首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The objectives of this study were to determine the presence and prevalence of non-O157 shiga toxin-producing Escherichia coli (STEC) isolates from faeces of healthy fat-tailed sheep and detection of phylogenetic background and antibiotic resistance profile of isolates. One hundred ninety-two E. coli isolates were recovered from obtained rectal swabs and were confirmed by biochemical tests. Antibiotic resistance profiles of isolates were detected and phylogenetic background of isolates was determined according to the presence of the chuA, yjaA and TspE4.C2 genetic markers. The isolates were examined to determine stx 1 , stx 2 and eae genes. Non-O157 STEC isolates were identified by using O157 specific antiserum. Forty-three isolates (22.40 %) were positive for one of the stx 1 , stx 2 and eae genes, whereas 10.42 % were positive for stx 1 , 19.38 % for eae and 2.60 % for stx 2 gene. None of the positive isolates belonged to O157 serogroup. Twenty isolates possessed stx 1 were distributed in A (six isolates), B1 (13) and D (one) phylogroups, whereas stx 2 positive isolates fell into A (three isolates) and B1 (two) phylogenetic groups. Eighteen isolates contained eae gene belonged to A (five isolates), B1 (seven) and D (six) phylogroups. The maximum and minimum resistance rates were recorded against to penicillin and co-trimoxazole respectively. The positive isolates for stx 1 , stx 2 and eae genes showed several antibiotic resistance patterns, whereas belonged to A, B1 and D phylogroups. In conclusion, faeces of healthy sheep could be considered as the important sources of non-O157 STEC and also multidrug-resistant E. coli isolates.  相似文献   

2.
Three-hundred and forty-five herds (17 swine, 122 dairy sheep, 124 beef and 82 dairy cattle) were investigated for prevalence of Shiga toxin-producing Escherichia coli (STEC). Rectal faecal samples were selectively enriched and then examined by immunodetection techniques (Immunomagnetic Separation with anti-E. coli O157 Dynabeads, ImmunoMagnetic cell Separation (IMS) and automated enzyme-linked fluorescent immunoassay using VIDAS) and polymerase chain reaction (PCR) (rfbE and fliC genes) to assess the prevalence of E. coli O157:H7. Prevalence of non-O157 STEC was estimated by PCR screening for stx genes of 10 lactose-positive colonies grown on MacConkey agar after enrichment. PCR was used on all STEC isolates to detect stx(1), stx(2), eaeA and E-hlyA genes. Both immunodetection methods showed a moderate-good level of agreement (kappa = 0.649) but IMS showed 87.5% complementary sensitivity. Prevalence of positive herds for E. coli O157:H7 was estimated at 8.7% for sheep and 3.8% for cattle, whereas all the porcine herds tested negative. Non-O157 STEC were also absent from swine, but were isolated more frequently from ovine (50.8%) than bovine herds (35.9%). Within-herd prevalences of excretion of E. coli O157:H7 established by individual testing of 279 sheep (six herds) and 30 beef cattle (one herd) were 7.3% and 6.7% respectively. PCR analysis of 49 E. coli O157:H7 and 209 non-O157 isolates showed a different distribution of virulence genes. All E. coli O157:H7 were stx(2) gene-positive, eaeA was detected in 95.9%, and the toxigenic profile stx(2)/eaeA/E-hlyA was present in 75.5% of the isolates. Among the non-O157 STEC, prevalence of eaeA was significantly lower (5.3%) and E-hlyA was present in 50.2% of the isolates but only sporadically associated with eaeA. stx(2) was predominant in non-O157 isolates from cattle, whereas in sheep the combination stx(1)/stx(2) was more prevalent. This study demonstrated the wide distribution of STEC in ruminant herds, which represent an important reservoir for strains that pose a potential risk for human infections.  相似文献   

