首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Field Crops Research》2001,69(3):215-226
A field experiment compared two rice (Oryza sativa L.) cropping systems: paddy or raised beds with continuous furrow irrigation; and trialled four cultivars: Starbonnet, Lemont, Amaroo and Ceysvoni, and one test line YRL39; that may vary in adaptation to growth on raised beds. The grain yield of rice ranged from 740 to 1250 g/m2 and was slightly greater in paddy than on raised beds. Although there were early growth responses to fertilizer nitrogen on raised beds, the crop nitrogen content at maturity mostly exceeded 20 g/m2 in both systems, so nitrogen was unlikely to have limited yield. Ceysvoni yielded best in both systems, a result of good post-anthesis growth and larger grain size, although its whole-grain mill-out percentage was poor relative to the other cultivars. Starbonnet and Lemont yielded poorly on raised beds, associated with too few tillers and too much leaf area. When grown on raised beds all cultivars experienced a delay in anthesis resulting in more tillers, leaf area and dry weight at anthesis, and probably a greater yield potential. The growth of rice after anthesis, however, was similar on raised beds and in paddy, so reductions in harvest index and grain size on raised beds were recorded. The data indicated that water supply was not a major limitation to rice growth on raised beds, but slower crop development was an issue that would affect the use of raised beds in a cropping system, especially in rice-growing areas where temperatures are too cool for optimal crop development.  相似文献   

2.
《Plant Production Science》2013,16(4):529-534
Abstract

Experiments were conducted to evaluate the nitrogen (N) balance in forage rice cultivation using animal manure in 1/2,000a Wagner pots in a greenhouse. The cattle manure and poultry manure were applied at 3 levels of N (0, 14, 28 g available N m–2) without additional chemical fertilizer application. The pots were designed to simulate the fluid percolation in the paddy field. The results indicated increasing levels of N input improved plant height, tiller number, SPAD value and biomass (straw, grain and root) production, however, N leaching from soil (Andosols) due to percolating water also increased. The planting of rice plants proved to reduce 30% of the N leaching loss. N use efficiency, the ratio of N uptake by plant per unit N application, decreased in higher N application. The N uptake by the above-ground parts occupied about 66% of the whole plants.  相似文献   

3.
《Plant Production Science》2013,16(3):365-380
Abstract

A high nitrogen-uptake capacity and effective use of absorbed nitrogen for dry matter and grain production are required to improve the production cost and environmental pollution. We characterized grain yield, dry matter production and nitrogen accumulation in six rice cultivars: Sekitori (released in 1848) and Aikoku (1882), referred to as SA cultivars hereafter; Koshihikari (1956); Nipponbare (1963) and Asanohikari (1987), referred to as NA cultivars hereafter; and Takanari (in 1990) as a high-yielding modern cultivar. The plants were grown with and without chemical fertilizer in a submerged paddy field. When plants were supplied with manure and chemical fertilizer, Takanari consistently produced the heaviest grain and dry matter, followed by the NA cultivars, and the SA cultivars the lightest. Dry matter production before heading was greater in Takanari and the NA cultivars due to the longer duration of vegetative growth. Dry matter production after heading was greatest in Takanari, with a larger crop growth rate (CGR), and smallest in the SA cultivars with a shorter ripening time. Greater dry matter production during ripening was accompanied by the greater accumulation of nitrogen by Takanari and NA cultivars. These plants developed a larger amount of roots. The smaller light extinction coefficient of the canopy was also attributed to the higher CGR in Takanari. When plants were grown without chemical fertilizer, Takanari also produced heavier grain and dry matter, followed by the NA cultivars. The heavier grain in these cultivars resulted from the greater dry matter production before heading, which was due to the longer period of vegetative growth. The greater dry matter production and nitrogen accumulation by Takanari and NA cultivars were evident when plants were grown with chemical fertilizer. Koshihikari was characterized by a higher CGR and greater nitrogen accumulation during ripening in the absence of chemical fertilizer which should be noted in efforts to decrease rates of nitrogen application.  相似文献   

