首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato fruit were stored in cold rooms at 8 °C containing an adsorbent–catalyst device including activated carbon–1% Pd either alone or with a heater (175 °C) programmed to heat at 3 h pulse intervals. Cold rooms without the adsorbent–catalyst system were used as controls. The use of the device led to very low concentrations of both ethylene and CO2 inside the cold rooms when compared with activated carbon–1% Pd alone or control rooms. In addition, the parameters related to ripening such as respiration rate, ethylene production, 1-aminocylcopropane-1-carboxylic acid (ACC, free and conjugated), colour changes, softening, decrease in total acidity (mainly citric and ascorbic acids) and lycopene were significantly higher in stored tomato fruit in control rooms than in those stored in cold rooms with both adsorbent–catalyst systems. The magnitude of the delay in these parameters was always significantly greater with the use of the device with respect to activated carbon–1% Pd alone. Thus, this device could be considered as a new tool to eliminate the ethylene surrounding fruit and vegetables in storage areas, avoiding the detrimental effects of ethylene action and leading to maintenance of their postharvest quality. Other additional advantages are the auto-regeneration process, when heat pulses were applied to the adsorbent–catalyst system, and the fact that it is an environmentally friendly technology.  相似文献   

2.
The effect of MAP on extending storage life and maintaining fruit quality was studied in ‘Doyenne du Comice’ (Pyrus communis L.) pears at Hood River and Medford, Oregon. Control fruit packed in standard perforated polyethylene liners started to show senescent core breakdown and lost the capacity to ripen at 20 °C after 4–5 months of cold storage in Hood River and after 5.25–6 months in Medford. LifeSpan® L257 MAP achieved steady-state atmospheres of 15.8% O2 + 3.7% CO2 in Hood River and 15.7–17.5% O2 + 3.8–5.7% CO2 in Medford. MAP inhibited ethylene production, ascorbic acid degradation and malondialdehyde accumulation, and extended storage life for up to 6 months with maintenance of fruit flesh firmness (FF) and skin color without commercially unacceptable level of physiological disorders. After 4, 5 and 6 months at −1 °C, MAP fruit exhibited climacteric-like patterns of ethylene production and softened to proper texture with desirable eating quality on day 5 during ripening at 20 °C. After 6 months at −1 °C plus 2 weeks of simulated transit conditions, MAP fruit maintained FF and skin color and had good eating quality at transit temperatures of 2 and 4.5 °C (10.1–11.5% O2 + 4.8–5.2% CO2), but reduced FF substantially and developed internal browning disorder at 7.5 and 20 °C (3.2–7.2% O2 + 7.9–9.5% CO2). The storage life of ‘Doyenne du Comice’ pears with high eating quality could be increased by up to 2 months when packed in MAP as compared with fruit packed in standard perforated polyethylene liners.  相似文献   

3.
Internal browning (IB) can be a serious problem with the use of modified atmosphere packaging (MAP) for ‘Bartlett’ pears (Pyrus communis L.) grown in the Pacific Northwest during storage and transit to distant markets. To investigate this disorder, ‘Bartlett’ pears harvested at commercial maturity were packed in a commercial MAP (MAPc), an experimental MAP (MAPe) and commercial perforated plastic bags (control) and stored in air at −1.1 °C. After 1 and 3 months of storage, samples of MAPc and control fruit were transferred to rooms at temperatures of 2, 4.5, 7.5, and 10 °C for 3 weeks to simulate transit temperatures and the time required to reach distant markets. MAPc maintained an average internal atmosphere of 12.3% O2 + 5.6% CO2 and significantly extended ‘Bartlett’ pear storage life with high eating quality and without IB and other disorders for up to 4 months at −1.1 °C. The internal gas atmosphere of MAPe equilibrated at 2.2% O2 + 5.7% CO2, which resulted in fruit with 25.5 and 62.3% IB after 3 and 4 months of storage, respectively. During simulated transit conditions of 2, 4.5, 7.5, and 10 °C, the CO2 level in MAPc was maintained at 5.6–7.9%, while O2 was reduced dramatically to 10.5, 5.0, 2.5, and 1.0%, respectively. IB developed at 7.5 and 10 °C but not at 2 and 4.5 °C, regardless of pre-transit storage duration (1 and 3 months) at −1.1 °C. The longer the storage duration and the higher transit temperature, the higher the incidence and severity of IB. The MAP-related IB disorder observed in this study included two types of symptoms: classic pithy brown core and wet brown flesh. The MAPc storage gas atmospheres maintained fruit firmness, color and higher eating quality after ripening, eliminated senescent scald and core breakdown, suppressed the loss of ascorbic acid (AsA) and titratable acidity, and slowed the accumulation of malondialdehyde (MDA) during storage at −1.1 °C for up to 4 months or 3 months + 3 weeks at simulated transit temperatures of 2 and 4.5 °C. In contrast, fruit held in MAP with low O2 levels (1.0–2.5%) developed IB that appeared to be associated with a reduction in AsA, accumulated MDA and exhibited an increase in membrane leakage. MAP inhibited ripening at high CO2 + high O2 but lead to IB when the packaging material or elevated temperatures resulted in high CO2 + low O2 conditions. The incidence of IB closely correlated with lipid peroxidation and appeared to be related to fruit AsA concentration. The MAPc designed for pears appears to be suitable for ‘Bartlett’ fruit stored at −1.1 °C for up to 4 months or storage for 3 months and a transportation duration of up to 3 weeks at 0–4.5 °C during the early season and at 0–2 °C during the late packing season. These conditions yielded fruit of high eating quality and without IB or over-ripening upon arrival at distant markets.  相似文献   

