首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rhizoctonia solani Kühn is an important pathogen of sugar beet (Beta vulgaris L.) that can cause damping-off and crown and root rot. Commercial cultivars which are highly resistant to the pathogen are not as high yielding as susceptible cultivars under low or absent disease pressure. These resistant cultivars often do not have resistance to other common pathogens such as Aphanomyces cochlioides, Cercospora beticola, and Fusarium oxysporum. Fungicides, such as azoxystrobin which belongs to the quinone outside inhibitors (QoI) class, are necessary for controlling Rhizoctonia solani, but there are concerns about the buildup of fungicide-resistant strains in the targeted pathogen population. There is a need to find effective fungicides from different chemical groups so they can be rotated with the current widely-used azoxystrobin to manage R. solani. The objective of this greenhouse study was to evaluate the efficacy of penthiopyrad, a succinate dehydrogenase inhibitor (SDHI), in managing R. solani on sugar beet using three different application methodologies. Penthiopyrad effectively controlled R. solani on sugar beet when applied at 210, 280, 420, or 550 g a.i./ha in-furrow at planting and as a soil drench at the 4-leaf stage. However, foliar application of penthiopyrad failed to provide disease control. These trials indicated that penthiopyrad needs to be in close proximity or direct contact with R. solani in the soil to provide effective control. Penthiopyrad has the potential to be used as an effective alternate partner with azoxystrobin for controlling R. solani and to help in mitigating the development of fungicide resistant isolates of R. solani.  相似文献   

2.
Canola seedling blight, caused by Rhizoctonia solani, and Fusarium spp., can result in large yield losses to canola (Brassica napus) at high inoculum pressure. The effect of inoculum density was studied by mixing different amounts of R. solani AG-2-1 and Fusarium avenaceum into a sterilized natural soil and soil-less mix (2:1, v:v) separately, and recording seedling emergence, damping-off and seedling height within ten days after seeding; root rot severity at 12 days after seeding and seed yield at harvest on canola cultivars ‘45H29’ and ‘73-77RR’. Root rot severity increased and emergence, plant height and seed yield decreased with increased inoculum density of both R. solani and F. avenaceum. For quantification of R. solani AG-2-1, a primer and TaqMan probe set (Rs21F/Rs21R/Rs21P) was designed based on the nuclear ribosomal internal transcribed spacer (ITS) region of R. solani AG-2-1. From a conventional PCR amplification, an 88-bp product was amplified from all isolates classified as AG-2-1 with the primers Rs21F and Rs21R. No product was amplified with DNA from isolates belonging to other anastomosis groups of R. solani, other pathogens or the host plant. By using quantitative PCR, DNA amounts as low as 100 fg of R. solani AG-2-1 were detected. The quantity of DNA from soil samples with different inoculum densities estimated using qPCR was highly correlated to the number of colony-forming units (cfu) obtained from the same soil samples for both R. solani AG-2-1 and F. avenaceum.  相似文献   

3.
Field and laboratory studies were conducted in 1985–1986 to evaluate the relative severity ofRhizoctonia solani damage among 26 clones and five potato (Solanum tuberosum) cultivars. A test with true potato seeds showed that resistance toR. solani could be identified in two years. One highly resistant line was identified by this method. Moderate degrees of resistance were found in lines from the USDA Potato Breeding Program (BARC) with russet types producing a higher percentage of highly resistant lines than round whites. A laboratory test revealed that apical sprout damage (nipping) was variable within and between lines and that it was an important phase of disease development to measure when determining resistance because of its effects on the resulting plant growth and production of marketable tubers. It was also determined that to accurately define resistance toR. solani in potato, all phases of the disease must be evaluated to insure against resistance “breakdown” at some point in plant development.  相似文献   

