首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 30 毫秒
1.
The objective of this work was to estimate covariance functions for direct and maternal genetic effects, animal and maternal permanent environmental effects, and subsequently, to derive relevant genetic parameters for growth traits in Canchim cattle. Data comprised 49 011 weight records on 2435 females from birth to adult age. The model of analysis included fixed effects of contemporary groups (year and month of birth and at weighing) and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were allowed to vary and were modelled by a step function with 1, 4 or 11 classes based on animal’s age. The model fitting four classes of residual variances was the best. A total of 12 random regression models from second to seventh order were used to model direct and maternal genetic effects, animal and maternal permanent environmental effects. The model with direct and maternal genetic effects, animal and maternal permanent environmental effects fitted by quadric, cubic, quintic and linear Legendre polynomials, respectively, was the most adequate to describe the covariance structure of the data. Estimates of direct and maternal heritability obtained by multi‐trait (seven traits) and random regression models were very similar. Selection for higher weight at any age, especially after weaning, will produce an increase in mature cow weight. The possibility to modify the growth curve in Canchim cattle to obtain animals with rapid growth at early ages and moderate to low mature cow weight is limited.  相似文献   

2.
Genetic parameters and genetic trends for weaning weight adjusted to 240 d of age (WW240), and weight gain from weaning to 24 mo of age (GW730) were estimated in a Colombian beef cattle population composed of Blanco Orejinegro, Romosinuano, Angus, and Zebu straightbred and crossbred animals. Calves were born and weaned in a single farm, and moved to 14 farms postweaning. Data were analyzed using a multiple trait mixed model procedures. Estimates of variance components and genetic parameters were obtained by Restricted Maximum Likelihood. The 2-trait model included the fixed effects of contemporary group (herd–year–season–sex), age of dam (WW240 only), breed direct genetic effects (as a function of breed fractions of calves), breed maternal genetic effects (as a function of breed fractions of dams; WW240 only), individual heterosis (as a function of calf heterozygosity), and maternal heterosis (as a function of dam heterozygosity; WW240 only). Random effects for WW240 were calf direct genetic, dam maternal genetic, permanent environmental maternal, and residual. Random effects for GW730 were calf direct genetic and residual. All relationships among animals were accounted for. Program AIREML was used to perform computations. Estimates of heritabilities for additive direct genetic effects were 0.20 ± 0.003 for WW240, and 0.32 ± 0.004 for GW730. Maternal heritability was 0.14 ± 0.002 for WW240. Estimates of heritability suggest that selection for preweaning and postweaning growth in this population is feasible. Low direct and maternal preweaning heritabilities suggest that nutrition and management should be improved to allow fuller expressions of calf direct growth and cow maternal ability. The genetic correlation between direct additive and maternal additive effects for WW240 was − 0.42 ± 0.009, indicating an antagonistic relationship between these effects. The correlation between additive direct genetic effects for WW240 and GW730 was almost zero (− 0.04 ± 0.009), suggesting that genes affecting growth preweaning may differ from those influencing growth postweaning. Trends were negative for direct WW240 and GW730 weighted yearly means of calves, sires, and dams from 1995 to 2006. Maternal WW240 showed near zero trends during these years. Trends for calf direct WW240 and GW730 followed sire trends closely, suggesting that more emphasis was placed on choosing sires than on dam replacements.  相似文献   