3.
Shiga toxin-producing Escherichia coli (STEC) strains are responsible for outbreaks of human intestinal diseases worldwide. Pigeons are distributed in public areas and are potential reservoirs for pathogenic bacteria. One hundred fifty-four fresh fecal samples were obtained from trapped pigeons in southeast of Iran and were cultured for isolation of E. coli. The isolates were examined to determine the prevalence of stx1, stx2, and eae genes, antimicrobial resistance, and their phylotypes. The confirmed E. coli isolates (138) belong to four phylogenetic groups: A (54.34%), B1 (34.05%), B2 (3.62%), and D (7.79%). Thirteen (9.42%) isolates were positive for one of the examined genes. Eight isolates (5.79%) were positive for eae, four (2.89%) for stx2, and one isolate (1.44%) for stx1 gene. Phylotyping assays showed that eight eae-positive isolates fall into three phylogroups; A (three isolates), B1 (three isolates), and D (two isolates), whereas four stx2-positive isolates belonged to the A (three isolates) and D (one isolate) groups. The stx1-positive isolate belonged to phylogroup A. One hundred six isolates (76.81%) showed resistance to at least one of the selected antibacterial agents. The maximum resistance rate was against oxytetracycline (73.91%), and the minimum was against flumequine (2.17%). Twenty different patterns of drug resistance were observed. According to the results, pigeons could be considered as carriers of STEC strains. However, E. coli isolates of pigeon feces increase the potential of these birds to act as a reservoir of multiple antibiotic resistant bacteria.  相似文献   

4.
A total of 42 Shiga toxin-producing (STEC) strains from slaughtered healthy cattle in Switzerland were characterized by phenotypic and genotypic traits. The 42 sorbitol-positive, non-O157 STEC strains belonged to 26 O:H serotypes (including eight new serotypes) with four serotypes (O103:H2, O113:H4, O116:H-, ONT:H-) accounting for 38.1% of strains. Out of 16 serotypes previously found in human STEC (71% of strains), nine serotypes (38% of strains) were serotypes that have been associated with hemolytic-uremic syndrome (HUS). Polymerase chain reaction (PCR) analysis showed that 18 (43%) strains carried the stx1 gene, 20 strains (48%) had the stx2 gene, and four (9%) strains had both stx1 and stx2 genes. Of strains encoding for stx2 variants, 63% were positive for stx2 subtype. Enterohemolysin (ehxA), intimin (eae), STEC autoagglutinating adhesin (saa) were detected in 17%, 21%, and 19% of the strains, respectively. Amongst the seven intimin-positive strains, one possessed intimin type beta1 (O5:H-), one intimin gamma1 (O145:H), one intimin gamma2/theta, (O111:H21), and four intimin epsilon (O103:H2). The strains belonged to 29 serovirotypes (association between serotypes and virulence factors). O103:H2 stx1eae-epsilon ehxA, O116:H- stx2, and ONT:H- stx2c were the most common accounting for 29% of the strains. Only one strain (2.4%) of serovirotype O145:H- stx1stx2eae-gamma1ehxA showed a pattern of highly virulent human strains. This is the first study providing characterization data of bovine non-O157 STEC in Switzerland, and underlining the importance of the determination of virulence factors (including intimin types) in addition to serotypes to assess the potential pathogenicity of these strains for humans.  相似文献   

5.
Shiga toxin-producing Escherichia coli (STEC) are an important group of emerging pathogens, with ruminants recognised as their main natural reservoir. The aim of this work was to establish the prevalence of non-O157 STEC in free-ranging wild ruminants in the Extremadura region of Spain and to characterise them phenogenotypically. Faecal samples were collected from 243 wild ruminants, including Cervus elaphus, Capreolus capreolus, Dama dama and Ovis musimon and were examined for STEC using both phenotypic (Vero cells) and genotypic (PCR and PFGE) methods.Shiga toxin-producing Escherichia coli were isolated from 58 (23.9%) of the samples and a total of 65 isolates were characterised. A PCR method indicated that 11 (16.9%) strains carried the stx1 gene, 44 (67.7%) carried the stx2 gene and 10 (15.4%) carried both these genes. The ehxA gene was detected in 37 (57%) of the isolates but none contained either the eae or saa genes. The isolates were from a total of 12 ‘O’ serogroups, although 80% were restricted to the O2, O8, O128, O146, O166 and O174 serogroups. The most commonly isolated STEC bacteria, which were from the O146 serogroup, exhibited a high degree of polymorphism as indicated by PFGE. Shiga toxin-producing Escherichia coli isolates of serogroups O20, O25, O166, O171, O174 and O176 had not previously been found in wild ruminants. This is the first study to confirm that wild ruminants in Spain are a reservoir of STEC and are thus a potential source of human infection.  相似文献   