4.
The effects of controlled atmospheres (CA) on respiration, ethylene production, firmness, weight loss, quality, chilling injury, and decay incidence of three commercially important cultivars of guava fruit were studied during storage in atmospheres containing 2.5, 5, 8, and 10 kPa O2 with 2.5, 5, and 10 kPa CO2 (balance N2) at 8 °C, a temperature normally inducing chilling injury. Mature light green fruit of cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’ and ‘Apple Colour’, were stored for 30 days either in CA or normal air, and transferred to ambient conditions (25–28 °C and 60–70% R.H.) for ripening. CA storage delayed and suppressed respiratory and ethylene peaks during ripening. A greater suppression of respiration and ethylene production was observed in fruit stored in low O2 (≤5 kPa) atmospheres compared to those stored in CA containing 8 or 10 kPa O2 levels. High CO2 (>5 kPa) was not beneficial, causing a reduction in ascorbic acid levels. CA storage was effective in reducing weight loss, and maintaining firmness of fruit. The changes in soluble solids content (SSC), titratable acidity (TA), ascorbic acid, and total phenols were retarded by CA, the extent of which was dependent upon cultivar and atmosphere composition. Higher amounts of fermentative metabolites, ethanol and acetaldehyde, accumulated in fruit held in atmospheres containing 2.5 kPa O2. Chilling injury and decay incidence were reduced during ripening of fruit stored in optimal atmospheres compared to air-stored fruit. In conclusion, guava cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’, and ‘Apple Colour’ may be stored for 30 days at low temperature (8 °C) supplemented with 5 kPa O2 + 2.5 kPa CO2, 5 kPa O2 + 5 kPa CO2, and 8 kPa O2 + 5 kPa CO2, respectively.  相似文献   

5.
The influences of storage temperature and modified O2 and CO2 concentrations in the atmosphere on the post-cutting life and quality of fresh-cut pineapple (Ananas comosus) were studied. Temperature was the main factor affecting post-cutting life, which ranged from 4 days at 10 °C to over 14 days at 2.2 and 0 °C. The end of post-cutting life was signaled by a sharp increase in CO2 production followed by an increase in ethylene production. The main effect of reduced (8 kPa or lower) O2 levels was better retention of the yellow color of the pulp pieces, as reflected in higher final chroma values, whereas elevated (10 kPa) CO2 levels led to a reduction in browning (higher L values). Modified atmosphere packaging allowed conservation of pulp pieces for over 2 weeks at 5 °C or lower without undesirable changes in quality parameters.  相似文献   