3.
Genetic parameters and genetic trends for age at first calving (AFC), interval between first and second calving (CI1), and interval between second and third calving (CI2) were estimated in a Colombian beef cattle population composed of Angus, Blanco Orejinegro, and Zebu straightbred and crossbred animals. Data were analyzed using a multiple trait mixed model procedures. Estimates of variance components and genetic parameters were obtained by Restricted Maximum Likelihood. The 3-trait model included the fixed effects of contemporary group (year-season of calving-sex of calf; sex of calf for CI1 and CI2 only), age at calving (CI1 and CI2 only), breed genetic effects (as a function of breed fractions of cows), and individual heterosis (as a function of cow heterozygosity). Random effects for AFC, CI1, and CI2 were cow and residual. Program AIREMLF90 was used to perform computations. Estimates of heritabilities for additive genetic effects were 0.15 ± 0.13 for AFC, 0.11 ± 0.06 for CI1, and 0.18 ± 0.11 for CI2. Low heritabilities suggested that nutrition and reproductive management should be improved to allow fuller expressions of these traits. The correlations between additive genetic effects for AFC and CI1 (0.33 ± 0.41) and for AFC and CI2 (0.40 ± 0.36) were moderate and favorable, suggesting that selection of heifers for AFC would also improve calving interval. Trends were negative for predicted cow yearly means for AFC, CI1, and CI2 from 1989 to 2004. The steepest negative trend was for cow AFC means likely due to the introduction of Angus and Blanco Orejinegro cattle into this population.  相似文献   

4.
The objective of this study was to compare sire EBVs for longevity in Chianina beef cattle estimated with linear models and survival analysis. Two datasets were created, one considered all data (SURVall), the other only uncensored records (SURVun). The linear models were used to analyze longevity measured as three correlated dichotomous (yes/no) measures of survival in the first three parities (LIN-S3) and as an overall measure of lifespan in months (LIN-LPL). Correlation between sire EBVs from the two survival analyses were 0.85. For LIN-S3 the correlations of EBVs across parities were between 0.69 to 0.93. Medium correlations (from 0.50 to 0.62) were found when only uncensored data (SURVun) were compared to the linear model (LIN-S3). Higher correlations (from 0.71 to 0.93) were found when EBV based on both censored and uncensored data (SURVall) were compared to LIN-S3. Heritability was estimated at 0.11, 0.09 and 0.08 for SURVall, SURVun and LIN-LPL, respectively; and 0.05, 0.02 and 0.02, respectively, for survival in the first three parities according to LIN-S3. Linear and non-linear models differed in many aspects; the most precise EBV were obtained when all data was used in the evaluation.  相似文献   

5.
The genetic diversity of the Red Bororo and White Fulani cattle breeds of Cameroon and Nigeria was assessed with a panel of 32 markers. Estimates for the various indices of genetic diversity, total number of alleles (TNA), mean observed number of alleles (MNA), mean effective number of alleles (MNE), observed heterozygosity (H ob) and expected heterozygosity (H ex), were higher at microsatellite loci than at protein loci. Mean H ex values were above 71% at microsatellite loci in all the breeds and ranged from 37% to 41.6% at milk protein loci and from 40.9% to 45.6% at blood protein loci. The highest TNA and MNA of microsatellites were recorded for the Nigerian White Fulani. MNE of milk protein loci was highest in the Cameroonian Red Bororo, while TNA of blood protein loci was highest in the Cameroonian White Fulani. The high genetic diversity levels indicate the presence of the necessary ingredients for improvement breeding and conservation. Multi-locus estimates of within-population inbreeding (f), total inbreeding (F) and population differentiation (θ) of the breeds were significantly different from zero, except for θ of blood proteins. A high level of gene flow was found between the breeds (5.829). The phylogenetic relationship existing among the four breeds is greatly influenced by location. The high gene flow between the breeds may lead to a loss of genetic diversity through genetic uniformity and a reduction in opportunities for future breed development. We propose an improvement scheme with aims to prevent loss of genetic diversity, improve productivity and reduce uncontrolled genetic exchanges between breeds.  相似文献   

6.
1995年-1998年中国连续4年粮食丰收,1999-2001年中国粮食连续3年减产,但粮食库存仍然较多。并不能够扭转转收带来的供大于求的局面,预计2002年粮食增产1.1%,在短期内粮食供给大于需求的买方市场态势不会改变,因此,应充分利用当前时机,调整产业结构,发展肉牛生产,促进农业结构调整是提高农民收入的重要途径。文中还分析了欧盟,日本,韩国等国疫情风波及其原因,提出了中国发展绿色肉牛产销供应链的若干对策。  相似文献   

