days and one day before CIDR removal, respectively, during the non-breeding season. In Experiment 2 (54 Suffolk and Suffolk crossbred ewes), an intramuscular injection of 500 IU eCG was administered one day before CIDR removal to synchronize estrus and ovulation during the breeding season. In Experiment 1, fresh-diluted or frozen-thawed semen was deposited into the cervical orifice after estrus detection, and an intrauterine AI with frozen-thawed semen was performed by laparoscopy at a fixed-time basis without estrus detection. Embryos were recovered by uterine flushing 6 days after AI, and the rates of recovered, fertilized (cleaved) ova and embryos at the morula or blastocyst stage were compared among the three AI methods. In Experiment 2, the pregnancy rates after the three AI methods were compared. In Experiment 1, the rates of recovered ova were not significantly different among the three AI methods (52.5-56.7%). The rate of fertilized ova (81.0%) by laparoscopic AI with frozen-thawed semen was significantly higher compared with cervical AI of fresh-diluted (25.5%) or frozen-thawed (3.5%) semen, but the rate of embryos at the morula or blastocyst stage (17.6%) was significantly lower than that of the cervical AI with fresh-diluted semen (69.2%). The rates of ewes yielding fertilized ova were not significantly different among the three groups (44.4, 11.1 and 62.5% for cervical AI with fresh-diluted and frozen-thawed semen and intrauterine AI with frozen-thawed semen). In Experiment 2, the pregnancy rate of ewes intrauterinally inseminated with frozen-thawed semen (72.2%) was significantly higher than those of ewes inseminated cervically with fresh-diluted (5.5%) or frozen-thawed (0.0%) semen. The present results showed that acceptable fertilization and pregnancy rates could be obtained by an intrauterine AI with frozen-thawed semen using a synthetic semen extender (AndroMed), but not sufficient by the cervical AI with either fresh or frozen semen.  相似文献   

9.
The fertility of ram spermatozoa that had undergone flow cytometric sorting (MoFlo SX) and cryopreservation was assessed after low-dose insemination of synchronized Merino ewes. Oestrus was synchronized with progestagen-impregnated pessaries, PMSG and GnRH treatment. Ewes (n = 360) were inseminated with 1 x 10(6), 5 x 10(6) or 15 x 10(6) motile sorted frozen-thawed (S(1), S(5), or S(15) respectively) or non-sorted frozen-thawed (C(1), C(5) or C(15) respectively) spermatozoa from three rams. An additional group of ewes were inseminated with 50 x 10(6) motile non-sorted frozen-thawed spermatozoa (C(50)) to provide a commercial dose control. The percentage of ewes lambing after insemination was similar for C(50) (24/38, 63.2%), C(15) (37/54, 68.5%), S(15) (38/57, 66.7%), S(5) (37/56, 66.1%) and S(1) (32/52, 61.5%) groups (p > 0.05), but lower for C(5) (19/48, 39.6%) and C(1) (19/55, 34.5%) treatments (p < 0.05). This study demonstrates sorted ram spermatozoa are equally fertile to non-sorted spermatozoa even when inseminated at 2% of the dose. Furthermore, at very low artificial insemination doses (1 or 5 million motile) the fertility of sorted ram spermatozoa is superior to non-sorted spermatozoa inseminated in equal numbers. These results have significance for the future commercialization of sex-preselection technology in sheep as a reduction in the minimum effective sperm number will allow a corresponding decrease in the associated cost per dose.  相似文献   

