首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The mechanisms of suppression of fusarium wilt of carnation by two fluorescentPseudomonas strains were studied.Treatments of carnation roots withPseudomonas sp. WCS417r significantly reduced fusarium wilt caused byFusarium oxysporum f. sp.dianthi (Fod). Mutants of WCS417r defective in siderophore biosynthesis (sid) were less effective in disease suppression compared with their wild-type. Treatments of carnation roots withPseudomonas putida WCS358r tended to reduce fusarium wilt, whereas a sid mutant of WCS358 did not.Inhibition of conidial germination of Fod in vitro by purified siderophores (pseudobactins) of bothPseudomonas strains was based on competition for iron. The ferrated pseudobactins inhibited germination significantly less than the unferrated pseudobactins. Inhibition of mycelial growth of Fod by bothPseudomonas strains on agar plates was also based on competition for iron: with increasing iron content of the medium, inhibition of Fod by thePseudomonas strains decreased. The sid mutant of WCS358 did not inhibit Fod on agar plates, whereas the sid mutants of WCS417r still did. This suggests that inhibition of Fod by WCS358r in vitro was only based on siderophore-mediated competition for iron, whereas also a non-siderophore antifungal factor was involved in the inhibition of Fod by strain WCS417r.The ability of thePseudomonas strains to induce resistance against Fod in carnation grown in soil was studied by spatially separating the bacteria (on the roots) and the pathogen (in the stem). Both WCS417r and its sid mutant reduced disease incidence significantly in the moderately resistant carnation cultivar Pallas, WCS358r did not.It is concluded that the effective and consistent suppression of fusarium wilt of carnation by strain WCS417r involves multiple mechanisms: induced resistance, siderophore-mediated competition for iron and possibly antibiosis. The less effective suppression of fusarium wilt by WCS358r only depends on siderophore-mediated competition for iron.  相似文献   

2.
荧光假单胞杆菌的嗜铁素是控制桉树灰霉病的主要因子   总被引:5,自引:0,他引:5  
 本文对3个假单胞杆菌菌株(Pseudomonas spp.)及其嗜铁素(pseudobactin siderophore)缺失突变体防治桉树灰霉病进行了研究.平板拮抗活性测定表明,荧光假单胞杆菌(P.fluorescens) WCS374r菌株和恶臭假单胞杆菌(P.putida) WCS358r菌株通过对铁离子的竞争抑制灰霉菌的生长.在接种灰霉病菌之前10 h将WCS358r、WCS374r和WCS417r施用于受伤的桉树叶片后,可分别降低发病率48.9%、58.3%和40.3%;当将3种生防菌分别与灰霉病菌混合后接种桉树叶片,WCS358r和WCS374r仍然能够显著地降低发病率;在接种灰霉病菌12 h后再施用生防菌,WCS358r和WCS374r对病菌仍具有一定的抑制作用,而在24 h后施用生防菌,3个菌株均未表现显著的防治效果.WCS358r和WCS417r的嗜铁素缺失突变体无防病作用,而WCS374r的嗜铁素缺失突变体虽然还能有效地防治灰霉病,但与WCS374r相比,防病效果减弱.本试验结果说明假单胞杆菌的嗜铁素是控制桉树灰霉病的重要因子.  相似文献   