4.
The aims of this study were to develop new bioformulations using Trichoderma harzianum, Trichoderma asperellum, and Talaromyces flavus and some organic and inorganic carriers and evaluate their effects against Rhizoctonia solani, the fungal causal agent of sugar beet seedling damping-off disease. Selected fungal isolates were first re-cultured and maintained on potato dextrose agar (PDA) culture medium. Antagonistic effects of eight isolates of the above-mentioned antagonistic fungi were then evaluated against R. solani, through volatile metabolites and non-volatile metabolites production mechanisms under laboratory conditions. In volatile and non-volatile metabolite experiments, five and seven isolates caused significant reduction in R. solani growth respectively. Based on the results of laboratory experiments, the most effective antagonistic isolates (one isolate from each species) were selected for development of nine bioformulations using peat, rice bran and talc as carriers. The effectiveness of developed bioformulations was then evaluated in controlling sugar beet damping-off disease in a greenhouse experiment where sugar beet seeds were coated with bioformulations and were sown in pasteurized field soil pre-inoculated with R. solani. Results of the greenhouse experiment 60 days after sowing showed that all bioformulations increased the number of healthy seedlings significantly (compared to the untreated control) with different rates. According to the results, the most effective bioformulation was Talc-T. harzianum followed by Peat-T. flavus, Talc-T. flavus and Rice bran-T. harzianum. In general, in both laboratory and greenhouse experiments, T. flavus was the most effective fungal antagonist followed by T. harzianum and T. asperellum. Based on the results of this study it is concluded that Trichoderma and Talaromyces employing different mechanisms might be potential biocontrol agents for controlling R. solani-induced sugar beet damping-off disease.  相似文献   

5.
Crop damage is associated with infection by plant pathogens but can also arise through abiotic factors. However, the plant pathogens are involved in biotic interactions with other plant pathogens, and these interactions may differ depending of the cultivar of the crop. Here, the interaction between the fungus Rhizoctonia solani (AG3) and free-living plant-parasitic nematodes was investigated in a pot experiment with different potato cultivars. No synergistic interaction between R. solani and plant-parasitic nematodes was found, instead there was an effect of treatment with lower tuber yield when nematodes occurred alone. There were differences among the cultivars regarding incidence of black scurf, dry weight of stems and tubers, and there was interactive effects between treatment and cultivar regarding dry weight of stolons and roots. Therefore, results concerning incidence and damage of R. solani and/or plant-parasitic nematodes found for one cultivar may not be applicable to other cultivars.  相似文献   

6.
Root and crown rot is the major soil-borne fungal disease in sugar beet. In Europe, the disease is mainly caused by the anastomosis group (AG) 2-2IIIB of the basidiomycete Rhizoctonia solani (Kühn). No chemical fungicide to control the disease has been registered in Europe. Therefore, agronomic measures must be optimized to keep the disease severity below an economic damage threshold and to minimize white sugar yield losses. R. solani AG 2-2IIIB infects many other crops besides sugar beet, including maize, where it causes root rot. Sugar beet and maize are frequently grown in the same crop rotation. The proportion of cultivated maize in several European sugar beet growing areas is expected to rise due to a projected increase in demand for renewable resources over the next few years. Although the susceptibility to and tolerance of the disease varies among cultivars in both crops, little is known about the effects of cultivar susceptibility in the pre-crop on a subsequent susceptible crop. The cultivation of R. solani-resistant maize genotypes in rotation with resistant sugar beet might therefore be a useful tool in an integrated control strategy against R. solani, eliminating the need to restrict the desired crop rotation for phytosanitary reasons. A crop rotation experiment with artificially inoculated R. solani was conducted in the field to investigate the pre-crop effects of maize cultivars which differed in their susceptibility to R. solani on a susceptible sugar beet cultivar. We hypothesized that the maize genotype would influence the inoculum potential and performance of a susceptible sugar beet genotype grown after a maize pre-crop, and that this would correlate with the susceptibility of the maize genotype. The results demonstrate that the susceptibility of maize genotypes is consistent over a period of years and that cultivated maize genotypes influenced the inoculum potential measured as disease severity in sugar beet. However, disease severity in sugar beet did not correlate with the disease susceptibility of the genotype of the maize pre-crop. Possible reasons for this missing relationship might be differences in the quality of maize residues for the saprophytic survival of the pathogen or a genotype-specific alteration of the antagonistic microbial community. However, our findings showed that in the presence of maize- and sugar beet-pathogenic R. solani, the most favourable maize cultivar for a crop rotation cannot be determined solely on the basis of its resistance level against Rhizoctonia root rot.  相似文献   