10.
Although herpesviruses are known to contaminate the semen of several mammalian species, the occurrence of feline herpesvirus type 1 (FHV-1) in semen of infected cats has not been reported. Our objectives in this study were to investigate the presence of FHV-1 DNA in seminal fluid and frozen-thawed spermatozoa from FHV-1 infected Pallas' cats (Otocolobus manul) and assess the functionality of their frozen-thawed spermatozoa in vitro. Over a 3-yr period, semen (n = 33 ejaculates) was collected periodically via electroejaculation from four Pallas' cats chronically infected with FHV-1. Spermic ejaculates were frozen by pelleting on dry ice and stored in liquid nitrogen. After thawing, sperm motility and acrosome status were assessed over time during in vitro culture. For vitro fertilization (IVF), viable domestic cat (Felis silvestris catus) oocytes were inseminated with frozen-thawed Pallas' cat spermatozoa and evaluated for embryo cleavage. For FHV-1 polymerase chain reaction (PCR) analysis, DNA was extracted from seminal fluid, frozen-thawed spermatozoa, inseminated oocytes, heterologous IVF embryos, and conjunctival biopsies and analyzed for presence of a 322-base pair region of the FHV-1 thymidine kinase gene. Immediately post-thaw, sperm motility and percentage of intact acrosomes were decreased (P < 0.05) compared to fresh samples, and declined further (P < 0.05) during culture. However, all frozen-thawed IVF samples were capable of fertilizing domestic cat oocytes (overall, 46.1 +/- 6.0% cleavage). PCR analysis did not identify FHV-1 DNA in any reproductive sample despite the repeated detection of FHV-1 DNA in conjunctival biopsies. These results suggest that semen collected from Pallas' cats infected with FHV-1 does not contain cell-associated or non-cell-associated virus and that frozen-thawed spermatozoa exhibit adequate function for potential genetic rescue with minimal risk of FHV-1 transmission.  相似文献   

11.
Ultrastructure of the Uterotubal Junction in Preovulatory Pigs   总被引:2,自引:0,他引:2  
The ultrastructure of the surface epithelia from the uterotubal junction (UTJ), and the adjacent tubal isthmic and endometrial regions, was studied in preovulatory oestrus gilts, either unmated or inseminated 12 h before with fresh boar semen. The simple columnar epithelium of the UTJ consisted of non-ciliated (secretory) and ciliated cells. Secretory vesicles occurred in the secretory cells, especially in inseminated gilts. Lymphocytes, monocytes and macrophages were found dispersed basally among the epithelial cells. Phagocytosis of epithelial cells undergoing apoptosis was seen throughout the UTJ at oestrus, increasing after insemination. Neutrophilic granulocytes were found in the lamina propria of the uterine component of the UTJ, but only occasionally in the epithelium. After insemination, neutrophils invaded the uterine epithelium, to actively participate in intraepithelial phagocytosis or move into the lumen, engulfing spermatozoa. Neutrophils were absent from the UTJ proper and the isthmic epithelium, irrespective of the presence of spermatozoa in the lumen. Those spermatozoa in the uterine lumen that escaped phagocytosis had severely damaged plasma membranes, whereas those in the UTJ proper--concentrated towards the deep furrows of the diverticulae--mostly showed normal sperm ultrastructure.  相似文献   

12.
The aim of the present study was to assess the effect of dimethylsulfoxide (DMSO) and acetamide on the post-thaw properties of hare semen and to perform an AI trial with frozen-thawed semen. Semen was collected under general anaesthesia by the electroejaculation method from 6 males. Immediately after collection, the semen was diluted with an extender containing the following components: 250 mM Tris, 80 mM citric acid, 70 mM glucose, 1.0 M DMSO, egg yolk (17% v/v) and kanamycin (80 mg/l); this extender was used for Protocol I (n=17). In Protocol II (n=15), the DMSO was replaced with 1.0 M acetamide. Immediately after thawing and after incubation for 90 and 180 min at 37 C, the properties of semen were evaluated by computer-assisted semen analysis, and the percentage of viable, acrosome intact spermatozoa was evaluated using flow cytometry. During the 3-h incubation, the percentages of motile spermatozoa and spermatozoa with progressive motility were significantly higher in Protocol I (P<0.01). Immediately after thawing, path and straight velocity were significantly higher in Protocol I (P<0.01), as was the curvilinear velocity (P<0.05). The amplitude of lateral head displacement was higher after 3-h incubation in Protocol I (P<0.05), and no differences in beat cross frequency were found between Protocol I and II at any incubation time. The percentage of viable, acrosome intact spermatozoa determined with flow cytometry was higher in Protocol I (P<0.01) at all incubation times. As a result of artificial insemination with the semen frozen with DMSO as a cryoprotectant, two out of three inseminated females delivered two healthy young each. Following artificial insemination with the semen frozen with acetamide as a cryoprotectant, two out of three inseminated females delivered one healthy young each. On the basis of the results, it should be stated that DMSO ensures better post-thaw properties of hare spermatozoa than acetamide.  相似文献   