7.
Genetic parameters for carcass traits of 1774 field progeny (1281 steers and 493 heifers), and their genetic relationships with feed efficiency traits of their sire population (740 bulls) were estimated with REML. Feed efficiency traits included feed conversion ratio (FCR) and residual feed intake (RFI). RFI was calculated by the residual of phenotypic (RFIphe) and genetic (RFIgen) regression from the multivariate analysis of feed intake on metabolic weight and daily gain. Progeny traits were carcass weight (CWT), rib eye area (REA), rib thickness (RBT), subcutaneous fat, yield estimate (YEM), marbling score (MSR), meat quality grade, meat color, fat color, meat firmness and meat texture. The estimated heritability for CWT (0.70) was high and heritabilities for all the other traits were moderate (ranged from 0.32 to 0.47), except for meat and fat color and meat texture which were low (ranged from 0.02 to 0.25). The high genetic correlation (0.62) between YEM and MSR suggests that simultaneous improvement of high carcass yield and beef marbling is possible. Estimated genetic correlations of RFI (RFIphe and RFIgen) of sires with CWT (− 0.60 and − 0.53) and MSR (− 0.62 and − 0.50) of their progeny were favorably negative indicating that the selection against RFI of sires may have contributed to produce heavier carcass and increase in beef marbling. The correlated responses in CWT, REA and RBT of progeny were higher to selection against RFI than those to selection against FCR of sires. This study provides evidence that selection against RFI is preferred over selection against FCR in sire population for getting better correlated responses in carcass traits of their progeny.  相似文献   

8.
全基因组关联分析(genome-wide association studies,GWAS)是研究家畜复杂经济性状和疾病遗传变异的有效方法,GWAS的核心是挖掘遗传变异与目标表型性状间的关系.随着牛全基因组测序工作完成,海量单核苷酸多态性(single nucleotide polymorphism,SNP)位点被标记...  相似文献   

9.
Data from purebred and crossbred calves, consisting of Afrikaner (AF), Charolais (CH), Simmental (ST) and Hereford and Aberdeen Angus combined (HA), were analyzed to estimate breed additive effects, breed maternal effects, average individual heterosis and average maternal heterosis. The traits studied were birthweight (BW), weaning weight (WW) and preweaning average daily gain (ADG) (kg). A multiple regression procedure was used for the estimation of these genetic effects and for predictions for breed crosses that were not included in the data set. Crosses containing higher proportions of CH or ST were heavier at birth and weaning than the other crosses and purebreds. The direct effects of BW were negative and significant (P < 0.05), except that of the CH, which was the highest. The regression coefficients were ?24.87, ?18.16, ?22.80 and ?27.02 for AF, CH, ST and HA, respectively. The maternal effects were not significant. Both average individual and average maternal heterosis regression coefficients were also not significant for BW. Regression coefficients of both direct and maternal effects for WW were not significant and were characterized by large standard errors. Average individual heterosis and average maternal heterosis regression coefficients were, however, significant (P < 0.01) and the values were 5.34 and 2.19, respectively. A similar pattern was observed for ADG, except for the regression coefficients of the maternal effects, which were significant, with larger estimates for AF and ST reflecting their superior mothering ability. The values were 0.01, 0.13, 0.13, 0.03; ?0.82, ?0.85, ?0.85, ?0.81; 0.03 and 0.01 for direct effects and maternal effects of AF, CH, ST and HA; and average individual heterosis and average maternal heterosis, respectively. Means and standard errors of purebreds and their F1 crosses not included in the dataset were predicted.  相似文献   