7.
The soil-borne pathogen Rhizoctonia solani AG 8 causes major yield losses in wheat (Triticum aestivum. L) production worldwide. Plant tissues of Brassicaceae species contain glucosinolates that are hydrolyzed in the presence of the enzyme myrosinase into products with pesticidal properties. Growth chamber studies were conducted to determine the effect of the Brassicaceae seed meals (SMs) from Brassica juncea, Brassica napus and Sinapis alba on the suppression of the R. solani AG 8 infection of winter wheat. Pasteurized sandy soils were amended with intact and denatured SMs of rape seed and mustard at a rate of 0.5% by soil weight. Regardless of the glucosinolate type and content, all intact and denatured Brassicaceae significantly reduced the infection of winter wheat seedlings by R. solani AG 8 compared to the un-amended control. However, soils amended with S. alba SMs had the lowest severity of Rhizoctonia root rot relative to other amended soils. Phytotoxicity arising from the use of Brassicaceae SMs was observed particularly in soils amended with high glucosinolate-containing SMs. These studies demonstrate that Brassicaceae SMs can be used to manage disease caused by R. solani AG-8. However, future studies will need to focus on strategies for diminishing the crop growth-reducing effects associated with Brassicaceae SM amendment to fully maximize these fungicidal benefits.  相似文献   

8.
Two tillage practices, chisel plowing (30 cm) and deep moldboard plowing (22 cm), and five rotation crops (oats, lupine, buckwheat, broccoli and peas) were studied for their effects on the soil population ofRhizoctonia solani AG-3 and on Rhizoctonia disease on potato. All rotation crops were harvested except buckwheat, which was treated as a green manure crop. Chisel plowing significantly reduced (p = 0.05) the incidence and severity of stem lesions on potato caused byR. solani AG-3. In 1990, oats after moldboard plowing significantly increased disease when compared to other crops and broccoli after chisel plowing decreased disease severity. Soil populations ofR. solani AG-3 were significantly lower with chisel plowing. No interactions between tillage and rotation crops were observed. Rhizoctonia solani Kühn is a soil inhabiting plant pathogen found worldwide that affects many plant species including white potato (Solanum tuberosum L.).R. solani attacks potato at one or more stages in development resulting in distinct disease symptoms (25) often termed the Rhizoctonia disease complex of potato. In Maine, only strains AG-3 and AG-5 ofR. solani (4, 5) have been identified as attacking potato and causing four distinct types of symptoms: 1) black scurf (sclerotia) on tubers, 2) stem cankers, 3) aerial tubers and top rosetting, and 4) killing of sprouts. Crop rotation has been reported to reduce the incidence and severity ofR. solani on potato, but no single rotation method controls completely or to a high degree of reliability (11, 23, 24, 26). Deep moldboard plowing has been shown to reduce diseases caused byR. solani andSclerotium rolfsii Sacc. in crops other than potatoes (2, 7, 15, 19, 20). However, Gudmestadet al. (6) reported that deep moldboard plowing increased the severity ofR. solani on stems and stolons of potatoes. The reduction of diseases caused byR. solani andS. rolfsii by moldboard plowing is attributed to low inoculum densities in the upper soil layer by the burial of sclerotia to depths where germination and infection were prevented (14, 15, 19, 20). However, disking to a depth of 5–7 cm did not affect disease as the inoculum remained in the root zone (14, 15). Gurkin (7) states that the rationale for deep moldboard plowing is to promote decay of organic matter, remove organic matter from the infection court and to bury the sclerotia below the infection court. Cultural control techniques are largely preventive and are designed to reduce the quantity or the activity of inoculum by means of crop rotation, tillage practices, green manure crops, etc. (22). This study was conducted to determine individual effects and possible interactions of deep moldboard plowing versus chisel plowing in various rotation crops on the presence ofR. solani AG-3 in the soil and on the incidence of Rhizoctonia disease complex of potato.  相似文献   