6.
A total of 156 Shiga-like toxin producing Escherichia coli (STEC) were isolated from fecal samples of Korean native (100/568, 18%) and Holstein dairy cattle (56/524, 11%) in Korea between September 2010 and July 2011. Fifty-two STEC isolates (33%) harbored both of shiga toxin1 (stx1) and shiga toxin2 (stx2) genes encoding enterohemolysin (EhxA) and autoagglutinating adhesion (Saa) were detected by PCR in 83 (53%) and 65 (42%) isolates, respectively. By serotyping, six STEC from native cattle and four STEC from dairy cattle were identified as O-serotypes (O26, O111, O104, and O157) that can cause human disease. Multilocus sequence typing and pulsed-field gel electrophoresis patterns highlighted the genetic diversity of the STEC strains and difference between strains collected during different years. Antimicrobial susceptibility tests showed that the multidrug resistance rate increased from 12% in 2010 to 42% in 2011. Differences between isolates collected in 2010 and 2011 may have resulted from seasonal variations or large-scale slaughtering in Korea performed to control a foot and mouth disease outbreak that occurred in early 2011. However, continuous epidemiologic studies will be needed to understand mechanisms. More public health efforts are required to minimize STEC infection transmitted via dairy products and the prevalence of these bacteria in dairy cattle.  相似文献   

7.
Fecal samples from 67 3–5-months-old calves with diarrhea were screened for the presence of shiga toxin-producing Escherichia coli (STEC). Several accessory virulence factors genes were also tested. Among 192 E.coli isolates tested, 15 (7.6%) were found to harbour the shiga toxin 1 or 2 (stx1 or stx2) genes. The stx2-carrying samples were further subtyped by PCR for the stx2c, stx2d, and stx2e toxin variants. It was shown that stx2-positive bacteria mainly possessed the stx2c shiga toxin type gene. The enterohemolysin (hlyA) and intimin (eae) genes were found in seven (46.7%) STEC strains whereas the cytotoxic necrotizin factor 1 and 2 or the P fimbrial genes were detected in two isolates only. This study confirmed that calves are a reservoir of STEC strains (with all pathogenicity genes) that may be virulent for humans.  相似文献   

8.
为了了解新疆伊犁地区肉牛屠宰过程中大肠杆菌的污染情况,检测非O157致病性产志贺毒素大肠杆菌(Shiga toxin-producing Escherichia coli,STEC)的感染情况,本试验采集新疆伊犁地区某定点肉牛屠宰场中屠宰肉牛的粪样和屠宰后的胴体表面拭子,并对样品进行了大肠杆菌的分离鉴定、毒力基因(eae、stx1、stx2)的PCR检测、O157鉴定(rfbE)、ERIC-PCR基因分型和小鼠致病性试验。结果显示,在采集的45份样品中分离鉴定出42株大肠杆菌,分离率为93.3%。其中2株菌株同时编码了毒力基因stx1和stx2,检出率为4.8%,毒力基因eae未被检出。PCR鉴定均为非O157 STEC。ERIC-PCR基因分型检测发现,2株菌的基因型非常相似,同源关系密切。对小鼠进行腹腔注射攻毒,攻菌6 h后,小鼠开始出现死亡,立即解剖死亡小鼠发现,其肠道出血,肝脏、脾脏、肾脏明显出血肿大,解剖对照小鼠表现正常,表明菌株具有一定的致病性。综上所述,在肉牛屠宰过程中存在大肠杆菌污染,其中粪便中非O157 STEC菌株对胴体造成了污染,需要加强控制肉牛的屠宰加工关键环节的环境卫生。  相似文献   

9.
Shiga toxin-producing Escherichia coli (STEC) O157:H7 represents a major public health concern worldwide, with cattle recognized as their main natural reservoir. The aim of this work was to determine the prevalence and the pheno-genotypic characteristics of STEC O157:H7 in a herd with 268 cattle of the fighting bulls breed (De Lidia breed) managed under extensive conditions in the South-West of Spain. Rectal-anal swabs of all animals were collected and examined for STEC O157:H7 by performing an immunomagnetic concentration and separation procedure combined with PCR, and the resulting isolates were characterized by both phenotypic and genotypic methods. Overall, STEC O157:H7 was isolated from seven animals (2.6%) in the herd. The PCR procedure indicated that all seven isolates displayed stx2, eae-γ1, ehxA, O157 rfbE, and fliCh7 genes. They belonged to phage types 4 (one isolate) and 42 (two isolates), and four isolates reacted with typing phages but did not conform to a recognized pattern. Among the seven isolates there were five indistinguishable PFGE patterns and other two which differed only in ?2 restriction fragments, supporting the existence of horizontal transmission among animals in the herd. The present study demonstrates that cattle managed under extensive conditions in Spain can excrete STEC O157:H7 with their faeces. To our knowledge this is the first isolation of this pathogen from De Lidia cattle.  相似文献   