10.
Genetic parameters for a range of sheep production traits have been reviewed from estimates published over the last decade. Weighted means and standard errors of estimates of direct and maternal heritability, common environmental effects and the correlation between direct and maternal effects are presented for various growth, carcass and meat, wool, reproduction, disease resistance and feed intake traits. Weighted means and confidence intervals for the genetic and phenotypic correlations between these traits are also presented. A random effects model that incorporated between and within study variance components was used to obtain the weighted means and variances. The weighted mean heritability estimates for the major wool traits (clean fleece weight, fibre diameter and staple length) and all the growth traits were based on more than 20 independent estimates, with the other wool traits based on more than 10 independent estimates. The mean heritability estimates for the carcass and meat traits were based on very few estimates except for fat (27) and muscle depth (11) in live animals. There were more than 10 independent estimates of heritability for most reproduction traits and for worm resistance, but few estimates for other sheep disease traits or feed intake. The mean genetic and phenotypic correlations were based on considerably smaller numbers of independent estimates. There were a reasonable number of estimates of genetic correlations among most of the wool and growth traits, although there were few estimates for the wool quality traits and among the reproduction traits. Estimates of genetic correlations between the groups of different production traits were very sparse. The mean genetic correlations generally had wide confidence intervals reflecting the large variation between estimates and relatively small data sets (number of sires) used. More accurate estimates of genetic parameters and in particular correlations between economically important traits are required for accurate genetic evaluation and development of breeding objectives.  相似文献   

11.
In Ireland, a new beef genetic index has been developed. Growth rate is expressed as expected progeny difference for carcass weight (EPDCWT) and is estimated on an across-breed basis. Cross-breeding of dairy cows with both Aberdeen Angus and Belgian Blue beef sires is widely practised. The objective of this study was to compare blood metabolites, slaughter traits and carcass composition of progeny from Holstein–Friesian dairy cows and Aberdeen Angus (AA), Belgian Blue (BB), Friesian (FR) and Holstein (HO) sires. The AA and BB sires were selected, within breed, to be of either high (H) or low (L) estimated genetic merit for carcass weight. A total of 170 male progeny from spring-calving cows and 42 sires (10 AA, 13 BB, 7 FR and 12 HO) were artificially reared indoors and managed together until the end of their second grazing season when they were assigned to either a Light (560 kg) or Heavy (620 kg) slaughter weight. Blood metabolite concentrations were measured six times throughout life and feed intake was recorded during the first and second winter. Carcass measurements and selected non-carcass components were recorded after slaughter and the right side of each carcass was dissected into lean, fat and bone. Differences in blood metabolite concentrations amongst genetic groups were negligible although there were some effects of the prevailing level of nutrition. M. longissimus area scaled for carcass weight was 0.220, 0.221, 0.260, 0.255, 0.212 and 0.208 (SE 0.004) cm2/kg for AAH, AAL, BBH, BBL, FR and HO, respectively. Carcass measurements scaled for carcass weight were greater for L, AA, HO and the dairy strains than for H, BB, FR and the beef breeds, respectively. There was no effect of estimated genetic merit for carcass weight on carcass composition. Statistically significant interactions between genetic merit and beef breed existed for some traits with the genetic merit effect largely evident for AA only. BB and the beef breeds had more lean, less fat and more high value lean in the carcass than AA and the dairy strains, respectively. It is concluded that genetic group had little effect on blood metabolite concentrations but there were some feeding level effects. Estimated genetic merit for carcass weight affected carcass weight, m. longissimus area and carcass measurements scaled for carcass weight but the effects were confined to AA. There were large effects of beef breed and dairy strain on carcass composition.  相似文献   

12.
Estimates of (co)variance components and genetic parameters were calculated for birth weight (BWT), weaning weight (WWT), 6 month weight (6WT), 9 month weight (9WT), 12 month weight (12WT) and greasy fleece weight at first clip (GFW) for Malpura sheep. Data were collected over a period of 23 years (1985–2007) for economic traits of Malpura sheep maintained at the Central Sheep & Wool Research Institute, Avikanagar, Rajasthan, India. Analyses were carried out by restricted maximum likelihood procedures (REML), fitting six animal models with various combinations of direct and maternal effects. Direct heritability estimates for BWT, WWT, 6WT, 9WT, 12WT and GFW from the best model (maternal permanent environmental effect in addition to direct additive effect) were 0.19 ± 0.04, 0.18 ± 0.04, 0.27, 0.15 ± 0.04, 0.11 ± 0.04 and 0.30 ± 0.00, respectively. Maternal effects declined as the age of the animal increased. Maternal permanent environmental effects contributed 20% of the total phenotypic variation for BWT, 5% for WWT and 4% for GFW. A moderate rate of genetic progress seems possible in Malpura sheep flock for body weight traits and fleece weight by mass selection. Direct genetic correlations between body weight traits were positive and ranged from 0.40 between BWT and 6WT to 0.96 between 9WT and 12WT. Genetic correlations of GFW with body weights were 0.06, 0.49, 0.41, 0.19 and 0.15 from birth to 12WT. The moderately positive genetic correlation between 6WT and GFW suggests that genetic gain in the first greasy fleece weight will occur if selection is carried out for higher 6WT.  相似文献   

