首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The optimum temperature for maize germination is between 25 and 28 °C. Poor and erratic germination at suboptimal temperature is the most important hindrance in its early sowing. This study was conducted to induce chilling tolerance in hybrid maize (Zea mays L.) by seed priming with salicylic acid (SA) and to unravel the background biochemical basis. For seed priming, maize hybrid (Hycorn 8288) seeds were soaked in 50, 100 and 150 ppm (mg l?1) aerated solutions of SA for 24 h and were dried back. Treated and untreated seeds were sown at 27 °C (optimal temperature) and at 15 °C (chilling stress) under controlled conditions. Performance of maize seedlings was hampered under chilling stress. But seed priming with SA improved the seedling emergence, root and shoot length, seedling fresh and dry weights, and leaf and root score considerably compared with control both at optimal and chilling temperatures. However, priming in 50 mg l?1 SA solution was more effective, followed by priming in 100 mg l?1 SA solution. Seed priming with SA improved the chilling tolerance in hybrid maize mainly by the activation of antioxidants (including catalase, superoxide dismutase and ascorbate peroxidase). Moreover, maintenance of high tissue water contents and reduced membrane permeability also contributed towards chilling tolerance.  相似文献   

2.
Chilling stress (<10 °C) is detrimental for chickpea, especially at the reproductive phase and leads to abortion of flowers, pods and impaired seed filling, causing severe reduction in yield. The information on the effects of low temperature during different pod-filling stages on quality and quantity of developing seeds is lacking in chickpea and hence this study. In this study, chickpea plants growing under warm conditions of the glasshouse were subjected to cold conditions of the field at the two stages, (a) early pod-filling and (b) late pod-filling, and subsequently analysed for stress injury in terms of electrolyte leakage (EL), 2,3,5-triphenyl tetrazolium chloride reduction, relative leaf water content and total chlorophyll content in the leaves of control and cold-stressed plants. Cold stress caused elevation of EL but reduced all the other parameters. Sucrose content decreased significantly in the leaves of cold-stressed plants. The differences between the effects of stress at two stages on the total plant dry weight were small and insignificant. The seed growth rate, seed fill duration, seed number, and average seed weight and size decreased greatly in the plants cold-stressed at the late pod-filling stage than those stressed at the early pod-filling stage. Greater reduction was observed in starch, proteins, soluble sugars, fat, crude fibre and storage protein fractions in the seeds of the plants cold-stressed at the late pod-filling stage. This coincided with a larger decrease in sucrose content, the activities of sucrose synthase, invertase and starch synthase observed at this stage. The germination and growth potential were, however, inhibited to a greater extent in seeds of plants stressed at the early pod-filling stage.  相似文献   

3.
The number of seeds and seed yield per plant were higher in chickpea crops raised from water and mannitol (4 %) primed seeds in comparison with the control non-primed crops. In primed plants, an enhanced acid invertase activity in the apical part of the main stem and the part immediately below it at 100 and 130 days after sowing (DAS) might result in an increased availability of hexoses to these plant parts. In addition, decreased acid invertase activity at the point of initiation of branches and in the internodes of stem observed in primed plants indicated restricted hydrolysis of sucrose during its transport through the stem, resulting in its more supply to the actively growing sinks. The activities of sucrose-cleaving enzymes, i.e. invertase and sucrose synthase (SS) in podwall of primed plants were higher at 110 DAS. At 140 DAS, a stage of rapid seed filling, increased activities of SS and sucrose phosphate synthase (SPS) were observed in seeds of primed plants. Increased SPS activity in seeds of primed crop could meet the increased assimilate requirements of the developing seeds. Higher activity of SS in seeds of primed crop may facilitate seed filling. These data suggest that enzymes of sucrose metabolism play an important role in increasing the yield of chickpea crops raised from primed seeds.  相似文献   