10.
This study was conducted to determine the prevalence and characteristics of pathogenic Escherichia (E.) coli strains from diarrheic calves in Vietnam. A total of 345 E. coli isolates obtained from 322 diarrheic calves were subjected to PCR and multiplex PCR for detection of the f5, f41, f17, eae, sta, lt, stx1, and stx2 genes. Of the 345 isolates, 108 (31.3%) carried at least one fimbrial gene. Of these 108 isolates, 50 carried genes for Shiga toxin and one possessed genes for both enterotoxin and Shiga toxin. The eae gene was found in 34 isolates (9.8%), 23 of which also carried stx genes. The Shiga toxin genes were detected in 177 isolates (51.3%) and the number of strains that carried stx1, stx2 and stx1/stx2 were 46, 73 and 58, respectively. Among 177 Shiga toxin-producing E. coli isolates, 89 carried the ehxA gene and 87 possessed the saa gene. Further characterization of the stx subtypes showed that among 104 stx1-positive isolates, 58 were the stx1c variant and 46 were the stx1 variant. Of the 131 stx2-positive strains, 48 were stx2, 48 were stx2c, 11 were stx2d, 17 were stx2g, and seven were stx2c/stx2g subtypes. The serogroups most prevalent among the 345 isolates were O15, O20, O103 and O157.  相似文献   

11.
To assess the public health risk, the prevalence and anti‐microbial resistance of Shiga toxin‐producing Escherichia coli (STEC) among food‐producing animals were studied throughout Japan. Faecal samples were collected from healthy animals of 272 cattle, 179 pigs, and 158 broilers on 596 farms in all 47 Japanese prefectures. STEC were isolated from 62 (23%) cattle and 32 (14%) pig samples but from no chicken samples. Of the bovine isolates, 19 belonged to serotypes frequently implicated in human disease (O157:H7/non‐motile (NM)/H not typeable, O26:NM/H11/H21/H not typeable, O113:H21, and O145:NM). The eae genes were observed in 37% of bovine isolates; among them one O145:NM and all four O157 isolates possessed eaeγ1, and one O145:NM, one O103:H11, and all five O26 isolates possessed eaeβ1 gene. Among the swine isolates, stx2e were dominant, and serotypes frequently implicated in human diseases or eae‐positive isolates were not observed. Bovine isolates showed less anti‐microbial resistance, but six isolates of 26:NM/H11 and O145:NM were multi‐resistant and may need careful monitoring. Swine isolates showed various resistance patterns; chloramphenicol resistance patterns were more common than in bovine isolates. This first national study of STEC in the Japanese veterinary field should aid our understanding of Japan's STEC status.  相似文献   

12.
Shiga toxigenic Escherichia coli (STEC) are an important group of pathogens and can be transmitted to humans from direct or indirect contact with cattle faeces. This study investigated the shedding of E. coli O157 and O26 in cattle at the time of slaughter and factors associated with super‐shedding (SS) animals. Rectoanal mucosal swab (RAMS) samples were collected from cattle (n = 1,317) at three large Irish commercial beef abattoirs over an 18 month period, and metadata were collected at the time of sampling regarding farm of origin, animal age, breed and gender. RAMS swabs were examined for the presence and numbers of E. coli O157 and O26 using a previously developed quantitative real‐time PCR protocol. Samples positive by PCR were culturally examined and isolates analysed for the presence of stx subtypes, eae and phylogroup. Any samples with counts >104 CFU/swab of STEC O157 or O26 were deemed to be super‐shedders. Overall, 4.18% (55/1,317) of RAMS samples were positive for STEC O157, and 2.13% (28/1,317) were classified as STEC O157 SS. For STEC O26, 0.76% (10/1,317) of cattle were positive for STEC O26, and 0.23% (3/1,317) were classified as super‐shedders. Fewer STEC shedders and SS were noted among older animals (>37 months). There was a seasonal trend observed for STEC O157, with the highest prevalence of shedding and SS events in the autumn (August to October). The majority of E. coli O157 (50/55) isolates had stx2 and were eae positive, with no significant difference between SS and low shedders (LS). Interestingly, all STEC O26 (n = 10) were eae negative and had varied stx profiles. This study demonstrates that, while the overall shedding rates are relatively low in cattle at slaughter, among positive animals there is a high level of SS, which may pose a higher risk of cross‐contamination during slaughter.  相似文献   