13.
Genetic merit for growth rate, expressed as expected progeny difference for carcass weight (EPDCWT), is available for dairy and beef sires used in Ireland. The once predominantly Friesian (FR) dairy herd has experienced significant introgression of Holstein (HO) genes over the past two decades, and cross-breeding of dairy cows, not required to produce herd replacements, with beef bulls is common. The objective of this study was to compare growth rate, feed intake, live animal measurements and slaughter traits of progeny of Holstein–Friesian dairy cows and bulls of two contrasting maturity beef breeds namely Aberdeen Angus (AA) and Belgian Blue (BB), each selected for either high (H) or low (L) estimated genetic merit for carcass weight. Two dairy strains (FR and HO) were also included giving six genetic groups in total. A total of 170 male progeny from spring-calving cows were artificially reared indoors and subsequently managed together at pasture until the end of their second grazing season when they were assigned to one of two mean slaughter weights (i) 560 kg (Light) or (ii) 620 kg (Heavy). Daily feed intake was recorded during the first winter and during finishing. Body measurements were recorded four times during the animals' life, and linear scoring was carried out at 9 months of age and again at slaughter. Carcasses were graded for conformation and fatness (15 point scale). Slaughter and carcass weights per day of age for AAH, AAL, BBH, BBL, FR and HO were 782, 719, 795, 793, 804 and 783 (SE 12.9) g, and 415, 372, 438, 436, 413 and 401 (SE 5.8) g, respectively. Corresponding values for carcass weight, kill-out proportion, carcass conformation class (15 point scale) and carcass fat class (15 point scale) were 314, 283, 334, 333, 317 and 305 (SE 4.7) kg, 526, 518, 553, 550, 519 and 511 (SE 2.9) g/kg, 6.2, 5.4, 8.0, 7.9, 5.3 and 3.7 (SE 0.26), and 9.8, 9.3, 7.4, 7.2, 9.3 and 8.2 (SE 0.26). There were significant interactions between estimated genetic merit for carcass weight and beef breed with the differences between H and L mainly expressed for AA only. Feed intake differences between H and L animals were negligible and largely attributable to the differences in live weight. Following scaling for live weight, beef breeds of high estimated genetic merit for carcass weight had lower skeletal measurements, indicating greater compactness, with the effect more pronounced in AA. It is concluded that using beef sires of estimated high genetic merit for carcass weight on dairy cows increases growth rate and carcass weight of the progeny but the effect may not be similar for all breeds.  相似文献   

14.
  • 1.?A study was conducted to study direct dominance genetic and maternal effects on genetic evaluation of production traits in dual-purpose chickens. The data set consisted of records of body weight and egg production of 49 749 Mazandaran fowls from 19 consecutive generations. Based on combinations of different random effects, including direct additive and dominance genetic and maternal additive genetic and environmental effects, 8 different models were compared.

  • 2.?Inclusion of a maternal genetic effect in the models noticeably improved goodness of fit for all traits. Direct dominance genetic effect did not have noticeable effects on goodness of fit but simultaneous inclusion of both direct dominance and maternal additive genetic effects improved fitting criteria and accuracies of genetic parameter estimates for hatching body weight and egg production traits.