4.
Productivity and resource-use efficiency in corn (Zea mays L.) are crucial issues in sustainable agriculture, especially in high-demand resource crops such as corn. The aims of this research were to compare irrigation scheduling and nitrogen fertilization rates in corn, evaluating yield, water (WUE), irrigation water (IRRWUE) and nitrogen use (NUE) efficiencies. A 2-year field experiment was carried out in a Mediterranean coastal area of Central Italy (175 mm of rainfall in the corn-growing period) and corn was subjected to three irrigation levels (rainfed and supply at 50 and 100% of crop evapotranspiration, ETc) in interaction with three nitrogen fertilization levels (not fertilized, 15 and 30 g (N) m−2). The results indicated a large yearly variability, mainly due to a rainfall event at the silking stage in the first year; a significant irrigation effect was observed for all the variables under study, except for plant population. Nitrogen rates affected grain yield plant−1 and ear−1, grain and biomass yield, HI, WUE, IRRWUE and NUE, with significant differences between non-fertilized and the two fertilized treatments (15 and 30 g (N) m−2). Furthermore, deficit irrigation (50% of ETc) was to a large degree equal to 100% of the ETc irrigation regime. A significant interaction “N × I” was observed for grain yield and WUE. The effect of nitrogen availability was amplified at the maximum irrigation water regime. The relationships between grain yield and evapotranspiration showed basal ET, the amount necessary to start producing grain, of about 63 mm in the first and 206 mm in the second year. Rainfed crop depleted most of the water in the 0–0.6 m soil depth range, while irrigated scenarios absorbed soil water within the profile to a depth of 1.0 m. Corn in a Mediterranean area can be cultivated with acceptable yields while saving irrigation water and reducing nitrogen supply and also exploiting the positive interaction between these two factors, so maximizing resource-use efficiency.  相似文献   

5.
Rice husk charcoal (RC) produced from the pyrolysis of rice husk (RH) can be one of the cost-effective biochars for use in rice-based farming systems. This study investigated changes in rice yield and soil carbon sequestration over three years of RC application to an Andosol paddy field. The treatments were RC application at 0.02, 0.2, and 2 kg m?2 (RC0.02, RC0.2, and RC2, respectively), RH application at 0.2 kg m?2 (RH0.2), and a control with no RC or RH application (CONT). The results showed that RC2 increased culm length by 4% and straw weight by 14% on average over the three years. These increases in plant growth coincided with a higher level of silicon uptake by the rice plants, although they did not significantly affect grain yield. The soil carbon content was progressively increased by RC2 over the three years, whereas it was not significantly affected by RC0.02 or RC0.2. A considerable amount (>72%) of the applied carbon with RC2 remained in the soil by taking account of its downward movement below the 10 cm layer of the paddy field after three consecutive years of RC application. We conclude that rice husk charcoal application to Andosol paddy fields is an effective option for increasing carbon sequestration. Furthermore, the increase in silicon uptake by rice plants suggests that rice husk charcoal can also be functioning as a silicon fertilizer.  相似文献   

6.
《Plant Production Science》2013,16(4):284-292
Abstract

The suitability of anaerobically-digested manure (ADM) from a biogas plant, as an alternative to chemical fertilizers for rice cultivation was evaluated by a long-term study. At the standard nitrogen (N) application rate (10 g m?2), the aboveground biomass, N uptake, and grain yield in rice plots with ADM application (MF) were not significantly different from those in the plots treated with chemical fertilizer (CF). Split application of ADM improved the apparent N efficiency. The N application rate corresponding to maximum grain yield was approximately 15 g m?2 by a split application, and more N application by using ADM saturated grain yield due to decrease in ripened grain ratio and individual grain weight. On the whole, the soil total-C, total-N and available N in the MF plot were not significantly different from those in the CF plot. The available phosphate (P) levels was lower in the MF plot than in either the CF plot or plot without N application (NF), mainly due to lower content of P in ADM. However, the P level remained much higher than the fatal threshold level for the growth of paddy rice. These findings suggest that under appropriate fertilization conditions, ADM is a valuable organic resource, and can be used continuously as an alternative to chemical fertilization for rice cultivation, without substantial changes in soil C and N fertility.  相似文献   