4.
Chickpea (Cicer arietinum L.) is sensitive to cold stress (<8 °C) at its reproductive phase that results in flower abortion, poor pod set and thus reduced yield. Early maturing genotypes are especially more sensitive. In this crop, the metabolic causes underlying cold injury that are imperative to induce cold tolerance are not known. In the present study, the endogenous levels of putrescine (diamine), spermidine (triamine) and spermine (tetramine) were examined in early maturing chickpea genotype ICCV 96029, subjected to chilling temperatures of field (12–15/4–6 °C; average maximum and minimum temperature respectively), at flowering or early podding stage. These were compared with controls growing in warmer conditions (28/12 °C) of the glasshouse. The polyamine levels increased six to nine times because of stress. Relatively, putrescine (PUT) elevation was the highest but short-lived and its decrease appeared to match with the onset of flower and pod abscission in stressed plants. Compared with controls, chilling injury, observed as electrolyte leakage (EL), increased by 60 % while cellular respiration declined by 68 % in stressed plants. Exogenous application of 10 mm PUT to stressed plants reduced the EL by 29 % and elevated the cellular respiration by 40 %. PUT application at flowering stage resulted in increase of 30, 31, 23 and 25 % in floral retention, pod set, pod retention and fertile pods respectively. At the early podding stage, PUT treatment increased the seed yield per plant, seed number per 100 pods and individual seed weight by 50, 17 and 19 % respectively. The number of single-seeded pods per plant increased from 4.4 in stressed plants to 12.2 in PUT-treated plants while the number of double-seeded pods reduced from 6.2 to 4.3. The number of infertile pods declined from 8.2 in stressed plants to 3.1 in PUT-treated plants.  相似文献   

5.
R. Ecker    A. Barzilay  E. Osherenko 《Plant Breeding》1994,113(4):335-338
The genetics of chill-related seed dormancy, exhibited by a lisianthus (Eustoma grandiflorum) genotype native to North America, was investigated. Less than 1 % of the seeds germinated by direct hydration at 20°C, while full germination (98%) was attained by chilling imbibed seeds, for at least 11 days, at 3°C, before transferring them to 20°C. The inheritance of seed dormancy was analyzed in F1, BC1, and F2, populations, derived from mating between a normal non-chill-requiring genotype (P1) and the above chill-requiring genotype (P2). F1 seeds, of both reciprocals, and BC1 (P1) seeds were all non-dormant. The proportion of seed dormancy in F2 and BC, (P2) was 0.06 and 0.68, respectively. The inheritance model proposed includes six diallelic loci with cumulative effects, in which the presence of at least nine ‘dormancy-conferring’ alleles is necessary for inducing phenotypic seed dormancy. Possible implications of inherent seed dormancy on the utilization of native lisianthus germplasm for breeding are discussed.  相似文献   

6.
Chickpea is sensitive to low temperature (<10°C) during its reproductive stage. Low temperature adversely affects the development of pods and seeds. This study was undertaken to investigate the role of sucrose metabolizing enzymes in seed development and potential of antioxidative enzymes in protecting seeds and podwalls from the deleterious effects of cold stress in advanced cold tolerant chickpea breeding lines. Healthy pod set was observed in these tolerant lines in the end of December where as low temperature susceptible PBG-1 did not flower. Two lines ICCV 96029 and ICCV 96030 showed susceptible characters such as reduced flowering, blackened and shrivelled seeds and yellowish pods in comparison to other cold stress tolerant lines due to sudden dip of temperature (<1 °C) during the first week of January. These two lines were, therefore, treated as susceptible checks in comparison to other tolerant lines. A significantly higher activity and specific activity of sucrose synthase was observed in seeds of most of the cold tolerant lines in comparison with ICCV 96029 and ICCV 96030, thereby providing sugars as well as sugar nucleotides for their growth and starch synthesis during unfavourable low temperature. The developing seeds and podwalls of tolerant genotypes had higher activities of antioxidant enzymes, i.e. catalase, ascorbate peroxidase and glutahione reductase in comparison with ICCV 96029 and ICCV 96030. It appears that the higher activities of antioxidant enzymes in podwall protect the developing seeds from cold stress.  相似文献   