6.
Most sweet cherries produced in the US Pacific Northwest and shipped to distant markets are often in storage and transit for over 3 weeks. The objectives of this research were to study the effects of sweet cherry storage O2 and CO2 concentrations on the respiratory physiology and the efficacy of modified atmosphere packaging (MAP) on extending shelf life. Oxygen depletion and CO2 formation by ‘Bing’ and ‘Sweetheart’ cherry fruit were measured. While respiration rate was inhibited linearly by reduced O2 concentration from 21% to 3–4% at 20 °C, it was affected very little from 21% to ∼10% but declined logarithmically from ∼10% to ∼1% at 0 °C. Estimated fermentation induction points determined by a specific increased respiratory quotient were less than 1% and 3–4% O2 for both cultivars at 0 and 20 °C, respectively. ‘Bing’ and ‘Sweetheart’ cherry fruits were packaged (∼8 kg/box) in 5 different commercial MAP box liners and a standard macro-perforated polyethylene box liner (as control) and stored at 0 °C for 6 weeks. MAP liners that equilibrated with atmospheres of 1.8–8.0% O2 + 7.3–10.3% CO2 reduced fruit respiration rate, maintained higher titratable acidity (TA) and flavor compared to control fruit after 4 and 6 weeks of cold storage. In contrast, MAP liners that equilibrated with atmospheres of 9.9–14.4% O2 + 5.7–12.9% CO2 had little effect on inhibiting respiration rate and TA loss and maintaining flavor during cold storage. All five MAP liners maintained higher fruit firmness (FF) compared to control fruit after 6 weeks of cold storage. In conclusion, storage atmospheres of 1.8–14.4% O2 + 5.7–12.9% CO2 generated by commercial MAP, maintained higher FF, but only the MAP with lower O2 permeability (i.e., equilibrated at 1.8–8.0% O2) maintained flavor of sweet cherries compared to the standard macro-perforated liners at 0 °C. MAP with appropriate gas permeability (i.e., equilibrated at 5–8% O2 at 0 °C) may be suitable for commercial application to maintain flavor without damaging the fruit through fermentation, even if temperature fluctuations, common in commercial storage and shipping, do occur.  相似文献   

7.
Southern hemisphere blueberry producers often export their products through extended supply chains to Northern hemisphere consumers. During extended storage, small variations in temperature or atmosphere concentrations may generate significant differences in final product quality. In addition, relatively short delays in establishing cool storage temperatures may contribute to quality loss. In these experiments a full factorial analysis was done of the effects of three cooling delays (0, 12 or 24 h at 10 °C), three atmosphere concentrations (air, 10% CO2 + 2.5% O2 and 10% CO2 + 20% O2) and two storage temperatures (0 °C and 4 °C) which were assessed for their impact on final quality, measured as weight loss, firmness and rot incidence. Two blueberry cultivars were studied: ‘Brigitta’, a highbush cultivar, and ‘Maru’, a rabbiteye. Delays in cooling had a small effect on final product weight, whereas variation in storage temperature and atmosphere during simulated transport influenced both firmness and rot incidence. Atmospheres with 10% CO2 reduced decay incidence, particularly at low oxygen concentration (2.5% O2), although the latter conditions tended to soften fruit. In order to achieve optimal postharvest storage for blueberries, minimising temperature variability in the supply chain is important, as is finding the potentially cultivar-specific optimal combination of high CO2 and low O2 concentration that results in simultaneously minimising rot incidence and induced softening.  相似文献   

8.
Gas exchange rates and softening of kiwifruit (Actinidia deliciosa (A Chev) Liang et Ferguson cv Hayward) were measured during two seasons under a range of modified atmosphere (MA) conditions (0–21 kPa O2, 0–5 kPa CO2) at 0–10 °C to characterise their functional relationship. The kinetics of gas exchange and softening were the same for the two seasons studied.CO2 partial pressures delayed softening but did not inhibit the rate of gas exchange. Lowering the O2 levels to near 0 kPa did not inhibit softening completely, suggesting that the rate of softening was driven by energy provided by both oxidative and fermentative processes.An integrated modelling approach was used to link the rate of softening to the rate of gas exchange explaining 88% of the effect of MA on both the rate of gas exchange and fruit softening. Shelf life simulations showed that during storage at 0 °C, lowering O2 or raising CO2 gave a substantial benefit towards extending shelf life. At temperatures higher than 3 °C, the additional effect of MA was already limited.  相似文献   