7.
《Plant Production Science》2013,16(3):289-296
Abstract

Failure of fertilization in rice is a critical yield-determining factor in plants subjected to temperature or water stress at the early-reproductive stage and in high-yield cultivars bearing heavy spikelets. Although it is important to identify quickly the unfertilized spikelets for research and selection of stress-resistant or high-ripening cultivars from bulksamples, the identification takes time because unfertilized spikelets are usually determined by visual and manual procedures. Our objective was to develop a convenient method to identify unfertilized spikelets in rice. Takanari spikelets at maturity grown in the paddy field were separated into floating and sinking spikelets by different specific gravity solutions of ethanol/water mixture. The unfertilized spikelets were identified by checking the grains inside the spikelets by light penetration and examining the spikelets manually. The percentage of floating spikelets decreased with the increase in ethanol concentration, and that of floating spikelets approximately coincided with the percentage of unfertilized spikelets when the specific gravity was below 0.90×10>3 kg m-3, corresponding to over 70% -ethanol. In a practical range of temperature the specific gravity scarcely changed. In an 80%-ethanol solution, the percentages of floating spikelets in Takanari grown under different nitrogen applications and in rice cultivars having different spikelet size approximately coincided with percentages of unfertilized spikelets, though the percentages of floating spikelets was 5 to 7% higher than the unfertilized spikelets. The use of 70%-ethanol solution increased the difference in some rice cultivars. We concluded that the gravitation method would be convenient for identification of unfertilized spikelets in bulk samples of rice.  相似文献   

8.
Alternate wetting and drying (AWD) irrigation is widely adopted to save water in rice production. AWD practice shifts lowland paddy fields from being continuously anaerobic to being alternately anaerobic and aerobic, thus affecting nitrogen (N) transformations in paddy field soils. Using the barometric process separation technique, a large number of soil cores sampled from lowland paddy field soil profiles were measured for gross nitrification and denitrification rates under different temperature and soil moisture conditions. The gross nitrification and denitrification rates vary with rice growth stages and range between 1.18–30.8 and 0.65–13.54 mg N m?3 h?1, respectively. Results indicate that both gross nitrification and denitrification rates increased with the increase in temperature in all three studied soil layers. Gross nitrification rates significantly decrease with increasing soil moisture while denitrification rates increase, and different soil layers demonstrated different rates of variation to the increase in soil moisture. Gross nitrification rates in the cultivated horizon layer decreased more sharply with the increase in soil moisture. High soil water content is favorable to denitrification of all soil layers.  相似文献   

9.
Methane oxidation activity (MOA), methanotrophic bacteria (MOB), and CH4 emission in a paddy field fertilized with anaerobically digested slurry were compared between two varieties: a fodder rice variety Leaf star (LS) and a normal rice variety Kinuhikari (KN). Average MOA and MOB per unit dry root were significantly higher in KN (7.1?μmol?g?1 CH4?g?1 dry root h?1 and 3.7?×?107 MPN?g?1 dry root, respectively) than in LS (4.3?μmol?g?1 CH4?g?1 dry root h?1, 2.1?×?107 MPN?g?1 dry root), although MOA in the rice root per whole plant was not significantly different since root biomass of LS (1.5?g dry root plant?1) was significantly higher than that of KN (1.2?g dry root plant?1). MOA in the soil ranged from 0.031 to 0.087?μmol?g?1 CH4?g?1 dry soil h?1, but there were no significant differences in both depths (0–5 and 5–15?cm) between the two rice varieties. MOA in the rhizosphere soil was significantly different between the rice varieties at flowering, but not at tillering. Methane emission in the field was lower and MOA and MOB in the rice root were higher in LS than in KN at tillering, but the reverse results were found at flowering and maturity stages. Total CH4 emission during a growing period was not significantly different between LS (27.4?±?16.9?g CH4?m?2) and KN (24.0?±?19.5?g CH4?m?2). There was a significant negative relationship between CH4 emission and rice root MOB (P?<?0.01) or MOA (P?<?0.05) and significant positive relationship was observed between root MOA and MOB (P?<?0.01). This study revealed that choice of rice variety might be an important environmental issue in paddy cultivation since it can influence MOA and MOB in rice root and rhizosphere soil which relate with CH4 emission.  相似文献   