13.
REASONS FOR PERFORMING STUDY: To compensate for the wide variation in the freezability of stallion spermatozoa, it has become common veterinary practice to carry out repeated ultrasonography of the ovaries of oestrous mares in order to be able to inseminate them within 6-12 h of ovulation with a minimum of 300-500 x 10(6) frozen-thawed spermatozoa. Furthermore, in order to achieve satisfactory fertility, this requirement for relatively high numbers of spermatozoa currently limits our ability to exploit recently available artificial breeding technologies, such as sex-sorted semen, for which only 5-20 x 10(6) spermatozoa are available for insemination. OBJECTIVES: This study was designed to evaluate and compare the efficacy of hysteroscopic vs. conventional insemination when low numbers of spermatozoa are used at a single fixed time after administration of an ovulation-inducing agent. METHODS: In the present study, pregnancy rates were compared in 86 mares inseminated once only with low numbers of frozen-thawed spermatozoa (3-14 x 10(6)) at 32 h after treatment with human chorionic gonadotrophin (hCG), either conventionally into the body of the uterus or hysteroscopically by depositing a small volume of the inseminate directly onto the uterotubal papilla ipsilateral to the ovary containing the pre-ovulatory follicle. RESULTS: Pregnancy rates were similarly high in mares inseminated conventionally or hysteroscopically with 14 x 10(6) motile frozen-thawed spermatozoa (67% vs. 64%). However, when the insemination dose was reduced to 3 x 10(6) spermatozoa, the pregnancy rate was significantly higher in the mares inseminated hysteroscopically onto the uterotubal junction compared to those inseminated into the uterine body (47 vs. 15%, P < 0.05). CONCLUSIONS: When inseminating mares with <10 x 10(6) frozen-thawed stallion spermatozoa, hysteroscopic uterotubal junction deposition of the inseminate is the preferred method. POTENTIAL CLINICAL RELEVANCE: Satisfactory pregnancy rates are achievable after insemination of mares with frozen-thawed semen from fertile stallions 32 h after administration of human chorionic gonadotrophin (Chorulon). Furthermore, these results were obtained when mares were inseminated with 14 x 10(6) progressively motile frozen-thawed spermatozoa from 2 stallions of proven fertility.  相似文献   

14.
Flow cytometry is considered the only reliable method for the separation of X and Y chromosome bearing spermatozoa in equines. The MoFlo SX DP sorter is highly efficient, allowing the production of foals of the desired sex. However, to achieve acceptable pregnancy rates the currently used protocol requires working with fresh semen obtained close to, or at, the sorting facility. An alternative protocol was tested during two consecutive breeding seasons. Fresh stallion semen was cooled for 20 h, during which staining with Hoechst 33342 took place. On the following day, this sample was flow sorted and compared with spermatozoa from the same ejaculate that had been sexed on the previous day. All sperm parameters evaluated remained unchanged when fresh sorted and refrigerated sorted semen were compared. Pre‐sorting storage at 5°C did not alter sperm velocities nor kinetics, viability or membrane permeability, production of reactive oxygen species, mitochondrial membrane potential or DNA fragmentation index of the sorted sample. The findings open for the possibility of using semen from stallions housed far from the sorting facilities. Processed and stained sperm could be shipped refrigerated on the previous day, sorted and inseminated on the next day.  相似文献   