9.
The effect of different O2 levels from 0 to 100 kPa in combination with 0, 10 and 20 kPa CO2 on the respiration metabolism of greenhouse grown fresh-cut butter lettuce was studied. Controlled atmospheres of 20 or 75 kPa O2 with 0 or 10 kPa CO2 showed a constant respiration rate during the first 2–4 days at different temperatures (1, 5 and 9 °C). Therefore, constant respiration rates during a short period of 2–4 days could be considered as valid for a large part of the commercial life of, for instance, a modified atmosphere package development. The fresh-cut lettuce exposed to low O2 levels (2–10 kPa) combined with moderate to high CO2 levels (10 and 20 kPa) had a higher respiration rate than when 20–100 kPa O2 were used. Moderate CO2 levels (10 kPa) reduced the respiration rates of fresh-cut lettuce 20–40% at 9 °C. This effect was less noticed at lower temperatures. Gas composition with high CO2 levels (20 kPa) probably caused a metabolic disorder increasing the respiration rate of fresh-cut butter lettuce. It was concluded that 80 kPa O2 must be used in modified atmosphere packaging (MAP) to avoid fermentation of fresh-cut butter lettuce in combination with 10–20 kPa CO2 for reducing their respiration rate.  相似文献   

10.
The effects of high CO2 concentration (10% CO2, 17% O2) on the changes of functional cell wall components (pectic substances, hemicellulose, cellulose, lignin), mechanical properties, content of free soluble sugars (sucrose, glucose, fructose), and respiration activity were studied in harvested white asparagus spears stored at 10 and 20 °C, respectively, for up to 7 d. Spears stored at 2, 10 and 20 °C in air were studied as controls, where the 2 °C condition indicated the effects of cold storage. During storage, respiration activity declined only slightly, irrespective of the CO2 and temperature regime. Spears stored at 20 °C under both CA and normal air became less stiff and more elastic, however, tissue toughness increased significantly. Changes in toughness were associated primarily with the dynamics of lignin and cellulose, revealing a strong correlation (r2 = 0.81). High CO2 concentration inhibited the synthesis of cellulose and, to some extent, lignin accumulation at 20 °C. Additionally, elevated CO2 inhibited the degradation of soluble carbohydrates. In contrast, slightly lower temperatures of 10 °C in combination with high CO2 did not have a pronounced effect on changes in structural carbohydrates (lignin, cellulose, hemicellulose and pectins). The effect low temperature (2 °C) under normal atmosphere conditions resulted in the inhibition of cell wall changes in asparagus spears.  相似文献   

11.
The regulatory effects of 5 kPa CO2 and of the ethylene action inhibitor, 1-methylcyclopropene (1-MCP) at 0.5 μmol/l on the senescence of harvested mint, Mentha longifolia L. were assessed. Visual parameters of senescence including yellowing, browning, decay and leaf abscission were recorded and scored on scales linking the onset and progression of senescence to marketability. The effects of plant age on the rate of postharvest senescence and on the efficacy of the CO2 and 1-MCP treatments were also investigated. All experiments were repeated with and without the presence of exogenous ethylene. Two experimental formats were used, with 6 days storage at room temperature representing local market conditions, and 6 days cold storage at 1.5 °C followed by 4 days at room temperature representing export market conditions. Sprigs from old plants were no longer of marketable quality after 6 days storage at room temperature. Exogenous ethylene accelerated the onset of senescence causing unacceptably high rates of leaf abscission. Raised levels of CO2 in a controlled atmosphere system were found to be more effective in inhibiting senescence without the presence of exogenous ethylene than pre-treatment with 1-MCP, and no additive effect was found. However in the presence of exogenous ethylene, a combined treatment with 1-MCP together with raised CO2 levels resulted in a significant additive effect in nullifying the ethylene-induced leaf abscission. Respiration rates as measured by CO2 production, and ethylene production, were recorded throughout all experiments. While CO2 levels were not affected by any experimental treatment, ethylene production was elevated in mint sprigs exposed to an initial dose of gaseous 1-MCP, and was further increased under a combined treatment of 1-MCP together with 5 kPa CO2. However in the presence of exogenous ethylene, CO2 strongly suppressed the 1-MCP induced ethylene production.  相似文献   