3.
In an earlier study, treatment of radish seed with the bacteriumPseudomonas fluorescens WCS374 suppressed fusarium wilt of radish (Fusarium oxysporum f. sp.raphani) in a commercial greenhouse [Leemanet al., 1991b, 1995a]. In this greenhouse, the areas with fusarium wilt were localized or expanded very slowly, possibly due to disease suppressiveness of the soil. To study this phenomenon, fungi were isolated from radish roots collected from the greenhouse soil. Roots grown from seed treated with WCS374 were more abundantly colonized by fungi than were roots from nonbacterized plants. Among these were several species known for their antagonistic potential. Three of these fungi,Acremonium rutilum, Fusarium oxysporum andVerticillium lecanii, were evaluated further and found to suppress fusarium wilt of radish in a pot bioassay. In an induced resistance bioassay on rockwool,F. oxysporum andV. lecanii suppressed the disease by the apparent induction of systemic disease resistance. In pot bioassays with thePseudomonas spp. strains, the pseudobactin-minus mutant 358PSB did not suppress fusarium wilt, whereas its wild type strain (WCS358) suppressed disease presumably by siderophore-mediated competition for iron. The wild type strains of WCS374 and WCS417, as well as their pseudobactin-minus mutants 374PSB and 417PSB suppressed fusarium wilt. The latter is best explained by the fact that these strains are able to induce systemic resistance in radish, which operates as an additional mode of action. Co-inoculation in pot bioassays, ofA. rutilum, F. oxysporum orV. lecanii with thePseudomonas spp. WCS358, WCS374 or WCS417, or their pseudobactin-minus mutants, significantly suppressed disease (except forA. rutilum/417PSB and all combinations with 358PSB), compared with the control treatment, if the microorganisms were applied in inoculum densities which were ineffective in suppressing disease as separate inocula. If one or both of the microorganism(s) of each combination were applied as separate inocula in a density which suppressed disease, no additional suppression of disease was observed by the combination. The advantage of the co-inoculation is that combined populations significantly suppressed disease even when their individual population density was too low to do so. This may provide more consistent biological control. The co-inoculation effect obtained in the pot bioassays suggests that co-operation ofP. fluorescens WCS374 and indigenous antagonists could have been involved in the suppression of fusarium wilt of radish in the commercial greenhouse trials.Abbreviations CFU colony forming units - KB King's B - PGPR plant growth-promoting rhizobacteria - CQ colonization quotient  相似文献   

4.
Ran LX  van Loon LC  Bakker PA 《Phytopathology》2005,95(11):1349-1355
ABSTRACT The role of bacterially produced salicylic acid (SA) in the induction of systemic resistance in plants by rhizobacteria is far from clear. The strong SA producer Pseudomonas fluorescens WCS374r induces resistance in radish but not in Arabidopsis thaliana, whereas application of SA leads to induction of resistance in both plant species. In this study, we compared P. fluorescens WCS374r with three other SA-producing fluorescent Pseudomonas strains, P. fluorescens WCS417r and CHA0r, and P. aeruginosa 7NSK2 for their abilities to produce SA under different growth conditions and to induce systemic resistance in A. thaliana against bacterial speck, caused by P. syringae pv. tomato. All strains produced SA in vitro, varying from 5 fg cell(-1) for WCS417r to >25 fg cell(-1) for WCS374r. Addition of 200 muM FeCl(3) to standard succinate medium abolished SA production in all strains. Whereas the incubation temperature did not affect SA production by WCS417r and 7NSK2, strains WCS374r and CHA0r produced more SA when grown at 33 instead of 28 degrees C. WCS417r, CHA0r, and 7NSK2 induced systemic resistance apparently associated with their ability to produce SA, but WCS374r did not. Conversely, a mutant of 7NSK2 unable to produce SA still triggered induced systemic resistance (ISR). The possible involvement of SA in the induction of resistance was evaluated using SA-nonaccumulating transgenic NahG plants. Strains WCS417r, CHA0r, and 7NSK2 induced resistance in NahG Arabidopsis. Also, WCS374r, when grown at 33 or 36 degrees C, triggered ISR in these plants, but not in ethylene-insensitive ein2 or in non-plant pathogenesis- related protein-expressing npr1 mutant plants, irrespective of the growth temperature of the bacteria. These results demonstrate that, whereas WCS374r can be manipulated to trigger ISR in Arabidopsis, SA is not the primary determinant for the induction of systemic resistance against bacterial speck disease by this bacterium. Also, for the other SAproducing strains used in this study, bacterial determinants other than SA must be responsible for inducing resistance.  相似文献   