10.
结实期土壤水分和氮素营养对水稻产量与品质的交互影响   总被引:2,自引:0,他引:2  
杂交籼稻汕优63和粳稻武育粳3号种植于土培池,于始穗期进行0N(0 g/m2)、NN(中氮,4.5 g/m2 )和HN(高氮,9.0 g/m2)3种施氮量处理,于抽穗后7 d至成熟期设置了WW(保持浅水层)、MD(轻度落干,土壤水势保持-25 kPa)和SD(重度落干,土壤水势保持-50 kPa)3种土壤水分处理,研究了结实期土壤水分和氮素营养对水稻产量与品质的交互影响。在各施氮水平下,产量、糙米率、精米率和整精米率均以MD处理最高,垩白粒率和垩白度均以MD处理最低。在0N下,SD处理降低了产量、碾磨品质、外观品质和食味品质;在MN或HN下,SD处理的产量、碾磨品质、外观品质和食味品质与WW的差异不显著或显著优于WW。说明土壤水分和氮素营养对水稻产量和品质的影响存在着明显的互作效应,结实期土壤水势为-25 kPa、粒肥的施氮量为45 kg/hm2,稻米的品质较优、产量最高。  相似文献   

11.
In this study, we evaluated the feasibility for the use of digested slurry from livestock manure (hereafter, slurry) in paddy fields through field experiments conducted in Southern Vietnam. The pouring method for slurry was used, and a vacuum truck was used for transportation and pouring of the slurry. A prototype slurry tanker was manufactured for transportation and application of slurry, because vacuum trucks are rarely available in rural areas of Vietnam. For evaluation of feasibility, costs and labor for application of slurry and rice production were examined and compared with conventional cultivation methods using chemical fertilizers. As the results, rice production with the use of slurry was 485 g m?2, which is within the range of on-site conventional cultivation, so slurry may be a good substitute for chemical fertilizers in rice production. Costs for slurry fertilization with a prototype slurry tanker and a vacuum truck were estimated at 0.13 USD m?2 and 0.10 USD m?2, respectively. These costs were higher than for conventional cultivation of 0.06 USD m?2 under the present conditions with T-N concentrations of approximately 400 mg L?1 in the slurry. However, we clarified that the cost for slurry fertilization can be lower than conventional cultivation when the concentrations of nitrogen in slurry increase from 400 to 2000 mg L?1. These results show that an increase in nitrogen concentrations in slurry make slurry fertilization feasible if the amounts of water for washing livestock sheds that enter into the biogas digesters are reduced.  相似文献   

12.
Taiwan’s average annual rainfall is high compared to other countries around the world; however, it is considered a country with great demand for water resources. Rainfall along with alternate wetting and drying irrigation is proposed to minimize water demand and maximize water productivity for lowland paddy rice cultivation in southern Taiwan. A field experiment was conducted to determine the most suitable ponded water depth for enhancing water saving in paddy rice irrigation. Different ponded water depths treatments (T2 cm, T3 cm, T4 cm and T5 cm) were applied weekly from transplanting to early heading using a complete randomized block design with four replications. The highest rainwater productivity (2.07 kg/m3) was achieved in T5 cm and the lowest in T2 cm (1.62 kg/m3). The highest total water productivity, (0.75 kg/m3) and irrigation water productivity (1.40 kg/m3) was achieved in T2 cm. The total amount of water saved in T4 cm, T3 cm and T2 cm was 20, 40, and 60%, respectively. Weekly application of T4 cm ponded water depth from transplanting to heading produced the lowest yield reduction (1.57%) and grain production loss (0.06 kg) having no significant impact on yield loss compared to T5 cm. Thus, we assert that the weekly application of T4 cm along with rainfall produced the best results for reducing lowland paddy rice irrigation water use and matching the required crop water.  相似文献   