12.
The potential of 1-MCP for controlling ripening in ‘Angeleno’ plum fruit under air and controlled atmosphere (CA) storage was explored, and the possibility that 1-MCP can inhibit development of brown rot caused by Monilinia laxa and internal breakdown in ‘Fortune’ and ‘Angeleno’ plums tested. After harvest, fruit were exposed to 300 and 500 nl l−1 (in 2003) and 500 nl l−1 1-MCP (in 2004) at low temperatures (0–3 °C) for 24 h. After treatment the plums were stored in air at 0 °C and ‘Angeleno’ fruit were also stored in CA storage (1.8% O2 + 2.5% CO2). Following storage, fruit were kept at 20 °C. In ‘Angeleno’ fruit, 1-MCP was effective in delaying the loss of firmness and colour changes during holding at 20 °C. 1-MCP reduced brown rot in fruit stored in CA but no significant reduction was found in air storage. Internal breakdown, a major physiological storage disorder in plums, was inhibited by 1-MCP treatment. Furthermore, since 1-MCP applied in air storage showed better results than the control in CA conditions, an application of 1-MCP before air storage could be the best way to reduce the ripening process for short or medium storage periods (40 and 60 days). CA storage plus 1-MCP treatment could be used for long periods (80 days).  相似文献   

13.
A continuing challenge for commercializing 1-methylcyclopropene (1-MCP) to extend the storage life and control superficial scald of ‘d’Anjou’ pear (Pyrus communis L.) is how to initiate ripening in 1-MCP treated fruit. ‘D’Anjou’ pears harvested at commercial and late maturity were treated with 1-MCP at 0.15 μL L−1 and stored either at the commercial storage temperature −1.1 °C (1-MCP@−1.1 °C), or at 1.1 °C (1-MCP@1.1 °C) or 2.2 °C (1-MCP@2.2 °C) for 8 months. Control fruit stored at −1.1 °C ripened and developed significant scald within 7 d at 20 °C following 3–5 months of storage. While 1-MCP@−1.1 °C fruit did not develop ripening capacity due to extremely low internal ethylene concentration (IEC) and ethylene production rate for 8 months, 1-MCP@1.1 °C fruit produced significant amounts of IEC during storage and developed ripening capacity with relatively low levels of scald within 7 d at 20 °C following 6–8 months of storage. 1-MCP@2.2 °C fruit lost quality quickly during storage. Compared to the control, the expression of ethylene synthesis (PcACS1, PcACO1) and signal (PcETR1, PcETR2) genes was stable at extremely low levels in 1-MCP@−1.1 °C fruit. In contrast, they increased expression after 4 or 5 months of storage in 1-MCP@1.1 °C fruit. Other genes (PcCTR1, PcACS2, PcACS4 and PcACS5) remained at very low expression regardless of fruit capacity to ripen. A storage temperature of 1.1 °C can facilitate initiation of ripening capacity in 1-MCP treated ‘d’Anjou’ pears with relatively low scald incidence following 6–8 months storage through recovering the expression of certain ethylene synthesis and signal genes.  相似文献   

14.
Standard quality parameters, consumer acceptability, emission of volatile compounds and ethylene production of ‘Mondial Gala®’ apples (Malus × domestica Borkh.) were determined in relation to storage atmosphere, storage period and shelf-life period. Fruit were harvested at the commercial date and stored in AIR (21 kPa O2:0.03 kPa CO2) or under three different controlled atmospheres (CAs): LO (2 kPa O2:2 kPa CO2), ULO1 (1 kPa O2:1 kPa CO2), or ULO2 (1 kPa O2:2 kPa CO2). Fruit samples were analysed after 12 and 26 weeks of storage plus 1 or 7 d at 20 °C.Apples stored in CA maintained better standard quality parameters than AIR-stored fruit. The volatile compounds that contributed most to the characteristic aroma of ‘Mondial Gala®’ apples after storage were butyl, hexyl and 2-methylbutyl acetate, hexyl propanoate, ethyl butanoate, ethyl hexanoate, ethyl, butyl and hexyl 2-methylbutanoate. Data obtained from fruit analysis were subjected to principal component analysis (PCA). The apples most accepted by consumers showed the highest emission of ethyl 2-methylbutanoate, ethyl hexanoate, tert-butyl propanoate and ethyl acetate, in addition to the highest titratable acidity and firmness values.  相似文献   