5.
Mutants of Botrytis cinerea and Ustilago maydis highly resistant to fludioxonil were isolated at a high frequency, after nitrosoguanidine or UV mutagenesis, respectively, and selection on media containing fludioxonil. Tests on the response of mutant strains to high osmotic pressure resulted in the identification of two fludioxonil-resistant phenotypes (FLDosm/s and FLDosm/r), regarding the sensitivity to high osmolarity. Approximately 95% of fludioxonil-resistant mutants were found to be more sensitive to high osmotic pressure than the wild-type parent strains. Genetic analysis of phenylpyrrole-resistance in the phytopathogenic basidiomycete U. maydis, showed that fludioxonil-resistance was coded by three unlinked chromosomal loci (U/fld-1, U/fld-2 and U/fld-3), from which only the U/fld-1 mutation coded an osmotic sensitivity similar to that of the wild-types. Cross-resistance studies with fungicides from other chemical groups showed that the mutations for resistance to phenylpyrroles affect the sensitivity of mutant strains to the aromatic hydrocarbon and dicarboximide fungicides, but not to the benzimidazoles, anilinopyrimidines, phenylpyridinamines, hydroxyanilides or the sterol biosynthesis inhibiting fungicides. A study of fitness parameters in the wild-type and fludioxonil-resistant mutants of B. cinerea, showed that all osmotic sensitive (B/FLDosm/s) isolates had significant reductions in the characteristics determining saprophytic fitness such as mycelial growth, sporulation, conidial germination and sclerotial production. Contrary to that, with the exception of mycelial growth, the fitness parameters were unaffected or only slightly affected in most of the osmotic resistant (B/FLDosm/r) isolates. Tests on cucumber seedlings showed that the osmotic-sensitive strains were significantly less pathogenic compared with the wild-type and B/FLDosm/r strains of B. cinerea. Preventative applications of the commercial products Saphire 50 WP (fludioxonil) and Rovral 50 WP (iprodione) were effective against lesion development on cotyledons by the wild-type and the mutant strains of B. cinerea that were resistant to the anilinopyrimidine cyprodinil (B/CPL-27) and to the hydroxyanilide fenhexamid (B/FNH-21), but ineffective, even at high concentrations, against disease caused by the fludioxonil-resistant isolates (B/FLD) and a mutant strain resistant to the dicarboximide iprodione (B/IPR-1). Experiments on the stability of the fludioxonil-resistant phenotype showed a reduction of resistance, mainly in osmotic-sensitive isolates, when the mutants were grown on inhibitor-free medium. A rapid recovery of the high resistance was observed after mutants were returned to the selection medium. Studies on the competitive ability of mutant isolates against the wild-type parent strain of B. cinerea, by applications of a mixed conidial population, showed that, in vitro, all mutants were less competitive than the wild-type strain. However, the competitive ability of osmotic-resistant mutants was higher than the osmotic-sensitive ones. Furthermore, competition tests, in planta, showed a significant reduction of the frequency of both phenylpyrrole-resistant phenotypes, with a respective increase in the population of the wild-type strain of the pathogen.  相似文献   

6.
Nonpathogenic isolates of Fusarium oxysporum can be successful antagonists of pathogenic forms of the same fungal species that commonly attacks crop plants. The characteristics that distinguish nonpathogenic from pathogenic forms are not well understood. In this study, the mode of root colonization of Eucalyptus viminalis seedlings by a nonpathogenic F. oxysporum strain is described at the ultrastructural level. Root systems of E. viminalis plants were inoculated with nonpathogenic F. oxysporum strain Fo47 in an in vitro model system. Changes in the occurrence of nonesterified and methyl-esterified pectins in colonized E. viminalis roots were evaluated by in situ immunolabeling using two monoclonal antibodies, JIM 5 and JIM 7. Modes of penetration and root colonization patterns in E. viminalis seedlings by the nonpathogenic fungus were similar to those described for pathogenic forms of F. oxysporum. However, root interactions differed in that the nonpathogenic fungus did not induce host tissue damage. No papilla-like appositions were observed in host cells in response to invading hyphae, which did not disrupt the host plasma membrane in many cases, suggesting that a biotrophic relationship was established. Root colonization by the nonpathogenic strain did not induce alteration in JIM 7 labeling of methyl-esterified pectin in E. viminalis cell walls, whereas nonesterified pectin was detected to a significantly greater extent in cell walls of roots colonized by the fungus. Pectin components decreased slightly only at points of hyphal contact with host cells. Because nonpathogenic strains utilize pectin in pure culture, host control over enzyme activity or production by the fungi may at least partly explain their compatible interactions with host tissues.  相似文献   

7.
The clustered hrp genes encoding the type III secretion system in the Japanese strains MAFF301237 and MAFF311018 of Xanthomonas oryzae pv. oryzae were sequenced and compared. The strains differ in their pathogenicity, location, and year of isolation. A 30-kbp sequence comprising 29 open reading frames (ORFs) was identical in its structural arrangement in both strains but differed from X. campestris pv. campestris, X. axonopodis pv. citri, and X. axonopodis pv. glycines in certain genes located between the hpaB-hrpF interspace region. The DNA sequence and the putative amino acid sequence in each ORF was also identical in both X. oryzae pv. oryzae strains as were the PIP boxes and the relative sequences. These facts clearly showed that the structure of the hrp gene cluster in X. oryzae pv. oryzae is unique.  相似文献   