13.
《Plant Production Science》2013,16(1):151-154
Abstract

The effect of nitrogen (N) application rates at active tillering and anthesis on grain yield and protein content of a bread wheat cultivar, ‘Minaminokaori’, was examined in the field study conducted in Fukuoka, Japan. Number of spikes, leaf area index (LAI), and SPAD value at anthesis increased significantly (P < 0.05) with increasing N application rate at active tillering. Grain yield also increased significantly (P < 0.05) because of the increased number of spikes. However, grain yield did not increase significantly (P > 0.05) with increasing N application rate at anthesis. The slope of the relationship between N application rate at active tillering and grain yield was about 3 times that of the relationship between N application rate at anthesis and grain yield. These results indicate that N application at active tillering is more effective than N application at anthesis for increasing grain yield. Increasing N application rate at active tillering and anthesis generally increased grain protein content. However, the slope of the relationship between N application rate at anthesis and grain protein content was about 2 times that of the relationship between N application rate at active tillering and grain protein content. These results indicate that N application at anthesis is more effective than N application at active tillering for increasing grain protein content. The interaction between N application rates at active tillering and anthesis was significant (P < 0.05) for grain protein content. With the application of 4 g N m–2 at active tillering, grain protein content increased linearly at a rate of about 0.5% per 1 g N m–2 (from 10.9% to 14.0%) with increasing N application rate (from 0 to 6 g N m–2) at anthesis. However, the rate of increase in grain protein content with increasing N application rate at anthesis was greater with 0 g N m–2 at active tillering than that with 4 g N m–2 at active tillering, whereas that with 8 g N m–2 at active tillering was smaller than that with 4 g N m–2 at active tillering. Application of 8 g N m–2 at tillering resulted in the highest SPAD value at anthesis; this was followed by the results for 4 and 0 g N m–2. Therefore, the SPAD value may be an important trait to decide N application rate at anthesis.  相似文献   

14.
Deposition of protein and metal ions (Fe, Zn) in rice grains is a complex polygenic trait showing considerable environmental effect. To analyze the effect of nitrogen application levels and native soil properties on rice grain protein, iron (Fe) and zinc (Zn) contents, 32 rice genotypes were grown at three different locations each under 80 and 120 kg/hm2 nitrogen fertilizer applications. In treatments with nitrogen fertilizer application, the brown rice grain protein content (GPC) increased significantly (1.1% to 7.0%) under higher nitrogen fertilizer application (120 kg/hm2) whereas grain Fe/Zn contents showed non-significant effect of nitrogen application level, thus suggesting that the rate of uptake and translocation of macro-elements does not influence the uptake and translocation of micro-elements. The pH, organic matter content and inherent Fe/Zn levels of native soil showed significant effects on grain Fe and Zn contents of all the rice genotypes. Grain Zn content of almost all the tested rice genotypes was found to increase at Location III having loamy soil texture, neutral pH value (pH 6.83) and higher organic matter content than the other two locations (Locations I and II), indicating significant influence of native soil properties on brown rice grain Zn content while grain Fe content showed significant genotype × environment interaction effect. Genotypic difference was found to be the most significant factor to affect grain Fe/Zn contents in all the tested rice genotypes, indicating that although native soil properties influence phyto-availability of micronutrients and consequently influencing absorption, translocation and grain deposition of Fe/Zn ions, yet genetic makeup of a plant determines its response to varied soil conditions and other external factors. Two indica rice genotypes R-RF-31 (27.62 μg/g grain Zn content and 7.80% GPC) and R1033-968-2-1 (30.05 μg/g grain Zn content and 8.47% GPC) were identified as high grain Zn and moderate GPC rice genotypes. These results indicate that soil property and organic matter content increase the availability of Fe and Zn in rhizosphere, which in turn enhances the uptake, translocation and redistribution of Fe/Zn into rice grains.  相似文献   