9.
Rhizoctonia solani Kuhn was isolated from hemp (Hibiscus cannabinus) seedlings affected by damping-off disease. The fungus was highly pathogenic on artificial inoculation. There is no earlier record of this disease in Iraq. Of nine fungicides tested as seed treatment, Bavistin (carbendazim), Homai (thiram), Vitavax (carboxin), Topsin (thiophanate), Fundazol and Benlate (benomyl) gave effective control of the disease.  相似文献   

10.
Environmentally friendly control measures are needed for soilborne diseases of crops grown in organic and conventional production systems. We tested ethanol extracts from cultures of Serratia marcescens N4-5 and N2-4, Burkholderia cepacia BC-1 and BC-2, and Burkholderia ambifaria BC-F for control of damping-off of cucumber caused by the soilborne pathogens Pythium ultimum and Rhizoctonia solani; ethanol being an Organic Materials Review Institute (OMRI) -approved solvent for use in certain applications in organic crop production. Ethanol extracts from strains N4-5 and N2-4 inhibited mycelial growth and germination of sporangia of P. ultimum in vitro but those from strains BC-1, BC-2, BC-F, and the ethanol control did not. Ethanol extracts from strains BC-2 and BC-F inhibited mycelial growth of R. solani in vitro while ethanol extracts from strains BC-1, N2-4, N4-5, and the ethanol control did not. Thin-layer chromatography demonstrated that ethanol extracts from strain N4-5 contained prodigiosin while ethanol extracts from strains BC-2 and BC-F contained pyrrolnitrin; extracts from strains N2-4 and BC-1 did not contain either of these compounds. DNA sequencing confirmed the presence of a biosynthetic gene for prodigiosin in strain N4-5 and its absence in strain N2-4, while a biosynthetic gene for pyrrolnitrin was found in strains BC-2 and BC-F but not in strains N2-4, N4-5, and BC-1. Prodigiosin was previously implicated in inhibition of P. ultimum while pyrrolnitrin has been shown to inhibit R. solani. Certified-organic cucumber seed treated with an ethanol extract of strain N4-5 was the only extract treatment from any of these five microbial strains to effectively suppress damping-off caused by P. ultimum in growth chamber pot experiments. This ethanol extract provided suppression of P. ultimum on cucumber that was similar to that provided by a commercially available seed treatment pesticide and greater than that provided by a commercially available biocontrol agent for this pathogen. The inhibitory factor(s) in ethanol extracts of strain N4-5 was stable as a seed treatment for at least 14 weeks when incubated at 4 °C in the dark. No ethanol extracts applied as treatments of organic cucumber seed consistently suppressed damping-off caused by R. solani in growth chamber pot experiments. Experiments reported here suggest that certain natural products from microbial strains as seed treatments are promising alternatives for control of soilborne diseases in conventional or organic cucumber production systems.  相似文献   