  • 3.?Estimates of heritability (h2) for body weights at hatch, 8 weeks and 12 weeks of age (BW0, BW8 and BW12, respectively), age at sexual maturity (ASM), average egg weights at 28–32 weeks of laying period (AEW), egg number (EN) and egg production intensity (EI) were 0.08, 0.21, 0.22, 0.22, 0.21, 0.09 and 0.10, respectively. For BW0, BW8, BW12, ASM, AEW, EN and EI, proportion of dominance genetic to total phenotypic variance (d2) were 0.06, 0.08, 0.01, 0.06, 0.06, 0.08 and 0.07 and maternal heritability estimates (m2) were 0.05, 0.04, 0.03, 0.13, 0.21, 0.07 and 0.03, respectively. Negligible coefficients of maternal environmental effect (c2) from 0.01 to 0.08 were estimated for all traits, other than BW0, which had an estimate of 0.30.

  • 4.?Breeding values (BVs) estimated for body weights at early ages (BW0 and BW8) were considerably affected by components of the models, but almost similar BVs were estimated by different models for higher age body weight (BW12) and egg production traits (ASM, AEW, EN and EI). Generally, it could be concluded that inclusion of maternal effects (both genetic and environmental) and, to a lesser extent, direct dominance genetic effect would improve the accuracy of genetic evaluation for early age body weights in dual-purpose chickens.

  相似文献   

15.
Direct and maternal (co)variance components and genetic parameters were estimated for growth and reproductive traits in the Kenya Boran cattle fitting univariate animal models. Data consisted of records on 4502 animals from 81 sires and 1010 dams collected between 1989 and 2004. The average number of progeny per sire was 56. Direct heritability estimates for growth traits were 0.34, 0.12, 0.19, 0.08 and 0.14 for birth weight (BW), weaning weight (WW), 12-month weight (12W), 18-month weight (18W) and 24-month weight (24W), respectively. Maternal heritability increased from 0.14 at weaning to 0.34 at 12 months of age but reduced to 0.11 at 24 months of age. The maternal permanent environmental effect contributed 16%, 4% and 10% of the total phenotypic variance for WW, 12W and 18W, respectively. Direct-maternal genetic correlations were negative ranging from −0.14 to −0.58. The heritability estimates for reproductive traits were 0.04, 0.00, 0.15, 0.00 and 0.00 for age at first calving (AFC), calving interval in the first, second, and third parity, and pooled calving interval. Selection for growth traits should be practiced with caution since this may lead to a reduction in reproduction efficiency, and direct selection for reproductive traits may be hampered by their low heritability.  相似文献   

16.
Variance components and genetic parameters were estimated using data recorded on 740 young male Japanese Black cattle during the period from 1971 to 2003. Traits studied were feed intake (FI), feed‐conversion ratio (FCR), residual feed intake (RFI), average daily gain (ADG), metabolic body weight (MWT) at the mid‐point of the test period and body weight (BWT) at the finish of the test (345 days). Data were analysed using three alternative animal models (direct, direct + maternal environmental, and direct + maternal genetic effects). Comparison of the log likelihood values has shown that the direct genetic effect was significant (p < 0.05) for all traits and that the maternal environmental effects were significant (p < 0.05) for MWT and BWT. The heritability estimates were 0.20 ± 0.12 for FI, 0.14 ± 0.10 for FCR, 0.33 ± 0.14 for RFI, 0.19 ± 0.12 for ADG, 0.30 ± 0.14 for MWT and 0.30 ± 0.13 for BWT. The maternal effects (maternal genetic and maternal environmental) were not important in feed‐efficiency traits. The genetic correlation between RFI and ADG was stronger than the corresponding correlation between FCR and ADG. These results provide evidence that RFI should be included for genetic improvement in feed efficiency in Japanese Black breeding programmes.  相似文献   

17.
This study examined non-genetic effects and genetic parameters of body measures and subjectively scored traits in the Finnhorse trotter population. The data was based on studbook inspections from 1971 to 2004 covering observations on 6381 horses. There were five body measures – height at withers, height at croup, circumference of girth, length of body and circumference of cannon bone – and six subjectively scored traits – character, body conformation, leg stances, quality of legs, hooves and movements – included in the analyses. Multivariate mixed models were applied with year–sex and age as fixed effects and animal as a random effect. The year–sex effect had a significant influence on body measures and scored traits. Age at judging had a significant influence on all traits but height at withers and body conformation. Heritability estimates were from 0.53 to 0.78 for body measures and 0.10 to 0.19 for scored traits. Genetic correlations between body measures were highly positive, from 0.75 to 0.98, whilst genetic correlations between scored traits varied between − 0.20 and 0.51. Genetic correlations between body measures and scored traits were mainly negative, from − 0.38 to 0.09. Our results indicate that additive genetic effects are relevant determinants for body measures of Finnhorse trotters. The scored traits were of low to moderate heritability and were relevantly influenced by environmental effects.  相似文献   