15.
The increased consumption of fresh-cut celery has led to the need to explore packaging alternatives for fresh-cut celery that can meet consumer, market, and industry needs. In this study, the effect of bio-based packaging and non-conventional atmospheres on the quality and safety of chlorine-sanitized celery sticks stored at 7 °C was investigated. Two materials differing in permeability [a bio-based polyester (polylactic acid (PLA)) and a petroleum-based polyolefin (polypropylene/low density polyethylene (PP/PE)] and four initial gas compositions [air (A-PLA or A-PP/PE), 95 kPa O2 + 5 kPa N2 (O2-PLA), 99 kPa N2 + 1 kPa O2 (N2-PLA), and 6 kPa O2 + 12 kPa CO2 + 82 kPa N2 (CO2-PLA)] were evaluated. Changes in headspace composition, weight loss, surface and cut end color, texture, ethanol content, appearance, and growth of Listeria monocytogenes on inoculated celery sticks were assessed during 21 d of storage. Active MAP (CO2-PLA) out-performed passive MAP (A-PLA) in maintaining celery stick quality but not safety. Conventional active MAP (CO2-PLA) out-performed non-conventional active MAPs (O2-PLA and N2-PLA) in maintaining celery stick quality throughout storage, but O2-PLA suppressed L. monocytogenes growth while CO2-PLA promoted growth during the first 10 d of storage. PLA and PP/PE materials affected celery stick quality but not Listeria growth. This study shows that the initial gas composition and packaging material both impact the quality and safety of celery sticks. Overall, the combination PLA and 95 kPa O2 proved most beneficial in maximizing both the safety and quality of celery sticks during one week of storage at 7 °C.  相似文献   

16.
‘Big Top’ and ‘Venus’ nectarines and ‘Early Rich’ and ‘Sweet Dream’ peaches were picked at commercial maturity and stored for 20 and 40 d at −0.5 °C and 92% RH under either air or one of the three different controlled atmosphere regimes (2 kPa O2/5 kPa CO2, 3 kPa O2/10 kPa CO2 and 6 kPa O2/17 kPa CO2). Physicochemical parameters and volatile compounds emission were instrumentally measured after cold storage plus 0 or 3 d at 20 °C. Eight sensory attributes were assessed after cold storage plus 3 d at 20 °C by a panel of 9 trained judges, in order to determine the relationship between sensory and instrumental parameters and the influence of storage period and cold storage atmosphere composition on this relationship.A principal component analysis (PCA) was undertaken to characterize the samples according to their sensory attributes. PCA results reflected the main characteristics of the cultivars: ‘Big Top’ was the nectarine cultivar with the highest values for sweetness, juiciness and flavor; ‘Sweet Dream’ was the sweetest peach and was characterized by high values for crispness and firmness, while ‘Venus’ and ‘Early Rich’ were characterized by their sourness. To assess the influence of storage period and CA composition on sensory properties, a PLS model of the flavor of the different samples was constructed using standard quality attributes and volatile concentrations as the X-variables. The model with 2 factors accounted for more than 80% of flavor variance. PLS results indicated that the main influence on flavor perception was storage period. Atmosphere composition also had an influence on flavor perception: flavor perception decreased from samples stored in a 2/5 O2/CO2 atmosphere composition to those of 3/10 and 6/17. These results can be qualitatively extended to juiciness and sweetness since all these sensory properties were strongly correlated.  相似文献   

17.
This study investigated the effects of ethylene in storage and 1-methylcyclopropene (1-MCP) pretreatment on post-storage leaf senescence as measured by changes in photosynthesis and chloroplast degradation of two Aglaonema cultivars. Potted plants of ‘Chalit's Fantasy’ and ‘White Tip’ with or without 1-MCP treatment (600 nL L−1 1-MCP for 6 h) were exposed to 3.0 μL L−1 ethylene, while being stored for 5 d at 16 °C in the dark, and then placed under an indoor environment for further observation. Plants that did not receive 1-MCP and ethylene served as controls. Ethylene did not affect the stomatal conductance in either cultivar. Ethylene reduced the net CO2 assimilation rate and Fv/Fm (potential photochemical efficiency of photosystem II) in ‘White Tip’, but not in ‘Chalit's Fantasy’. Chloroplast number in a palisade or spongy mesophyll cell did not differ among treatments in ‘Chalit's Fantasy’. However, ethylene-treated ‘White Tip’ had fewer chloroplasts in the mesophyll cells, had more and larger plastoglobules in the chloroplasts, and had looser granal stacking with enlarged thylakoid lumens. ‘Chalit's Fantasy’ plants that were treated with 1-MCP before exposure to ethylene had higher net CO2 assimilation rates and stomatal conductance than the control or plants that were exposed to ethylene without 1-MCP pretreatment. 1-MCP pretreatment mitigated the injurious effect of ethylene on ‘White Tip’ by increasing net CO2 assimilation rate and Fv/Fm, and maintaining the quantity and structural integrity of chloroplasts.  相似文献   