11.
Field burning of residue is a traditional management tool for irrigated wheat (Triticum aestivum L.) production in the Inland Pacific Northwest of the United States (PNW) that can result in reduced air quality. A 6-year no-till field experiment to evaluate two complete cycles of a 3-year irrigated crop rotation of winter wheat–spring barley (Hordeum vulgare L.)–winter canola (Brassica napus L.) was sown (i) directly into standing residue of the previous crop, (ii) after mechanical removal of residue and, (iii) after burning of residue. The traditional practice of continuous annual winter wheat sown after burning residue and inverting the topsoil with a moldboard plow was included as a check treatment. Over-winter precipitation storage efficiency (PSE) was markedly improved when residue was not burned or burned and plowed after grain harvest. Grain yield of winter wheat trended higher in all no-till residue management treatments compared to the check treatment. Average grain yields of spring barley and canola were not significantly different among the no-till residue management treatments. Winter canola failed in 5 of 6 years due to a combination of a newly identified Rhizoctonia damping-off disease caused by Rhizoctonia solani AG-2-1 and cold temperatures that necessitated replanting to spring canola. Six-year average net returns over total costs were statistically equal over all four systems. All systems lost from $358 to $396 ha?1. Soil organic carbon (SOC) increased linearly each year with no-till at the 0–5 cm depth and accumulated at a slower rate at the 5–10 cm depth. Take-all of wheat caused by Gaeumannomyces graminis var. tritici was most severe in continuous annual winter wheat. The incidence and severity of Rhizoctonia on roots of wheat and inoculum of R. solani AG-8, was highest in the no-till treatments, but there was no grain yield loss due to this disease in any treatment. Residue management method had no consistent effect on Rhizoctonia root rot on barley. The annual winter grass downy brome (Bromus tectorum L.) was problematic for winter wheat in the standing and mechanically removed residue treatments, but was controlled in the no-till residue burned and the burn and plow check. Another winter annual grass weed, rattail fescue (Vulpia myuros L.), infested all no-till treatments. This was the first comprehensive and multidisciplinary no-till irrigated crop rotation study conducted in the Pacific Northwest.  相似文献   

12.
In tomato crop, the induction of resistance emerges as an important alternative for achieving the reduction of chemicals in disease control. This study aimed to evaluate the ability of 28 Trichoderma isolates to promote the growth of tomato seedlings and to induce systemic resistance (ISR) against Xanthomonas euvesicatoria and Alternaria solani, the causal agents of bacterial spot and early blight, respectively. Twelve isolates promoted the increase of plant dry matter mass (DMM) above 100%, showing the great potential of these strains. All isolates were able to colonize the root system of tomato plants. The plant growth-promoting isolates were further evaluated for potential elicitation of ISR. Treatment of the soil with all Trichoderma isolates provided protection in tomato plants from 24.13 to 95.94% against X. euvesicatoria and 30.69 to 95.23% against A. solani. The most efficient isolates in reducing the severity of bacterial spot and early blight were the isolates IB 28/07, IB 30/07, IB 37/01 and IB 28/07, IB 30/07 and IB 42/03, respectively. The effect of different time intervals between Trichoderma application and inoculation with pathogens in inducing systemic resistance in tomato plants was evaluated for the isolate IB 28/07. IB 28/07 conferred protection against both diseases at all time intervals, confirming the ability of the isolate to reduce the severity of these diseases up to 21 days after treatment of tomato plants. In vitro assays revealed that all isolates of Trichoderma were able to degrade cellulose. Only the isolate IB 34/08 showed antagonistic activity against X. euvesicatoria and none caused reduction in the in vitro mycelial growth of A. solani. Trichoderma isolates were identified at species level by DNA sequencing.  相似文献   

13.
A long-term study was conducted between 2000 and 2009 to characterize the incidence, progress and causal agents of cucumber vine decline in Oman. A survey in 175 different greenhouses showed that disease incidence levels range from 0 to 50%, with the highest levels of mortality being in the hotter seasons. Detailed temporal disease increase data from 24 different greenhouses showed mortality progress consists of two phases. The first phase is characterized by attack of young seedlings (<3 weeks old), resulting in damping-off disease. The second phase was characterized by re-appearance of symptoms and plant death (vine decline) during the fruit setting period, 35-50 days after transplanting. Isolations from 148 declining adult cucumber plants yielded Pythium aphanidermatum (80%), Pythium spinosum (13%), Fusarium equiseti (12%), Fusarium solani (8%), Rhizoctonia solani (5%) and one isolate each of Trichoderma hamatum and Bionectria sp. P. aphanidermatum, P. spinosum, R. solani and F. solani were found to be pathogenic on cucumber, with P. aphanidermatum being the most aggressive. This appears to be the first report of association of P. spinosum with vine decline in greenhouse cucumbers and the first report of the high susceptibility of adult cucumber plants to vine decline during the initial period of fruit setting. In addition, this is the first report of association of R. solani and F. solani with declining adult cucumber plants in Oman and the first report of the occurrence of T. hamatum and Bionectria species in the country.  相似文献   

