首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The appearance of very virulent strains of infectious bursal disease (IBD) virus at the end of the 1980s made it necessary to develop more effective immunization procedures. To facilitate this, the immunogenicity and the immunosuppressive effect of a mild (G-87), an intermediate (LIBD) and an intermediate-plus (IBDV 2512) IBDV strain were tested after the in ovo inoculation of 18-day-old SPF and broiler chicken embryos. It was established that no noteworthy difference existed between the immunized and the control embryos in hatching rate and hatching weight. The higher the virulence of the vaccine virus strain, the more severe damage it caused to the lymphocytes of the bursa of Fabricius. In SPF chickens, the haemagglutination inhibition (HI) titres induced by a Newcastle disease (ND) vaccine administered at day old decreased in inverse ratio to the virulence of the IBD vaccine strain, while in broiler chickens this was not observed. Despite the decrease of the HI titre, the level of protection did not decline, or did so only after the use of the 'hot' strain. SPF chickens immunized in ovo with a complex vaccine prepared from strain IBDV 2512 and IBD antibody showed the same protection against Newcastle disease as the broilers. In broiler chicken embryos immunized in ovo, only strain IBDV 2512 induced antibody production, and such chickens were protected against IBD at 3 weeks of age. The complex vaccine administered in ovo has been used successfully at farm hatcheries as well.  相似文献   

2.
3.
4.
A multivalent in ovo vaccine (MIV) was tested for safety and efficacy in a commercial broiler complex. The MIV comprised five replicating live viruses including serotypes 1, 2, and 3 of Marek's disease virus (MDV), an intermediate infectious bursal disease virus (IBDV) and a recombinant fowl poxvirus (FPV) vector vaccine containing HN and F genes of Newcastle disease virus (NDV). The performance of MIV-vaccinated broilers was compared with that of hatchmates that received turkey herpesvirus (HVT) alone (routinely used in ovo vaccine in the broiler complex). The chickens that hatched from the MIV-injected and HVT-injected eggs were raised under commercial conditions in six barns. Barn 1 housed 17,853 MIV-vaccinated chickens and each of the barns 2-6 housed 18,472-22,798 HVT-vaccinated chickens. The HVT-vaccinated chickens were given infectious bronchitis virus (IBV) and NDV vaccines at hatch and at 2 wk of age. The MIV-vaccinated chickens received IBV vaccine at hatch and IBV + NDV at 2 wk of age. The relative values of hatchability of eggs, livability and weight gain of chickens, and condemnation rates at processing were comparable between the MIV and the HVT groups (P > 0.05). Chickens from the MIV- and the HVT-vaccinated groups were challenged with virulent viruses under laboratory conditions. The resistance of vaccinated chickens against Marek's disease could not be assessed because of high natural resistance of unvaccinated commercial broilers to virulent MDV. The relative resistances of the MIV- and the HVT-vaccinated groups, respectively, against other virulent viruses were as follows: IBDV, 100% for both groups; NDV, 81% vs. 19%; FPV, 86% vs. 0%. The successful use of MIV under field conditions expands the usefulness of the in ovo technology for poultry.  相似文献   

5.
A commercial reovirus vaccine alone or experimental reovirus vaccine plus antibody complex were inoculated into 18-day-old specific pathogen free (SPF) broiler embryos at 0.1 of the recommended chick dose. The following groups were used: group 1A was not vaccinated or challenged; group 1B was not vaccinated, but was challenged with virulent reovirus; group 2 received the vaccine complexed with 1/4 dilution of antiserum; group 3 received the vaccine with 1/8 dilution of antiserum; group 4 received the vaccine with 1/16 dilution of antiserum, and group 5 received vaccine alone. At 1, 3, 6, 9, and 12 days of age, serum was collected and antibody against avian reovirus was analyzed by enzyme-linked immunosorbent assay (ELISA). At the same times, spleens were collected and vaccine virus detected by inoculating chicken embryo fibroblasts (CEFs) and examining for cytopathic effect. At 15 days of age, chickens in groups 2-5 were challenged with reovirus. At 22 days of age, birds were euthanatized and weighed. Efficacy of the vaccines was based on safety, percent protection, and antibody response. In ovo vaccination with the commercial or experimental vaccines did not adversely affect hatchability of SPF chickens. The vaccine complexed with antibody resulted in significantly less posthatch mortality (3.7%) when compared to mortality of chickens that received vaccine alone (17%). Both vaccine virus recovery and antibody response were delayed at least 3 days in birds receiving the experimental vaccines. In evo administration of reovirus antibody complex vaccines provided at least 70% protection. The experimental reovirus-antibody complex vaccines were safe and efficacious when given in ovo to SPF broiler embryos.  相似文献   