8.
Fusarium oxysporum f. sp. cubense (Foc) is the causal pathogen of Fusarium wilt of banana. To understand infection of banana roots by Foc race 4, we developed a green fluorescent protein (GFP)-tagged transformant and studied pathogenesis using fluorescence microscopy and confocal laser scanning microscopy. The transformation was efficient, and GFP expression was stable for at least six subcultures with fluorescence clearly visible in both hyphae and spores. The transformed Foc isolate also retained its pathogenicity and growth pattern, which was similar to that of the wild type. The study showed that: (i) Foc race 4 was capable of invading the epidermal cells of banana roots directly; (ii) potential invasion sites include epidermal cells of root caps and elongation zone, and natural wounds in the lateral root base; (iii) in banana roots, fungal hyphae were able to penetrate cell walls directly to grow inside and outside cells; and (iv) fungal spores were produced in the root system and rhizome. To better understand the interaction between Foc race 4 and bananas, nine banana cultivars were inoculated with the GFP-transformed pathogen. Root exudates from these cultivars were collected and their effect on conidia of the GFP-tagged Foc race 4 was determined. Our results showed that roots of the Foc race 4-susceptible banana plants were well colonized with the pathogen, but not those of the Foc race 4-resistant cultivars. Root exudates from highly resistant cultivars inhibited the germination and growth of the Fusarium wilt pathogen; those of moderately resistant cultivars reduced spore germination and hyphal growth, whereas the susceptible cultivars did not affect fungal germination and growth. The results of this work demonstrated that GFP-tagged Foc race 4 isolates are an effective tool to study plant–fungus interactions that could potentially be used for evaluating resistance in banana to Foc race 4 by means of root colonization studies. Banana root exudates could potentially also be used to identify cultivars in the Chinese Banana Germplasm Collection with resistance to the Fusarium wilt pathogen.  相似文献   

9.
Oligonychus yothersi (Acari: Tetranychidae) causes damage to a wide range of plants. The aim of this work was to record the occurrence of this mite species feeding on one-year-old plants of Eucalyptus urophylla in the field and describe the damages that this mite causes to plant species. This mite species was commonly found attacking E. urophylla plants in Viçosa (MG), Brazil. The observed damage was similar to that caused by herbivorous mites that feed directly on the leaf surface and cause premature falling of the attacked leaves. This fact indicates that this mite species may be a potential pest for eucalyptus plants and crops, which makes it essential to carry out further studies on this subject, especially during periods with low intensity of rainfall and humidity.  相似文献   

10.
The Eucalyptus gall wasp Ophelimus maskelli (Hymenoptera: Eulophidae) and its parasitoid Closterocerus chamaeleon (Hymenoptera: Eulophidae) were observed for the first time in Portugal, in 2006 and 2007, respectively. Data on the distribution of O. maskelli in Portugal, differences in the susceptibility of two host species, Eucalyptus globulus and Eucalyptus camaldulensis, and parasitism by C. chamaeleon are given.  相似文献   

11.
Xanthomonas oryzae pv. oryzae causes bacterial blight of rice. Xa23, a bacterial blight resistance gene identified originally in wild rice, Oryza rufipogon, is dominant and resistant to all X. oryzae pv. oryzae field isolates tested. The corresponding avirulence gene avrXa23 is unknown. Here we report the generation of a random insertion mutant library of X. oryzae pv. oryzae strain PXO99 using a Tn5-derived transposon tagging system, and identification of mutant strains that are virulent on CBB23, a near-isogenic rice line containing Xa23. A total of 24,192 Tn5 inserted clones was screened on CBB23 by leaf-cutting inoculation and at least eight of them caused lesions on CBB23 comparable to those on JG30, the susceptible recurrent parent of CBB23. Polymerase chain reaction and Southern blot analysis showed that all the eight mutants, designated as P99M1, P99M2, P99M3, P99M4, P99M5, P99M6, P99M7 and P99M8, have a single Tn5-insertion in their genomes. The flanking DNA sequences of the Tn5-insertion sites were isolated by PCR-walking and sequenced. Bioinformatic analysis of the flanking sequences, by aligning them with the whole genome sequences of X. oryzae pv. oryzae strains PXO99, KACC10331 and MAFF311018 through NCBI, revealed that the Tn5-insertions disrupted genes that encode TAL effector AvrBs3/PthA, ISXo1 transposase, Type II secretion system protein-like protein or outer membrane protein, glycogen synthase, cytochrome C5 and conserved hypothetical protein. Further identification of these mutants will facilitate the molecular cloning of avirulence gene avrXa23. The authors C.-L. Wang, A.-B. Xu contributed equally to this work; Y. Gao and Y.-L. Fan contributed equally to this work.  相似文献   