14.
MicroRNAs(miRNAs) are about 22 nucleotides regulatory non-coding RNAs that play versatile roles in reprogramming plant responses to biotic and abiotic stresses. However, it remains unknown whether miRNAs confer the resistance to necrotrophic fungus Rhizoctonia solani in rice. To investigate whether miRNAs regulate the resistance to R. solani, we constructed 12 small RNA libraries from susceptible and resistant rice cultivars treated with water/pathogen at 5 h post inoculation(hpi), 10 hpi and 20 hpi, respectively. By taking the advantage of next-generation sequencing, we totally collected 400–450 known mi RNAs and 450–620 novel miRNAs from the libraries. Expression analysis of mi RNAs demonstrated different patterns for known and novel miRNAs upon R. solani challenge. Thirty-four mi RNA families were identified to be expressed specifically in rice, and most of them were involved in plant disease resistance. A particular Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis result revealed that a great majority of target genes of regulated miRNAs belonged to the pathway of plant-pathogen interaction. Moreover, miR444 b.2, miR531 a, mir1861 i, novel_miR1956 and novel_miR135 conferred response to R. solani infection confirmed by Northern blot. Our global understanding of miRNA profiling revealed that the regulation of mi RNAs may be implicated in the control of rice immunity to R. solani. Analysis of the expression of miRNAs will offer the community with a direction to generate appropriate strategies for controlling rice sheath blight disease.  相似文献   

15.
以78份吉林省玉米骨干自交系为试材,在温室条件下进行苗期干旱胁迫模拟,测定株高、茎粗、根鲜重、地上部分鲜重、根干重、地上部分干重等6项形态指标,估算各性状指标的耐旱系数,作为评价参数进行主成分分析和聚类分析,综合评价参试玉米自交系苗期耐旱性。结果表明,干旱胁迫组测定的形态指标数据与对照组相比均降低,变异幅度有明显差异。根鲜重耐旱系数、地上干重耐旱系数作为综合指标对玉米自交系苗期耐旱性评价的贡献率优于其他指标。聚类分析将参试玉米自交系划分出5个耐旱等级,郑58、S121、W9813、6F576为极强耐旱,丹598、8723、中128、骨马4404等18份玉米自交系为强耐旱,HCL645、四-4112、C8605-2、龙抗11等25份玉米自交系为中度耐旱。  相似文献   

16.
Application of Trichoderma harzianum, to soil or by coating tomato fruits, reduced Rhizoctonia solani fruit rot by up to 43% and 85%, respectively, under laboratory conditions. When mixed with naturally infested soil, Trichoderma reduced R. solani inoculum potential by 86% in field trials. It also significantly reduced fruit rot by 27–51%.  相似文献   