15.
Manganese (Mn) deficiency is prevalent in rice-growing regions resulting in poor paddy yield and human health. In this study, role of Mn, applied through various methods, in improving the productivity and grain biofortification of fine grain aromatic rice was evaluated. Manganese was delivered as soil application (SA) (0.5 kg ha?1), foliar spray (FA) (0.02 M Mn), seed priming (SP) (0.1 M Mn) and seed coating (SC) (2 g Mn kg?1 seed) in conventional (puddled transplanted flooded rice) and conservation (direct seeded aerobic rice) production systems at two different sites (Faisalabad, Sheikhupura) in Punjab, Pakistan. Manganese application, through either method, improved the grain yield and grain Mn contents of fine grain aromatic rice grown in both production systems at both sites. However, Mn application as SC and FA was the most beneficial and cost effective in improving the productivity and grain biofortification in this regard. Overall, order of improvement in grain yield was SC (3.85 t ha?1) > FA (3.72 t ha?1) > SP (3.61 t ha?1) > SA (3.36 t ha?1). Maximum net benefits and benefit–cost ratio were obtained through Mn SC in flooded field at Faisalabad, which was followed by Mn SP in direct seeded aerobic rice at the same site. However, maximum marginal rate of return was noted with Mn SC in direct seeded aerobic rice at both sites. In crux, Mn nutrition improved the productivity and grain biofortification of fine grain aromatic rice grown in both conventional and conservation production systems. However, Mn application as seed treatment (SC or SP) was the most cost effective and economical.  相似文献   

16.
《Field Crops Research》1999,63(3):187-198
Rice is subjected to excessive waterlogging and flash-flooding on large areas in south and south-east Asia. Besides cultivars, submergence tolerance of plants is influenced by various agronomic practices. A field experiment was conducted at Cuttack, India during 1994–1995 to study the effect of method of stand establishment (direct seeding and transplanting), vigour of seed (low and high-density) or seedlings (N-fertilized and unfertilized), plant population (normal and 50% more) and N fertilizer (single basal and split application) on yield performance of lowland rice under conditions of natural submergence and simulated flash-flooding (impounding up to 90 ± 3 cm depth for 10 days at vegetative stage). Flooding reached a maximum depth of 80 cm in 1994 and 52 cm in 1995 under natural submergence. The crop performance was better in 1994 due to timely sowing in dry soil and delayed accumulation of water (43 days after sowing) than in 1995 when sowing was done late in saturated soil followed by early water accumulation (28 days after sowing). Grain yield of rice decreased by 30.0–33.6% due to simulated flash-flooding compared with natural submergence, and by 21.4–33.1% due to transplanting in July compared with direct seeding in May-end/early June. The yield of direct-sown crop increased by using high-density seed of 22.9–23.0 mg weight (5.2–9.0%), higher seed rate of 600 m−2 (2.2–2.3%) and basal fertilization at 40 kg N ha−1 (19.4–25.7%) compared with low-density seed (19.4–20.1 mg), 400 seed m−2 and no N, respectively. The yield of transplanted crop increased by using N-fertilized seedlings of 0.49–1.65 g weight (29.5–38.5%), higher number of seedlings at 155 m−2 (3.5–16.7%) and basal fertilization at 40 kg N ha−1 (31.9–32.5%) compared with unfertilized seedlings (0.19–0.79 g), 115 seedlings m−2 and no N. Split application of 40 kg N ha−1 — 50% each at basal and top dressing (105–115 days of growth after flash-flooding) — improved yield significantly (10.1–13.1%) over single basal application under simulated flash-flooding, but not under natural submergence conditions. Regression analysis indicated that relative contribution of various factors in increasing grain yield was in order: N fertilizer > seed density > seed m−2 in direct-sown rice, and N fertilizer > seedlings m−2 > seedling dry weight in transplanted rice. It was concluded that grain yield of flood-prone lowland rice can be increased by establishing the crop early through direct seeding using high-density seed and basal N fertilization.  相似文献   

17.
《Plant Production Science》2013,16(2):154-165
Abstract

A field experiment assessing the effect of the annual application of anaerobically-digested cattle manure (ADM), produced at a biogas plant, on paddy rice was conducted. In plots with ADM (MF), the early growth of rice plants, from transplanting to the active tillering stage, was inhibited compared to the plots with chemical fertilizers (CF). This phenomenon was observed over many growing seasons and was especially obvious in nitrogen uptake and leaf area index (LAI). However, after panicle initiation, the growth of MF-treated plants was equal to or superior to CF-treated plants. The grain yield in all the MF plots was 96 – 105% of that in the CF plots. The inorganic nitrogen content of the soil in the MF plots was higher than that in the CF plots, which was contradictory to the growth inhibition observed in the initial growth of plants in the MF plots. In contrast, the oxidation/reduction potential and pH of the surface soil in MF plots were within the normal range, indicating that these soil factors were not associated with growth inhibition observed in MF plots. Our results implied that rice cultivars with a long growing period that are able to recover from the initial growth inhibition, such as medium or late maturing cultivars, are suitable for paddy rice production fertilized with ADM.  相似文献   