7.
Abiotic stresses, including chilling, impede the plant growth and development mainly by oxidative damage. In this study, seed priming with CaCl2 was employed to reduce the damage caused by chilling stress in hybrid maize. Maize hybrid (Hycorn 8288) seeds were soaked in 50, 100 and 150 mg l−1 (ppm) aerated solution of CaCl2 for 24 h and dried. Treated and untreated seeds were sown at 27 °C (optimal temperature) and 15 °C (chilling stress) under controlled conditions. Seed priming with CaCl2 significantly reduced the chilling damage and improved the germination rate, root and shoot length, and seedling fresh and dry weights. Activities of antioxidants, including catalase, superoxide dismutase and ascorbate peroxidase, were also improved. Soluble sugars and α-amylase concentrations determined as general metabolic indicators of stress were also increased by seed priming with CaCl2. Priming also improved the performance of maize at optimal temperature. Maintenance of tissue water contents, reduction in membrane leakage and increase in antioxidant activities, and carbohydrate metabolism seemed to induce chilling tolerance by CaCl2. Seed priming with 100 mg l−1 CaCl2 was the optimal concentration in improving the performance of hybrid maize both under optimal and stress conditions.  相似文献   

8.
Salinity is known to reduce chickpea yields in several regions of the world. Although ion toxicity associated with salinity leads to yield reductions in a number of other crops, its role in reducing yields in chickpea growing in saline soils is unclear. The purpose of this study was to (i) identify the phenological and yield parameters associated with salt stress tolerance and sensitivity in chickpea and (ii) identify any pattern of tissue ion accumulation that could relate to salt tolerance of chickpea exposed to saline soil in an outdoor pot experiment. Fourteen genotypes of chickpea (Cicer arietinum L.) were used to study yield parameters, of which eight were selected for ion analysis after being grown in soil treated with 0 and 80 mm NaCl. Salinity delayed flowering and the delay was greater in sensitive than tolerant genotypes under salt stress. Filled pod and seed numbers, but not seed size, were associated with seed yield in saline conditions, suggesting that salinity impaired reproductive success more in sensitive than tolerant lines. Of the various tissues measured for concentrations of Cl?, Na+ and K+, higher seed yields in saline conditions were positively correlated with higher K+ concentration in seeds at the mid‐filling stage (R2 = 0.55), a higher K+/Na+ ratio in the laminae of fully expanded young leaves (R2 = 0.50), a lower Na+ concentration in old green leaves (R2 = 0.50) and a higher Cl? concentration in mature seeds. The delay in flowering was associated with higher concentrations of Na+ in the laminae of fully expanded young leaves (R2 = 0.61) and old green leaves (R2 = 0.51). We conclude that although none of the ions appeared to have any toxic effect, Na+ accumulation in leaves was associated with delayed flowering that in turn could have played a role in the lower reproductive success in the sensitive lines.  相似文献   

9.
多胺对玉米种子吸胀期间耐冷性和种子发芽能力的影响   总被引:20,自引:2,他引:18  
以玉米耐寒自交系黄C和低温敏感自交系Mo17为材料, 研究了亚精胺(Spd)和精胺(Spm)引发对玉米种子吸胀中的耐冷性和种子发芽能力的影响。种子经0.25 mmol L-1的Spd和Spm引发72 h后, 在5℃下低温吸胀不同时间(12、24、36和48 h)。结果表明, Spd和Spm引发提高了胁迫期间两自交系胚内过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性, 以及可溶性蛋白质和脯氨酸(Pro)含量, 降低了胚渗出液的核苷酸含量, 同时显著提高发芽率, 并显著缩短平均发芽时间。低温吸胀48 h后, 与对照相比, Spd和Spm处理分别提高两自交系种子的平均发芽率18.5%和14.0%, 分别缩短平均发芽时间1.21 d和1.14 d。黄C在种子吸胀期间的耐冷性强于Mo17。总之, Spd和Spm处理能提高玉米种子吸胀期间的耐冷性, 提高低温胁迫下种子发芽能力。  相似文献   