18.
Fresh basil (Ocimum basilicum L.) is a highly perishable leafy green vegetable with a storage life of 4–5 d at room temperature. Exposure of basil leaves to temperatures below 12 °C during storage results in chilling injury; therefore, refrigeration cannot be used to extend postharvest life of basil. Typically, leafy vegetables are stored in darkness or extremely low irradiance. Darkness is known to induce senescence, and the initial phase of senescence is reversible by exposure to light. In this work, we studied the effects of low-intensity white light pulses at room temperature on postharvest senescence of basil leaves. Daily exposure for 2 h to 30–37 μmol m−2 s−1 of light was effective to delay postharvest senescence of basil leaves. Chlorophyll and protein levels decreased, ammonium accumulated and leaves developed visual symptoms of deterioration (darkening) during storage in darkness. Light pulses reduced the intensity of these senescence symptoms. The photosynthesis light compensation point of basil leaves was 50 μmol m−2 s−1 i.e., higher than the intensity used in this study, and the effect of treatment with red light was the same as with white light, while far red light was ineffective. Light pulses exerted a local effect on chlorophyll loss, but the effect on protein degradation was systemic (i.e., spreading beyond the illuminated parts of the leaf blade). The results of this study indicate that daily treatment for 2 h with low intensity light (30–37 μmol m−2 s−1 every day) during storage at 20 °C is an effective treatment to delay postharvest senescence of basil leaves. The delay of postharvest senescence by low intensity light pulses seems to be mediated by phytochromes, and it is systemic for protein, and partially systemic for chlorophyll degradation.  相似文献   

19.
This study addressed the influence of high carbon dioxide and low oxygen levels on Pleurotus eryngii samples, stored at 20–25 °C and 90–95% RH for 5 d. Evaluations of sensory characteristics, malondialdehyde (MDA) content, superoxide anion (O2) production rate and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and cytochrome c oxidase (CCO) were made in the mushrooms in response to high carbon dioxide and low oxygen treatments. The results showed that 2% O2 + 30% CO2 significantly prolonged mushroom shelf-life when compared to the control. The 2% O2 + 30% CO2 mixture was better suited to maintaining mushroom sensory characteristics and delaying the MDA increase and O2 production rate during storage. The activities of SOD, POD, and CAT in 2% O2 + 30% CO2-treated mushrooms were significantly higher than those of the control. However, the CCO activity was not affected by the atmospheric treatment (2% O2 + 30% CO2). These results indicated that the 2% O2 + 30% CO2 treatment could alleviate lipid peroxidation and enhance antioxidant enzyme activities, but it exerted little influence on the CCO activity of Pleurotus eryngii.  相似文献   

20.
Anthropogenic increases in atmospheric carbon dioxide concentration [CO2], and subsequent increases in surface temperatures, are likely to impact the growth and yield of cereal crops. One potential means for yield reduction is for climate parameters to increase the occurrence of lodging. Using an in situ free-air CO2 enrichment (FACE) system, two morphologically distinct rice cultivars, KH (Koshihikari) and SY (Shan you 63), were grown at two [CO2]s (ambient and ambient + 200 μmol mol−1) and two soil temperatures (ambient and ambient ± 1.8 °C) over a two year period to assess and quantify lodging risk. Elevated [CO2] per se had no effect on lodging resistance for either cultivar. However, elevated [CO2] and higher soil temperature increased the lodging risk for SY, due to a relatively higher increase in plant biomass and height at the elevated, relative to the ambient [CO2] condition. Elevated soil temperature per se also increased lodging risk for both cultivars and was associated with longer internodes in the lower portion of the tillers. These findings illustrate that lodging susceptibility in rice, an important cereal crop, can be increased by rising [CO2] and soil temperature; however, variation observed here between rice cultivars suggests there may be sufficient intraspecific variability to begin choosing rice lines that minimize the potential risk of lodging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号