12.
Pinellia ternata is a traditional Chinese herb which has been used in China for over 1,000 years. A soft-rot disease characterized by water-soaked lesions and soft-rot symptoms with a stinking odour was commonly observed in cultivated fields of this plant, and Pectobacterium-like bacteria were consistently isolated from the infected tissues. Two typical strains (SXR1 and ZJR1), isolated from Shanxi and Zhejiang, respectively, were identified. Pathogenicity tests revealed that these strains were virulent to P. ternata and induced the same symptoms as observed in the field. Characterization involving fatty acid profile, metabolic and physiological properties, 16S rDNA sequence and PCR-RFLP identified both isolates as P. carotovorum subsp. carotovorum (Pcc). The 16S rDNA of both isolates shared 97–99% sequence similarity with that of Pcc strains. The phylogenetic trees showed that both isolates were clustered in the group of Pcc and P. carotovorum subsp. odorifera and both PCR-RFLP profiles were consistent with the pattern E produced by the minority of Pcc strains. Thus, isolates SXR1 and ZJR1 were characterized as Pcc in spite of some differences. This is the first report that Pcc has been proven as a causal agent of soft-rot disease on P. ternata.  相似文献   

13.
We selected a reduced-pathogenicity mutant of Fusarium oxysporum f. sp. lycopersici, a tomato wilt pathogen, from the transformants generated by restriction enzyme-mediated integration (REMI) transformation. The gene tagged with the plasmid in the mutant was predicted to encode a protein of 321 amino acids and was designated FPD1. Homology search showed its partial similarity to a chloride conductance regulatory protein of Xenopus, suggesting that FPD1 is a transmembrane protein. Although the function of FPD1 has not been identified, it does participate in the pathogenicity of F. oxysporum f. sp. lycopersici because FPD1-deficient mutants reproduced the reduced pathogenicity on tomato.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession number AB110097  相似文献   

14.
The aims of this study were to select bacterial isolates from the non-rhizophere of maize soil and to examine their antagonistic activity against Aspergillus section Flavi strains. The first selection was made through ecophysiological responses of bacterial isolates to water activity (aw) and temperature stress. Subsequently, an Index of Dominance test (ID), ecological similarity and inhibition of the lag phase prior to growth, growth rate and aflatoxin B1 accumulation were used as criteria. From the first assay nine bacterial strains were selected. They grew well at 25 and 30 °C, with growth optima between 0.982 and 0.955 aW using 48 h of incubation. There was ecological similarity between the bacterial strains Bacillus subtilis (RCB 3, RCB 6), Pseudomonas solanacearum RCB 5, Amphibacillus xylanus RCB 27 and aflatoxigenic Aspergillus section Flavi strains at 0.982 at 25 °C. The predominant interaction between all selected bacteria and fungi in dual culture was mutual intermingling at 0.982. Mutual inhibition on contact and mutual inhibition at a distance was observed at 0.955 aw, between only four bacteria and some Aspergillus strains. Bacillus subtilis RCB 55 showed antifungal activity against Aspergillus section Flavi strains. Amphibacillus xylanus RCB 27, B.␣subtilis RCB 90 and Sporolactobacillus inulinus RCB 196 increased the lag phase prior to growth and decreased the growth rate of Aspergillus section Flavi strains. Bacillus subtilis strains (RCB 6, RCB 55, RCB 90) and P. solanacearum RCB 110 inhibited aflatoxin accumulation. Bacillus subtilis RCB 90 completely inhibited aflatoxin B1 accumulation at 0.982 aW. These results show that the bacterial strains selected have potential for controlling Aspergillus section Flavi over a wide range of relevant environmental conditions in the stored maize ecosystem.  相似文献   