15.
Artificial insemination (AI) is one of the most widely used reproductive technologies, and there is considerably interest in commercializing this technology in camels. Storage of semen extender frozen (at -20 °C) is of considerable interest to scientists working with camels, as transportation of diluents at refrigeration temperature is not always possible given the hot, arid and remote conditions that dromedary camels exist in. Therefore, this study was conducted to compare the fertility of fresh camel semen, after dilution in fresh or frozen-thawed green buffer (GB), after AI into single and multiple ovulating female camels. No differences were observed in any sperm characteristics (motility, membrane integrity, acrosome integrity or morphology) when semen was diluted in fresh or frozen-thawed GB (p>0.05). Sperm motility was increased by dilution (fresh: 70.7 ± 4.9% and frozen: 68.8 ± 3.1%) compared with the motility of sperm in neat semen (35 ± 2.85%; p<0.05), and sperm motility changed from oscillatory to forward progressive after dilution. Pregnancy rates were higher (p<0.05) for single ovulating camels inseminated with semen diluted in fresh (72.7%) compared with frozen-thawed GB (27.3%), and fertilization rates were also higher (p<0.05) for multiple ovulating camels inseminated with semen diluted in fresh (83.3%) compared with frozen-thawed GB (11.1%). These results clearly demonstrate the detrimental effect of freezing and thawing semen diluent on the fertility of fresh camel semen. However, further studies are required to elucidate the mechanism responsible for this reduction in fertility. Moreover, these results demonstrate that the fertility of fresh camel semen diluted in fresh GB is high enough to be considered commercially viable.  相似文献   

16.
The present study investigated the infiltration of leukocyte subpopulations in the utero-tubal junction (UTJ) and each part of the oviducts at about 24 hr after intra-uterine insemination (IUI) and deep intra-uterine insemination (DIUI) compared to conventional artificial insemination (CAI) in sows. Fifteen crossbred Landrace x Yorkshire multiparous sows were used (CAI, n=5; IUI, n=5; DIUI, n=5). The sperm dose contained 3,000 × 10(6) (100 ml), 1,000 × 10(6) (50 ml) and 150 × 10(6) (5 ml) motile spermatozoa for CAI, IUI and DIUI, respectively. The sows were inseminated with extended fresh semen at 6 to 8 hr prior to the expected time of ovulation. At 25.2 ± 1.6 hr after insemination, the oviducts and the UTJ were collected. The tissue samples of UTJ, caudal isthmus, cranial isthmus and ampulla were transversely cut to a thickness of 5 μm and stained with H&E. The total numbers of lymphocytes, neutrophils, macrophages, eosinophils and plasma cells were determined under light microscope. It was found that the numbers of lymphocytes, eosinophils and macrophages after CAI, IUI and DIUI were not significantly different (P>0.1) in both epithelial and sub-epithelial connective tissue layer of the UTJ, caudal isthmus, cranial isthmus and ampulla. Intra-epithelial neutrophils in the UTJ were higher than cranial isthmus (P<0.05) and ampulla (P<0.05). In the UTJ, the intra-epithelial neutrophil in the CAI group was higher than DIUI group (P<0.01). Plasma cells in sub-epithelial layer of the endosalpinx in the CAI group were higher than DIUI group (P<0.05) and tended to be higher than the IUI group (P=0.08). In conclusion, compared to CAI, IUI and DIUI do not influence the infiltration of lymphocytes, macrophages and eosinophils in the UTJ and the oviduct prior to fertilization. But a lower number of neutrophils in the intra-epithelial layer of the UTJ and plasma cells in the sub-epithelial layers of the oviduct was observed in the DIUI group compared to CAI.  相似文献   

17.
Achieving canine pregnancy by using frozen or chilled extended semen   总被引:2,自引:0,他引:2  
Successful artificial insemination in the dog requires good timing of the insemination, skilled collection and handling of the semen, and mastering of insemination techniques. The bitch should be inseminated late in estrus. The insemination dose should contain at least 150 to 200 x 10(6) spermatozoa. Fresh semen can be inseminated vaginally, whereas frozen-thawed semen should be inseminated into the uterus. Pregnancy rates of 84% with fresh semen and 69% with frozen semen are reported.  相似文献   