10.
Plant growth and development is hampered by various environmental stresses including chilling. We investigated the possibility of improving chilling tolerance in hybrid maize by glycinebetaine (GB) seed treatments. Maize hybrid (Hycorn 8288) seeds were soaked in 50, 100 and 150 mg l?1 (p.p.m.) aerated solution of GB for 24 h and were dried back. Treated and untreated seeds were sown at 27 °C (optimal temperature) and at 15 °C (chilling stress) under controlled conditions. Germination and seedling growth was significantly hindered under chilling stress. Moreover, chilling stress significantly reduced the starch metabolism and relative water contents (RWC), and increased the membrane electrolyte leakage. However, activities of antioxidants (catalase, superoxide dismutase and ascorbate peroxidase) were increased under stress conditions. Seed treatments with GB improved the germination rate, root and shoot length, seedling fresh and dry weights, leaf and root scores, RWC, soluble sugars, α‐amylase activity and antioxidants significantly compared with untreated seeds under optimal and stress conditions. Induction of chilling tolerance was attributed to maintenance of high tissue water contents, reduced membrane electrolyte leakage, and higher antioxidant activities and carbohydrate metabolism. Seed treatment with 100 mg l?1 GB was the best treatment for improving the performance of hybrid maize under normal and stress conditions compared with control and other levels used.  相似文献   

11.
As maize is a chilling-sensitive crop, low temperatures during the early stages of development can be injurious to crop growth and development. Prime mechanism behind chilling-induced damage is oxidative stress. This study was undertaken to improve the chilling tolerance in hybrid maize by seed priming with KCl. For priming, seeds of the maize hybrid Hycorn 8288 were soaked in 50, 100 and 150 mg l−1 aerated solution of KCl for 24 h and then re-dried close to original weight. Primed and untreated seeds were sown at 27 °C (optimal temperature) and at 15 °C (chilling stress) under controlled conditions. Seed priming improved the performance of maize under both normal and stress conditions. It was found that the chilling tolerance in maize is well associated with the enhanced capacity of the anti-oxidative system. Priming with KCl significantly improved the chilling tolerance mainly by the activation of antioxidants including catalase, superoxide dismutase and ascorbate peroxidase enzymes. KCl treatments also improved the germination rate and time, root and shoot length, and fresh and dry weights of seedlings compared with control. Soluble sugars and α-amylase activity determined as general metabolic indicators of stress were also improved by seed priming with KCl. Other possible bases of chilling tolerance in maize included maintenance of high tissue water contents, reduced electrolyte leakage and carbohydrate metabolism. Seed treatment with 100 mg l−1 KCl was the best treatment to improve the performance of hybrid maize both under normal and chilling stress conditions.  相似文献   

12.
田间种植可溶性糖含量不同的3个菜用大豆品种,在R5.5、R6、R6.2、R6.5和R7期取样,分析籽粒种皮、子叶和胚轴中蔗糖含量及4种关键酶活性动态,结果表明,籽粒不同部位蔗糖积累呈先增加后下降的趋势,R6.2期是高峰期,此时期品种台292、中科毛豆1号和品系121的胚轴蔗糖含量比子叶分别高57.6%、53.6%和44.2%;比种皮分别高71.6%、75.3%和73.6%。由于子叶干重占整粒重90%以上,因此整个籽粒的蔗糖含量主要由子叶决定。子叶的蔗糖磷酸合酶(SPS)活性高于胚轴和种皮,在R6.2期表现更加明显,且蔗糖含量高的品系121子叶中SPS活性高于另外2个品种;蔗糖合酶(SS)在籽粒形成期活性变化呈前期高于后期的趋势,最高值出现在灌浆前期R5.5期胚轴中;两种转化酶活性变化差异较大,中性转化酶(NI)活性一直呈不断下降趋势;籽粒不同部位NI活性无明显差异,而酸性转化酶(AI)活性差异较大;胚轴和子叶中AI活性明显低于种皮,且种皮中AI活性与种皮中蔗糖积累显著负相关(r=–0.59)。蔗糖积累与4种关键酶活性的相关分析发现,籽粒中蔗糖的含量并非受某一种酶绝对调控,SPS活性与SS+AI+NI活性总和之差与籽粒中蔗糖的积累显著正相关(r=0.53**)。  相似文献   