18.
A nationwide longitudinal study was conducted to investigate risk factors for bovine respiratory disease (BRD) in cattle in Australian feedlots. After induction (processing), cattle were placed in feedlot pens (cohorts) and monitored for occurrence of BRD over the first 50 days on feed. Data from a national cattle movement database were used to derive variables describing mixing of animals with cattle from other farms, numbers of animals in groups before arrival at the feedlot, exposure of animals to saleyards before arrival at the feedlot, and the timing and duration of the animal's move to the vicinity of the feedlot. Total and direct effects for each risk factor were estimated using a causal diagram-informed process to determine covariates to include in four-level Bayesian logistic regression models. Mixing, group size and timing of the animal's move to the feedlot were important predictors of BRD. Animals not mixed with cattle from other farms prior to 12 days before induction and then exposed to a high level of mixing (≥4 groups of animals mixed) had the highest risk of developing BRD (OR 3.7) compared to animals mixed at least 4 weeks before induction with less than 4 groups forming the cohort. Animals in groups formed at least 13 days before induction comprising 100 or more (OR 0.5) or 50–99 (OR 0.8) were at reduced risk compared to those in groups of less than 50 cattle. Animals moved to the vicinity of the feedlot at least 27 days before induction were at reduced risk (OR 0.4) compared to cattle undergoing short-haul transportation (<6 h) to the feedlot within a day of induction, while those experiencing longer transportation durations (6 h or more) within a day of induction were at slightly increased risk (OR 1.2). Knowledge of these risk factors could potentially be used to inform management decisions to reduce the risk of BRD in feedlot cattle.  相似文献   

19.
A five-years crossing scheme involving the Spanish V line (V) and Saudi Gabali (S) rabbits was practiced to produce 14 genetic groups: V, S, 1/2V1/2S, 1/2S1/2V, 3/4V1/4S, 3/4S1/4V, (1/2V1/2S)2, (1/2S1/2V)2, (3/4V1/4S)2, (3/4S1/4V)2, ((3/4V1/4S)2)2, ((3/4S1/4V)2)2, Saudi 2 (a new synthetic line) and Saudi 3 (another new synthetic line). A total of 3496 litters from 1022 dams were used to evaluate litter size at birth (LSB) and weaning (LSW), litter weight at birth (LWB), litter weight at 21 d (LW21) and litter weight at weaning (LWW), pre-weaning litter mortality (PLM), milk yield at lactation intervals of 0–7 d (MY07), 0–21 d (MY021), 0–28 d (TMY) and milk conversion ratio as g of litter gain per g of milk suckled during 21 d of lactation (MCR021). A generalized least squares procedure was used to estimate additive and heterotic effects (direct, maternal, and grand-maternal).The comparison among V, S, Saudi 2 and Saudi 3 showed a complementarity between V and S. Line V was superior for LSB, LSW, LWB, PLM, MY07, MY021 and TMY, while line S was superior for the other traits (LW21, LWW and MCR021). Saudi 2 and Saudi 3 had the means equal to or higher than the founder lines (V or S) for all traits. Saudi 2 showed better values in litter size and pre-weaning litter mortality compared to Saudi 3 with no significant differences for the other traits. Concerning crossbreeding parameters, direct additive effects were significant for all traits, ranging between 12.3% and 31.8% relative to the average of the means of V and S. All estimates for direct heterosis except LWB and MCR021 were significant and ranged from 5.3% to 27.5%. No estimates for maternal additive effects and grand-maternal additive and heterotic effects were significant. Only estimates for maternal heterotic effects of LSB and LSW were significant (8.6% and 10.6%, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号