13.
Recently, virulence patterns of Stx2e-producing Escherichia coli from pigs with edema disease and from humans were compared and strains from diseased pigs were reported to be unlikely human pathogens [Sonntag, A.K., Bielaszewska, M., Mellmann, A., Dierksen, N., Schierack, P., Wieler, L.H., Schmidt, M.A., Karch, H., 2005. Shiga toxin 2e-producing Escherichia coli isolates from humans and pigs differ in their virulence profiles and interactions with intestinal epithelial cells. Appl. Environ. Microbiol. 71, 8855-8863]. In the present study, 31 Shiga toxin-producing E. coli (STEC) strains harboring stx2e, which were previously isolated out of fecal samples from healthy pigs at slaughter [Kaufmann, M., Zweifel, C., Blanco, M., Blanco, J.E., Blanco, J., Beutin, L., Stephan, R., 2006. Escherichia coli O157 and non-O157 Shiga toxin-producing Escherichia coli in fecal samples of finished pigs at slaughter in Switzerland. J. Food Prot. 69, 260-266], were characterized by phenotypic and genotypic traits. Nine of the thirty-one sorbitol-positive non-O157 STEC (stx2e) isolated from healthy pigs belonged to serotypes found in STEC isolated from humans, including two serotypes (O9:H-, O26:H-) reported in association with hemolytic-uremic syndrome. Otherwise, the serotypes were different from those isolated from cases of edema disease in pigs. The eae (intimin) gene, which is strongly correlated with severe human disease, was not detected. Moreover, all strains were lacking the genes for enterohemolysin (ehxA), porcine A/E associated protein (paa), STEC autoagglutinating adhesin (saa) and the serin protease EspI (espI). Nine strains tested positive for astA (EAST1), one O141:H17 strain for fedA (F18 fimbrial adhesin) and one O159:H- strain for terF (tellurite resistance). Similar to the Stx2e-producing E. coli isolated from humans, which are mainly lacking further virulence factors, genes of an iron uptake system on the high-pathogenicity island (irp2, fyuA) were detected in three ONT:H10 and ONT:H19 strains from healthy pigs. Consequently, although the isolated strains are unlikely to be associated with severe human diseases, healthy pigs cannot be excluded as a potential source of human infection with Stx2e-producing STEC.  相似文献   

14.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains isolated from animals and food in Argentina (n=44) and Brazil (n=20) were examined and compared in regard to their phenotypic and genotypic characteristics to evaluate their pathogenic potential. The clonal relatedness of STEC O157 isolates (n=22) was established by phage typing (PT) and pulsed-field gel electrophoresis (PFGE). All O157 strains studied carried eae and enterohemorrhagic E. coli (EHEC)-hly sequences. In Argentina, these strains occurred both in cattle and meat, and 50% of them carried stx2/stx2vh-a genes, whereas in Brazil the O157 strains were isolated from animals, and most harbored the stx2vh-a sequence. At least 13 different O:H serotypes were identified among the non-O157 strains studied, with serotype O113:H21 being found in both countries. All but one non-O157 strains did not carry eae gene, but EHEC-hlyA gene was found in 85.7% of them, and the stx2 genotype was also more prevalent in Argentina than in Brazil (P<0.01), where stx1 alone or in association was most common (68.8%). One STEC strain isolated from a calf in Brazil harbored the new variant referred to as stx2-NV206. PFGE analysis showed that STEC O157 strains were grouped in four clusters. One Brazilian strain was considered possibly related (> or =80%) to Argentinean strains of cluster I. Differences in the pathogenic potential, especially in regard to serotypes and stx genotypes, were observed among the STEC strains recovered from animals and food in both countries.  相似文献   