13.
A study was conducted in order to investigate yields in relation to seed inoculation of chickpea (Cicer arietinum L. cv. Aziziye‐94) with eight Rhizobium leguminosarum ssp. ciceri strains isolated from wild chickpeas (C. anatolicum) of high altitudes (2000–2500 m) in comparison with standard bacterial culture, uninoculated control and mineral nitrogen fertilizer application in the growth room and in the field in 1999, 2000 and 2001 in Erzurum (29°55′N and 41°16′E at an altitude of 1850 m), Turkey.In the growth room trial, bacterial inoculations significantly increased shoot dry weight, N %, total N, N fixed and efficiency of symbiosis compared with the uninoculated control treatment depending on the strains. In the field trial, inoculations with HF 274 and HF 177 increased nodule dry weight, N %, chlorophyll, seed yield and total biomass yield depending on the strains, the lowest values being recorded in uninoculated plots. As an average of years, inoculation with HF 274, HF 177 and standard bacterial culture increased seed yields, respectively, by 23.3, 22.7 and 16.8 % over uninoculated control.In conclusion, rhizobial inoculation of chickpea with HF 274 and HF 177 strains isolated from wild chickpeas (C. anatolicum) of high altitudes may substitute costly N fertilizers in chickpea production even in cold highland areas such as Erzurum.  相似文献   

14.
Low temperature seriously depresses seed germination and seedling growth in winter wheat (Triticum aestivum L.). In this study, wheat plants were sprayed with abscisic acid (ABA) and fluridone (inhibitor of ABA biosynthesis) at 19 days after anthesis (DAA) and repeated at 26 DAA. The seeds of those plants were harvested, and seed germination and offspring's seedling growth under low temperature were evaluated. The results showed that exogenous ABA application decreased seed weight and slightly reduced seed set and seed number per spike. Under low temperature, seeds from ABA‐treated plants showed reduced germination rate, germination index, growth of radicle and coleoptile, amylase activity and depressed starch degradation as compared with seeds from non‐ABA‐treated plants; however, activities of the antioxidant enzymes in both germinating seeds and seedling were enhanced from those exposed to exogenous ABA, resulting in much lowered malondialdehyde (MDA) and H2O2 concentrations and production rate. In addition, the maximum quantum efficiency of photosystem II was also enhanced in ABA‐treated offspring's seedlings. It is concluded that exogenous ABA treatment at later grain‐filling stage could be an effective approach to improve cold tolerance of the offspring during seed germinating and seedlings establishment in winter wheat.  相似文献   

15.
Two field experiments were carried out to investigate the effects of terminal drought on chickpea grown under water-limited conditions in the Mediterranean-climatic region of Western Australia. In the first experiment, five desi (small angular seeds) chickpeas and one kabuli (large round seeds) chickpea were grown in the field with and without irrigation after flowering. In the second experiment, two desi and two kabuli cultivars were grown in the field with either irrigation or under a rainout shelter during pod filling. Leaf water potential (Ψl), dry matter partitioning after pod set and yield components were measured in both experiments while growth before pod set, photosynthesis, pod water potential and leaf osmotic adjustment were measured in the first experiment only.