18.
水氮互作对膜下滴灌玉米产量及水氮利用的影响   总被引:2,自引:0,他引:2  
李玉斌  马忠明 《玉米科学》2018,26(2):102-109
通过田间裂区试验,研究不同灌水量和施氮量对膜下滴灌玉米生理生长、产量及其构成因素和水、氮利用的影响。结果表明,水氮互作对玉米产量影响差异显著(P0.05)。玉米单株叶面积随着施氮量与灌水量的增加而增大。随着灌水量的增加,玉米耗水量呈上升趋势,玉米水分利用效率呈下降趋势。氮肥农学效率及氮肥偏生产力随着施氮量的增加而减小。当灌水量大于2 700 m~3/hm~2、施氮量大于200 kg/hm~2时,玉米干物质积累和产量不在增加,产量呈下降趋势。在本试验条件下,推荐最佳灌水量为2700 m~3/hm~2,施氮量为200 kg/hm~2。  相似文献   

19.
Development of wheat cultivars that achieve high yields despite the short growing season is essential for increasing wheat production in southwestern Japan. The objectives of this study were to assess the genetic progress in grain yield and to clarify yield-attributing traits of high-yielding wheat lines in southwestern Japan. We conducted field experiments for two growing seasons (2012–2013 and 2013–2014) using three commercial wheat cultivars (Shiroganekomugi, Chikugoizumi, and Iwainodaichi) and four high-yielding wheat lines including Hakei W1380 developed in southwestern Japan. In an ancillary field experiment, we compared a commercial cultivar, Shiroganekomugi, and a high-yielding line, Hakei W1380, in the 2014–2015 season. Across the two seasons, grain yield of high-yielding lines was generally higher than commercial cultivars. Hakei W1380 achieved the highest grain yield across the two seasons, and successfully produced more than 900 g m?2 in the 2013–2014 season. Correlation analysis showed that recent yield progress of wheat lines in southwestern Japan was derived from enhanced biomass production and grain number m?2. Larger numbers of grains m?2 in high-yielding lines than in commercial cultivars were associated with higher crop growth rate at the pre-anthesis stage, and therefore higher spike dry weight m?2 at anthesis. Genotypic differences in crop growth rate from jointing to anthesis resulted mainly from differences in leaf area index. These results indicate that further improvements in grain yield in southwestern Japan could be achieved by increasing the amount of radiation intercepted at the pre-anthesis stage and grain number m?2.  相似文献   

20.
玉米秸秆还田与实地氮肥管理对水稻产量与米质的影响   总被引:7,自引:0,他引:7  
 以中熟粳稻扬粳4038为材料,在大田试验条件下研究了玉米秸秆还田与实地氮肥管理对水稻产量和稻米品质的影响。三年(2009—2011)试验结果表明: 1)玉米秸秆还田能提高稻田土壤全氮和有机质含量; 2)在不施氮条件下,玉米秸秆还田处理较对照产量提高了18.9%~32.0%; 3)在实地氮肥管理模式下,玉米秸秆还田处理较对照施氮量下降了7.4%~16.7%,但产量提高了0.5%~11.0%,氮肥偏生产力提高了18.0%~31.7%; 4)在不施氮或实地氮肥管理条件下,玉米秸秆还田均较对照显著提高了整精米率、最高黏度和崩解值,降低了垩白粒率、垩白度、最终黏度和消减值;玉米秸秆还田对水稻的出糙率、精米率、直链淀粉含量和胶稠度无显著影响。在不施氮条件下,与对照相比,玉米秸秆还田提高了籽粒中蛋白质含量。上述结果表明,玉米秸秆还田有利于培肥土壤,采用实地氮肥管理将有助于进一步降低水稻施氮量,提高产量和改善米质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号