15.
《Veterinary microbiology》2015,175(1):150-156
Sheep constitute an important source of zoonotic pathogens as Shiga toxin-producing Escherichia coli (STEC). In this study, the prevalence, serotypes and virulence profiles of STEC were investigated among 130 healthy sheep from small and medium farms in southern Brazil. STEC was isolated from 65 (50%) of the tested animals and detected in all flocks. A total of 70 STEC isolates were characterized, and belonged to 23 different O:H serotypes, many of which associated with human disease, including hemolytic-uremic syndrome (HUS). Among the serotypes identified, O76:H19 and O65:H– were the most common, and O75:H14 and O169:H7 have not been previously reported in STEC strains. Most of the STEC isolates harbored only stx1, whereas the Stx2b subtype was the most common among those carrying stx2. Enterohemolysin (ehxA) and intimin (eae) genes were detected in 61 (87.1%) and four (5.7%) isolates, respectively. Genes encoding putative adhesins (saa, iha, lpfO113) and toxins (subAB and cdtV) were also observed. The majority of the isolates displayed virulence features related to pathogenesis of STEC, such as adherence to epithelial cells, high cytotoxicity and enterohemolytic activity. Ovine STEC isolates belonged mostly to phylogenetic group B1. PFGE revealed particular clones distributed in some farms, as well as variations in the degree of genetic similarity within serotypes examined. In conclusion, STEC are widely distributed in southern Brazilian sheep, and belonged mainly to serotypes that are not commonly reported in other regions, such as O76:H19 and O65:H–. A geographical variation in the distribution of STEC serotypes seems to occur in sheep.  相似文献   

16.
The study objectives were to determine the prevalence and serotypes of non-O157 Shiga toxin-producing Escherichia coli (STEC) in pens of feedlot cattle and on corresponding beef carcasses. We collected 25 fecal samples from 84 pens in 21 Alberta feedlots and 40 carcass swabs from each preslaughter pen for analysis by culture and polymerase chain reaction (PCR). Non-O157 STEC were recovered from feces from 12 (14%) of the 84 pens and 12 (57%) of the 21 feedlots by examination of 1 E. coli isolate positive for 4-methylumbelliferyl-beta-beta-glucuronide per sample. Twelve non-O157 serotypes were detected, but 7 of the 15 STEC isolates lacked the accessory virulence genes eae and hlyA. Although 115 (7%) of the carcass broths were PCR-positive, no STEC isolates were recovered from the 1650 carcasses sampled. Our data indicate that multiple non-O157 STEC serotypes may be present in cattle feces, yet are unlikely to be recovered from the corresponding beef carcasses when 20 colonies per sample from PCR-positive broth cultures are analyzed.  相似文献   

17.
PROBLEM ADDRESSED: Shiga toxin-producing Escherichia coli (STEC), have emerged as food poisoning pathogens which can cause severe diseases in humans. OBJECTIVE: The aim of this study was to determinate the serotypes and virulence genes of STEC strains isolated from sheep in Spain, with the purpose of determining whether sheep represent a potential source of STEC pathogenic for humans. METHODS AND APPROACH: Faecal swabs obtained from 697 healthy lambs on 35 flocks in Spain during the years 2000 and 2001 were examined for STEC using phenotypic (Vero cells) and genotypic (PCR) methods. RESULTS: STEC O157:H7 strains were isolated from seven (1%) animals in six flocks, whereas non-O157 STEC strains were isolated from 246 (35%) lambs in 33 flocks. A total of 253 ovine STEC strains were identified in this study. PCR showed that 110 (43%) strains carried stx(1) genes, 10 (4%) possessed stx(2) genes and 133 (53%) both stx(1) and stx(2). Enterohaemolysin (ehxA) and intimin (eae) virulence genes were detected in 120 (47%) and in 9 (4%) of the STEC strains. STEC strains belonged to 22 O serogroups and 44 O:H serotypes. However, 70% were of one of these six serogroups (O6, O91, O117, O128, O146, O166) and 71% belonged to only nine serotypes (O6:H10, O76:H19, O91:H-, O117:H-, O128:H-, O128:H2, O146:H21, O157:H7, O166:H28). A total of 10 new O:H serotypes not previously reported in STEC strains were found in this study. Seven strains of serotype O157:H7 possessed intimin type gamma1, and two strains of serotype O156:H- had the new intimin zeta. STEC O157:H7 strains were phage types 54 (four strains), 34 (two strains) and 14 (one strain). CONCLUSIONS: This study confirms that healthy sheep are a major reservoir of STEC pathogenic for humans. However, because the eae gene is present only in a very small proportion of ovine non-O157 STEC, most ovine strains may be less pathogenic.  相似文献   