In the first experiment, total dry matter accumulation, water use, both in the pre- and post-podding phases, Ψl and photosynthesis did not vary among genotypes. In the rainfed plants, Ψl decreased below −3 MPa while photosynthesis decreased to about a tenth of its maximum at the start of seed filling. Osmotic adjustment varied significantly among genotypes. Although flowering commenced from about 100 days after sowing (DAS) in both experiments, pod set was delayed until 130–135 DAS in the first experiment, but started at 107 DAS in the second experiment. Water shortage reduced seed yield by 50 to 80%, due to a reduction in seed number and seed size. Apparent redistribution of stem and leaf dry matter during pod filling varied from 0 to 60% among genotypes, and suggests that this characteristic may be important for a high harvest index and seed yield in chickpea.  相似文献   


16.
Increasing temperatures are adversely affecting various food crops, including legumes, and this issue requires attention. The growth of two cool-season food legumes, chickpea and lentil, is inhibited by high temperatures but their relative sensitivity to heat stress and the underlying reasons have not been investigated. Moreover, the high-temperature thresholds for these two legumes have not been well-characterised. In the present study, three chickpea (ICCVO7110, ICC5912 and ICCV92944) and two lentil (LL699 and LL931) genotypes, having nearly similar phenology with respect to flowering, were grown at 30/20°C (day/night; control) until the onset of flowering and subsequently exposed to varying high temperatures (35/25, 38/28, 40/30 and 42/32°C; day/night) in a controlled environment (growth chamber; 12 hr/12 hr; light intensity 750 µmol m−2 s−1; RH-70%) at 108 days after sowing for both the species. Phenology (podding, maturity) was accelerated in both the species; the days to podding declined more in lentil at 35/25 (2.8 days) and 38/28°C (11.3 days) than in chickpea (1.7 and 7.1 days, respectively). Heat stress decreased flowering–podding and podding–maturity intervals considerably in both the species. At higher temperatures, no podding was observed in lentil, while chickpea showed reduction of 14.9 and 16.1 days at 40/30 and 42/32°C, respectively. Maturity was accelerated on 15.3 and 12.5 days at 38/28°C, 33.6 and 34 days at 40/30°C and 45.6 and 47 days at 42/32°C, in chickpea and lentil, respectively. Consequently, biomass decreased considerably at 38/28°C in both the species to limit the yield-related traits. Lentil was significantly more sensitive to heat stress, with the damage—assessed as reduction in biomass, reproductive function-related traits (pollen viability, germination, pollen tube growth and stigma receptivity), leaf traits such as membrane injury, leaf water status, photochemical efficiency, chlorophyll concentration, carbon fixation and assimilation, and oxidative stress, appearing even at 35/25°C, compared with 38/28°C, in chickpea. The expression of enzymatic antioxidants such as superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and non-enzymatic antioxidants declined remarkably with heat stress, more so in lentil than in chickpea. Carbon fixation (assessed as Rubisco activity) and assimilation (assessed as sucrose concentration, sucrose synthase activity) were also reduced more in lentil than in chickpea, at all the stressful temperatures, resulting in more inhibition of plant biomass (shoot + roots), damage to reproductive function and severe reduction in pods and seeds. At 38/28°C, lentil showed 43% reduction in biomass, while it declined by 17.2% in chickpea at the same time, over the control temperature (30/20°C). At this temperature, lentil showed 53% and 46% reduction in pods and seed yield, compared to 13.4% and 22% decrease in chickpea at the same temperature. At 40/30°C, lentil did not produce any pods, while chickpea was able to produce few pods at this temperature. This study identified that lentil is considerably more sensitive to heat stress than chickpea, as a result of more damage to leaves (photosynthetic ability; oxidative injury) and reproductive components (pollen function, etc.) at 35/25°C and above, at controlled conditions.  相似文献   