15.
The plasmid pUFZ75 conferred constitutive GFP expression on the bacterial pathogen Xanthomonas euvesicatoria (syn. X. campestris pv. vesicatoria). Colonisation of the tomato phyllosphere and invasion of tomato leaves by X. euvesicatoria was examined using both fluorescence and confocal laser scanning microscopy. Xanthomonas euvesicatoria established a limited population on the tomato leaf surface, primarily occupying the depressions between epidermal cells and around the stomata, prior to invasion of the leaf via the stomata and subsequent growth within the substomatal chamber and the leaf apoplast. Additionally, hrp-gfp fusions were used to report on the temporal and spatial expression of hrp genes during epiphytic colonisation and invasion. Xanthomonas euvesicatoria cells carrying hrpG- and hrpX-gfp reporter constructs were not fluorescent in vitro on non-hrp-inducing LB agar but did exhibit a low level of fluorescence on the leaf surface within 24 h of inoculation, particularly in the vicinity of stomata. Cells carrying hrpG- and hrpX-gfp fusions exhibited high levels of fluorescence 72 h after inoculation in the substomatal chamber and the leaf apoplast. Cells carrying the hrpF-gfp fusion were slightly fluorescent on LB agar and showed no further increase in fluorescence on the leaf surface by 24 h after inoculation, but did show a significant increase in fluorescence 72 h after inoculation in the substomatal chamber and apoplast. The apparent low-level induction of the regulators hrpG and hrpX on the tomato leaf surface may suggest that some of the genes of the X. euvesicatoria HrpG/HrpX regulon are up- or down-regulated prior to invasion of the stomata while still on the leaf surface.  相似文献   

16.
Mulberry wilt disease (MWD) was recently identified in Hangzhou, Zhejiang province, China. Typical symptoms of the disease are browning of vascular tissues, leaf wilt, defoliation, and tree decline. Unlike the symptoms of bacterial wilt disease caused by Ralstonia solanacearum, symptoms of MWD generally started from the bottom of the plants and moved upward. In inoculation experiments, four selected MWD strains caused mulberry shoot leaf wilt, discoloration, and defoliation. They also induced whole plant leaf wilt, defoliation and dark brown discoloration of vascular tissue. Based on Biolog metabolic profiles, fatty acid methyl ester analysis (FAME) and sequence analysis of the partial 16S rDNA and rpoB genes four MWD strains were identified as members of the genus Enterobacter. The 16S rDNA and rpoB gene sequences revealed a close relationship among two isolates, R2-2 and R6-2, and the E. asburiae type strain JCM6051. The isolates showed >98% similarity to E. asburiae JCM6051 in their rpoB gene. These results indicated that isolates R2-2 and R6-2 belonged to E. asburiae. No similarity in 16S rDNA sequences above 97% was found between either of the remaining isolates, R11-2 or R18-2, and any recognized Enterobacter species, suggesting that the two isolates may represent novel Enterobacter species. rpoB gene similarity values between the isolates and Enterobacter spp. type strains were <98%, providing further evidence that the two isolates may represent a novel species within the Enterobacter. The causal agent for MWD was previously reported to be E. cloacae, however, this study found that other Enterobacter spp. (E. asburiae and Enterobacter sp.) also cause MWD.  相似文献   

17.
Tumour tissue samples were collected from vines grown in various regions of Italy and other parts of Europe and extracted for detection of Agrobacterium vitis. Fifty strains were isolated on agar plates and screened by PCR with consensus primers from the virD2 gene. They were confirmed as A. vitis with a species-specific monoclonal antibody. The isolates were further analyzed by PCR for their opine synthase genes and ordered into octopine, nopaline and vitopine strains. Primers designed on the octopine synthase gene did not detect octopine strains of Agrobacterium tumefaciens. For quantitative PCR, virD2 fragments were sequenced: two classes of virD2 genes were found and two primer sets designed, which detected octopine and nopaline strains or only vitopine strains. For simultaneous identification of all opine-type strains, multiplex real-time PCR with either primer pair and SYBR Green was performed: the combined sets of primers gave signals with DNA from any A. vitis strain. Specificity of the new primers for real-time PCR was evaluated using several unidentified bacterial isolates from grapevines and other plant species. An elevated level of non-specific background was observed when the combined primer sets were used in multiplex PCR assays. The real-time PCR protocol was also used to detect A. vitis cells directly from grapevine tumours; avoiding direct isolation procedures a sensitivity in the range of one to ten cells per assay was found. Inhibition of the PCR reaction by plant material was overcome by treating tumour extracts with a DNA purification kit as a step for the isolation of nucleic acids.  相似文献   