18.
The aims of this study were to investigate prevalence, O-genotype, and virulence gene profile including Shiga toxin (Stx) 2 gene-subtype of Stx-producing Escherichia coli (STEC) in beef cattle from the Bahía Blanca in Argentina. Rectal swabs were collected from 283 beef cattle in 2012. stx genes were detected in 90 (32%) out of the 283 rectal swabs by stx gene-specific PCR assay. The positive cases were 13 with stx1, 58 with stx2, and 19 with both stx1 and stx2. Among 90 stx gene-positive samples, 45 STEC strains were isolated, which included 3 stx1, 34 stx2, and eight stx1 and stx2 genes positive isolates. O-genotyping grouped 45 STEC strains into 19 different O-genotypes such as Og8, Og145, Og171, Og185 (4 from each), Og22, Og153, Og157 (3 from each) and others. Various stx2 gene-subtypes were identified in 42 STEC strains: 13 positive cases for stx2a, 11 for stx2c, 3 for stx2g, 10 for stx2a and stx2d, 4 for stx2a and stx2c, and 1 for stx2b, stx2c and stx2g. efaI gene, generally prevalent in clinical strains, was detected in relatively high in the STEC strains. These data suggest that stx2a and stx2c were distributed not only in O145 and O157 but also in minor O-genotypes of STEC in Argentina.  相似文献   

19.
Shiga toxin-producing Escherichia coli (STEC), particularly O157, are major food borne pathogens. Non-O157 STEC, particularly O26, O45, O103, O111, O121, and O145, have also been recognized as a major public health concern. Unlike O157, detection procedures for non-O157 have not been fully developed. Our objective was to develop a multiplex PCR to distinguish O157 and the 'top six' non-O157 serogroups (O26, O45, O103, O111, O121, and O145) and evaluate the applicability of the multiplex PCR to detect the seven serogroups of E. coli in cattle feces. Published sequences of O-specific antigen coding genes, rfbE (O157) and wzx and wbqE-F (non-O157), were analyzed to design serogroup-specific primers. The specificity of amplifications was confirmed with 138 known STEC strains and the reaction yielded the expected amplicons for each serogroup. In feces spiked with pooled 7 STEC strains, the sensitivity of the detection was 4.1 × 10(5)CFU/g before enrichment and 2.3 × 10(2) after 6h enrichment in E. coli broth. Additionally, 216 fecal samples from cattle were collected and tested by multiplex PCR and cultural methods. The multiplex PCR revealed a high prevalence of all seven serogroups (178 [O26], 108 [O45], 149 [O103], 30 [O111], 103 [O121], 5 [O145], and 160 [O157]) of 216 samples in fecal samples. Cultural procedures identified 33.1% (53/160) and 35.5% (11/31) of PCR-positive samples for E. coli O157 and non-O157 serogroups, respectively. Samples that were culture-positive were all positive by the multiplex PCR. The multiplex PCR can be used to identify serogroups of putative STEC isolates.  相似文献   

20.
In this study, we have evaluated our recently developed polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay for the molecular subtyping of Shiga toxin-producing Escherichia coli (STEC). A total of 200 STEC strains including O157 (n=100), O26 (n=50), O111 (n=10), and non-O26/O111/O157 (n=40) serogroups isolated during 2005-2006 in Japan, which were identified to be clonally different by pulsed-field gel electrophoresis (PFGE) were further analyzed by the PCR-RFLP assay in comparison to PFGE. Ninety-five of O157, 48 of O26, five of O111 and 19 of non-O26/O111/O157 STEC strains yielded one to three amplicons ranging from 6.0 to 15.5 kb in size by the specific primer set targeting region V which is located in the upstream of stx genes. These strains were classified into 41 (O157), 8 (O26), 4 (O111) and 17 (non-O26/O111/O157) groups based on the RFLP patterns obtained by subsequent restriction digestion, respectively. Although the discriminatory power of PCR-RFLP assay was somewhat less than that of PFGE, it is more convenient for molecular subtyping of STEC strains especially for O157, the most important serogroup implicated in human diseases, as well as to identify the outbreak-associated isolates because of its simplicity, rapidity, ease and good reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号