17.
Chickpea is an important source of protein and has a major role at human nutrition and it is essential to know the relationships between yield and its components in chickpea breeding programs. In this study, five chickpea lines provided from the chickpea breeding program of Field Crops Department, Faculty of Agriculture, Ankara University were used. In the examined characteristics, positive and significant relationships were found statistically between the number of seeds pod−1 and the number of pods plant−1, between the number of seeds plant−1 and the number of pods plant−1 and the number of seeds pod−1, between seed yield plant−1 and the number of pods plant−1, the number of seeds pod−1, the number of seeds plant−1; between the number of seeds pod−1 and seed yield unit−1 area; between the number of seeds plant−1 and seed yield unit−1 area. Negative and significant relationships were determined statistically between the number of pods plant−1 and 100 seed weight, between the number of seeds pod−1 and 100 seed weight, between the number of seeds plant−1 and 100 seed weight, between seed yield unit−1 area and 100 seed weight. The total determining coefficient linking seed yield plant−1 and seed yield unit−1 area are 0.773 (77.3%) and 0.488 (48.8%) respectively in the model which were used in our research. And also total determining coefficient related to 100 seed weight was 0.896 (89.6%) in the same model.  相似文献   

18.
Ethiopian mustard (Brassica carinata A. Braun) is an oil‐seed species that has recently become an object of great interest as a promising crop for energy purposes (biodiesel and biolubricant production). In semi‐arid regions of South Italy, soil moisture at sowing time is often inadequate, delaying and reducing seed germination. In this study, the effect of reduced water potential on seed germination in three cultivars of B. carinata (ISCI 7, CT 180 and Sincron) was investigated in the laboratory. Germination behaviour at constant temperatures under low water availability was also analysed through the hydrotime model. Six water potentials (ψs) in PEG solution (0, ?0.2, ?0.4, ?0.6, ?0.8 and ?1.0 MPa) and three temperatures (10, 20 and 30 °C) were used for the germination tests. A thermo‐inhibiting effect was observed at the highest levels of water stress. The hydrotime analysis revealed that the increase of temperature to 30 °C reduced predicted hydrotime (θH) by hastening the rate of germination, but shifted median base water potential (ψb(50)) to higher values (less negative), whereas the lowering of temperature increased θH. These observations may have a great agronomic impact because although fewer seeds germinated at 30 °C at the highest levels of water stress, they may germinate faster in rapidly drying soil. However, genetic differences were observed among cultivars in terms of estimated θH and ψb(50). The hydrotime modelling approach offered in this study may help predict B. carinata seed germination under soil water deficit conditions occurring under early or late autumnal sowing.  相似文献   

19.
Seeds of population varieties, hybrid varieties, cytogenetic male sterility (CMS) single cross lines and CMS inbred lines of rye (Secale cereale L.) were stored to determine the respective rates of germination loss with a view to their storage potential. The seeds were stored under controlled conditions at a seed moisture content of 14% and a temperature of 30°C for periods of up to 80 days. The storage potential decreased in the order: hybrid varieties > population varieties > CMS single cross lines > CMS inbred lines. However, the rates of germination loss showed no differences within the respective categories. The inferences drawn for seed storage potential hold for seed vigour potential.  相似文献   

20.
Storage at low temperature is the most frequently used method to extend the shelf life of banana fruit, and is fundamental for extended storage and transport over long distances. However, storage and transport conditions must be carefully controlled because of the high susceptibility of many commercial cultivars to chilling injury. The physiological behavior of bananas at low temperatures has been studied to identify possible mechanisms of resistance to chilling injury. The aim of this work was to evaluate differences in the starch-to-sucrose metabolism of a less tolerant and susceptible (Musa acuminata, AAA cv. Nanicão) and a more tolerant (M. acuminata × Musa balbusiana, AAB, cv. Prata) banana cultivar to chilling injury. Fruits of these cultivars were stored in chambers at 13 °C for 15 d, at which point they were transferred to 19 °C, where they were left until complete ripening. The low temperature induced significant changes in the metabolism of starch and sucrose in comparison to fruit ripened only at 19 °C. The sucrose accumulation was slightly higher in cv. Prata, and different patterns of starch degradation, sucrose synthesis, activity and protein levels of the α- and β-amylases, starch phosphorylase, sucrose synthase and sucrose phosphate synthase were detected between the cultivars. Our results suggest that starch-to-sucrose metabolism is likely part of the mechanism for cold acclimation in banana fruit, and the cultivar-dependent differences contribute to their ability to tolerate cold temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号