18.
Organic management of soils is generally considered to reduce the incidence and severity of plant diseases caused by soil-borne pathogens. In this study, take-all severity on roots of barley and wheat, caused by Gaeumannomyces graminis var. tritici, was significantly lower in organically-managed than in conventionally-managed soils. This effect was more pronounced on roots of barley and wheat plants grown in a sandy soil compared to a loamy organically-managed soil. Fluorescent Pseudomonas spp. and in particular phlD+ pseudomonads, key factors in the take-all decline phenomenon, were represented at lower population densities in organically-managed soils compared to conventionally-managed soils. Furthermore, organic management adversely affected the initial establishment of introduced phlD+ P. fluorescens strain Pf32-gfp, but not its survival. In spite of its equal survival rate in organically- and conventionally-managed soils, the efficacy of biocontrol of take-all disease by introduced strain Pf32-gfp was significantly stronger in conventionally-managed soils than in organically-managed soils. Collectively, these results suggest that phlD+ Pseudomonas spp. do not play a critical role in the take-all suppressiveness of the soils included in this study. Consequently, the role of more general mechanisms involved in take-all suppressiveness in the organically-managed soils was investigated. The higher microbial activity found in the organically-managed sandy soil combined with the significantly lower take-all severity suggest that microbial activity plays, at least in part, a role in the take-all suppressiveness in the organically-managed sandy soil. The significantly different bacterial composition, determined by DGGE analysis, in organically-managed sandy soils compared to the conventionally-managed sandy soils, point to a possible additional role of specific bacterial genera that limit the growth or activity of the take-all pathogen.  相似文献   

19.
The vascular wilt pathogen Fusarium oxysporum f. sp. melonis causes worldwide yield losses of muskmelon. In this study, we characterized a UV-induced non-pathogenic mutant (strain 4/4) of F. oxysporum f. sp. melonis, previously identified as a potential biological control agent. During comparative analysis of vegetative growth parameters using different carbon sources, mutant strain 4/4 showed a delay in development and secretion of extracellular enzymes, compared to the wild type strain. Amendments of the growth medium with yeast extract, adenine or hypoxanthine, but not guanine, complemented the growth defect of strain 4/4, as well as secretion and partial activity of cellulases and endopolygalacturonases, indicating that the strain is an adenine auxotroph. Incubation of strain 4/4 conidia in adenine solution, prior to inoculation of muskmelon plants, partially restored pathogenicity to the mutant strain.  相似文献   

20.
Pseudomonas fluorescens-mediated induction of systemic resistance in radish against fusarium wilt (Fusarium oxysporum f. sp.raphani) was studied in a newly developed bioassay using a rockwool system. In this bioassay the pathogen and bacterium were confirmed to be confined to spatially separate locations on the plant root, throughout the experiment. Pathogen inoculum obtained by mixing peat with microconidia and subsequent incubation for four days at 22 °C, yielded a better percentage of diseased plants than a microconidial suspension drench, an injection of a microconidial suspension into the hypocotyl, or a talcum inoculum.Pseudomonas fluorescens strain WCS374 applied in talcum or peat, but not as a suspension drench, induced systemic resistance. A minimal initial bacterial inoculum density of 105 CFU WCS374 root–1 was required to significantly reduce the percentage diseased plants. At least one day was necessary between bacterization of strain WCS374 in talcum on the root tips and inoculation of the pathogen in peat on the root base, for an optimal induction of systemic resistance. Strain WCS374 induced systemic resistance in six radish cultivars differing in their susceptibility toF. oxysporum f. sp.raphani. Significant suppression of disease by bacterial treatments was generally observed when disease incidence in the control treatment, depending on pathogen inoculum density, ranged between approximately 40 to 80%. Strains WCS374 and WCS417 ofPseudomonas fluorescens induced systemic resistance against fusarium wilt, whereasP. putida WCS358 did not. This suggests that the induction of systemic resistance byPseudomonas spp. is dependent on strain-specific traits.Abbreviations CFU colony forming units - IFC immunofluorescence colony-staining - ISR induced systemic resistance - PBS phosphate buffered saline - SAR systemic acquired resistance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号