18.
Application and Commercialization of Flow Cytometrically Sex-Sorted Semen   总被引:1,自引:0,他引:1  
The current technology to sort X and Y chromosome bearing sperm population requires individual identification and selection of spermatozoa in a modified high-speed flow cytometer. For farm animal species, the technology is capable of producing sexed sperm at greater than 90% purity. However, only in the bovine, the technology has reached a developmental level that allows its commercial application. Meanwhile, the demand for female calves has grown rapidly, which encourages the demand for sex-sorted semen from high genetic value bulls. The success of the technology will depend mainly on the fertilizing capacity of the sorted spermatozoa, as this is the most affecting and economically relevant factor. To date, fertility is still variable and is quite dependant on post-sort processing. New processing techniques are under investigation and will likely be able to improve the fertility rates after AI with sex-sorted semen. It is of great importance to select the right bulls and to test the sorted samples on a routine basis. In addition to the demand for sex-sorted semen by the cattle industry, there is also a significant demand expressed by pig farmers. However, it is still unknown if the use of sex-sorted semen through commercial pig AI will be economically feasible. For the pig, the combination of in vitro fertilization with sexed semen and non-surgical embryo transfer is an alternative that merits further scientific attention. Recent developments in ovine AI and ET will make it very likely that commercial sheep industry will adopt the sexing technology in their breeding concepts.  相似文献   

19.
Eight animals, 3 heifers and 5 primiparous cows, were artificially inseminated by intrauterine deposition of frozen-thawed semen. The insemination dose comprised 20×106 or 200 × 106 spermatozoa, frozen in French mini straws. Four animals were inseminated at fixed time interval (72 or 84 h) after cloprostenol injection. The remaining 4 animals were inseminated in spontaneous oestrus. Slaughter took place 2 or 12 h after insemination. After fixation the oviducts were cut into segments, which were serial-sectioned and stained. Six sections per segment were examined under the microscope for sperm recovery.The number of spermatozoa recovered from the oviducts varied considerably among animals. Recovery was poor (less than 50 spermatozoa) in 4 animals. Recovery was low when insemination took place in induced oestrus and with the lower sperm number (20×106). In animals in which more than 50 spermatozoa were found the distribution varied both between animals and between oviducts within the same animal. Overall, more spermatozoa were found in the lower (UTJ, isthmus and AIJ) than in the upper (ampulla) parts of the oviducts. In 3 out of 4 animals more spermatozoa were recovered from the left than from the right oviduct. Only in 1 animal were the majority of spermatozoa found in the oviduct ipsilateral to the follicle-bearing ovary.  相似文献   

20.
The aim of this study was to determine whether there was an increase in pregnancy rates when frozen-thawed stallion semen was processed by single layer centrifugation (SLC) through a colloid before insemination. In addition, changes in semen parameters, including motility, were determined before and after SLC. Twenty light-horse mares (aged 3-16 years) and one Thoroughbred stallion (aged 16 years) having average fertility with fresh and cooled semen (>50% per cycle) and displaying a postthaw motility of >35% were used. Control mares were inseminated using 4- × 0.5-mL straws (200 × 106/mL) of frozen-thawed semen. Treatment mares were inseminated with 4 × 0.5 mL of frozen-thawed semen after processing by SLC. Pregnancy rates were compared using Fisher exact test, and continuous parameters were evaluated by a Student t test. The pregnancy rates at day 14 were not different for the mares inseminated with control versus SLC-processed semen, despite the difference in sperm number (171 × 106 ± 21, 59 × 106 ± 25 progressively motile sperm). After frozen-thawed semen was processed by SLC, the percentage progressively motile sperm improved (P < .05), and SLC processing resulted in a 21.8% recovery of spermatozoa. In summary, centrifugation of frozen-thawed semen through a single layer of colloid increased the percentage of motile spermatozoa, but did not improve pregnancy rates after deep horn insemination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号