17.
Both sheath blight and blast are important rice diseases worldwide. The exploration of environmentally sound practices to control these diseases will help to reduce fungicide application. Effects of rice (Oryza sativa) intercropping with water chestnut (Eleocharis dulcis) on rice sheath blight and rice blast disease as well as the extracts of different plant parts and root exudates from water chestnut on pathogens of rice sheath blight (Rhizoctonia solani) and rice blast disease (Magnaporthe oryzae) were investigated using pot experiments and bioassay tests. The results from pot tests showed that rice-water chestnut intercropping system suppressed sheath blight and blast and improved land equivalent ratio (LER). The results from bioassay tests indicated that extracts and root exudates from water chestnut had significant effects to inhibit the expansion of these pathogens. The scales of these inhibitions were time and concentration dependent. The antifungal activities of the extracts from aboveground parts and pulp of water chestnut were significantly higher than the extracts from other parts and root exudates. The water extracts of aboveground parts showed the highest antifungal activity on both pathogens according to EC50 values. The antifungal activities of the same extracts from water chestnut on R. solani were significantly higher than on M. oryzae. The result suggests that water chestnut possesses bioactive substances to suppress rice sheath blight disease and rice blast disease. The rice-water chestnut intercropping system can be used as an environment-friendly method for diseases control in rice field.  相似文献   

18.
Streptomyces philanthi RM-1-138, isolated from the rhizosphere soil of chili pepper in southern Thailand, was investigated for its antagonistic activity against phytopathogenic fungi. In dual culture on glucose yeast-malt extract (GYM) agar plates, this strain suppressed the mycelial growth of all seven plant pathogenic fungi tested (Rhizoctonia solani PTRRC-9, Pyricularia grisea PTRRC-18, Colletotrichum gloeosporioides NBCRSR-3, Colletotrichum capcisi NBCRSR-15, Ganoderma boninense NBCRSR-26, Fusarium fujikuroi PTRRC-16 and Bipolaris oryzae PTRRC-36) with an 82.2–89.2% inhibition and that was most pronounced on R. solani PTRRC-9. Heat treatment of the culture filtrate from growing R. solani PTRRC-9 at 40 °C, 60 °C, 80 °C, and 100 °C for 30 min and 121 °C for 15 min had no negative effect on the inhibitory activity against R. solani PTRRC-9 tested on both solid and liquid culture. The effective dose (>80% inhibition) of culture filtrate in liquid culture was at 5.0% (v/v) while it was at 10% (v/v) on the solid medium. This effectiveness was similar to those of the four chemical fungicides tested. The effect of S. philanthi RM-1-138 against R. solani PTRRC-9 was investigated using SEM and TEM. The compounds produced by S. philanthi RM-1-138 induced alterations to the cell-wall structure of R. solani PTRRC-9, that resulted in the loss of cytoplasm materials by partial lysis. The greenhouse experiment revealed that using either the culture filtrate or the autoclaved culture filtrate from S. philanthi RM-1-138 effectively suppressed rice sheath blight disease by up to 65.6 and 60.8%, respectively.  相似文献   

19.
20.
Trehalose metabolism is related to the sclerotial development of Rhizoctonia solani AG-1 IA, the causal agent of rice sheath blight (RSB). Here, we further elucidated the functions of three genes Rstre, Rstps1 and Rstpp that encode three key enzymes trehalase (TRE), alpha, alpha-trehalose- phosphate synthase (TPS1) and trehalose 6-phosphate phosphatase (TPP) in the sclerotial development of R. solani AG-1 IA. Due to the lack of a stable genetic transformation system for R. solani, the heterologous expression of these three genes in Pichia pastoris GS115 was performed. The results showed that reactive oxygen species (ROS) contents and enzyme activities in R. solani decreased significantly in the treatments of the fermentation broths of Rstps1 and Rstpp transformants, and that in the treatment of the fermentation broth of Rstre transformant visibly increased. Furthermore, the fermentation broths of the transformants of all the three genes were added to potato dextrose agar (PDA) medium for the cultivation of R. solani, as a result, the dry weight of sclerotia in each PDA plate containing the fermentation broths of Rstps1 and Rstpp transformants significantly increased compared with the control, and that of Rstre transformant obviously decreased. Finally, 178 proteins were found to interact with RSTPS1, and 16 of them were associated with ROS. Taken together, the findings suggest that all these three genes related to trehalose metabolism play important roles in the sclerotial development of R. solani AG-1 IA, and can be used as new targets for the development of novel high-efficiency fungicides for the controlling of RSB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号