6.
Control of infectious bursal disease virus (IBDV) by vaccination is important for poultry production worldwide. Two vaccines, an IBDV immune complex (ICX) vaccine and an IBDV-2512 vaccine, were administered at 100 mean embryo infectious dose to specific-pathogen-free 18-day-old broiler embryos in ovo. At 3, 6, 9, 15, and 21 days post in ovo vaccination (PIOV), bursa, spleen, and thymus tissues were collected and analyzed for virus protein by antigen capture chemiluminescent enzyme-linked immunosorbent assay (ELISA). Chicks were bled and antibody titers were determined by the antibody ELISA. At 21 days PIOV, chickens were challenged with a 1:500 dilution of an antigenic standard IBDV strain. At 28 days PIOV, birds were euthanatized and bursa weight:body weight ratios were determined. Embryos vaccinated with either vaccine exhibited 92% hatchability; however, within 1 wk of hatch, birds vaccinated with IBDV-2512 showed 56% mortality, whereas those given IBDV-ICX had only 3.2% mortality. Both IBDV-ICX and IBDV-2512 vaccines were detected in bursa, spleen, and thymus at day 3 PIOV. A 5-day delay in virus replication was observed with IBDV-ICX vaccine. By day 15 PIOV, the IBDV-ICX was no longer detectable in the bursa and spleen but persisted in the thymus. The IBDV-2512 vaccine persisted in the spleen and thymus on day 15 PIOV. By day 21 PIOV, neither vaccine virus was detected in any lymphoid organ. This assay can be useful in the early detection of vaccine virus in the tissues of chickens vaccinated via the in ovo route. Both vaccines caused bursal atrophy at all times PIOV. The IBDV-2512 caused splenomegaly at day 6 PIOV, whereas splenomegaly was not seen in IBDV-ICX-vaccinated birds until day 9 PIOV. Thymus atrophy was observed in IBDV-2512-vaccinated chicks from day 3 PIOV, whereas this occurred on day 15 PIOV in IBDV-ICX-vaccinated birds. Bursa weight: body weight ratios in IBDV-ICX-vaccinated unchallenged and vaccinated challenged birds were not different (P < 0.05).  相似文献   

7.
Different infectious bursal disease virus (IBDV) live vaccines (intermediate, intermediate plus) were compared for their immunosuppressive abilities in specific-pathogen-free (SPF) layer-type chickens or commercial broilers. The Newcastle disease virus (NDV) vaccination model was applied to determine not only IBDV-induced immunosuppression but also bilateral effects between IBDV and NDV. None of the IBDV vaccines abrogated NDV vaccine-induced protection. All NDV-vaccinated SPF layers and broilers were protected against NDV challenge independent of circulating NDV antibody levels. Sustained suppression of NDV antibody development was observed in SPF layers, which had received the intermediate plus IBDV vaccine. We observed a temporary suppression of NDV antibody development in broilers vaccinated with one of the intermediate, as well as the intermediate plus, IBDV vaccines. Different genetic backgrounds, ages, and residual maternal antibodies might have influenced the pathogenesis of IBDV in the different types of chickens. Temporary suppression of NDV antibody response in broilers was only seen if the NDV vaccine was administered before and not, as it was speculated previously, at the time the peak of IBDV-induced bursa lesions was detected. For the first time, we have demonstrated that the NDV vaccine had an interfering effect with the pathogenesis of the intermediate as well as the intermediate plus IBDV vaccine. NDV vaccination enhanced the incidence of IBDV bursa lesions and IBDV antibody development. This observation indicates that this bilateral effect of an IBDV and NDV vaccination should be considered in the field and could have consequences for the performance of broiler flocks.  相似文献   

8.
Infectious bursal disease virus variant from commercial Leghorn pullets   总被引:5,自引:0,他引:5  
An infectious bursal disease virus (IBDV) was isolated from 39-to-43-day-old commercial leghorn pullets suspected of having infectious bursal disease (IBD). These chickens had been vaccinated with a commercial live IBDV vaccine at 28 and 35 days of age. An isolate designated IN was recovered using specific-pathogen-free (SPF) chickens and the BGM-70 established cell line. Experimental studies using SPF chickens vaccinated with either inactivated vaccines made from the vaccine strain used in the problem flock or a standard-type vaccine indicated no protection against the IN isolate. However, two variants and another standard-type vaccine induced protection against the IN isolate. Cross-neutralization tests indicated that the IN isolate differed antigenically from commercial vaccine strains and was related to the variant IBDV strains recently isolated from broilers. To our knowledge, this is the first report of a variant IBDV recovered from commercial layer chickens in the United States.  相似文献   

9.
Two experiments determined the influence of an experimental reovirus-antibody complex vaccine on Mareks disease virus (MDV) vaccine when used in ovo. Designs were the same except that specific-pathogen-free (SPF) broiler eggs were used in Experiment 1 and commercial broiler eggs with maternal antibodies against reovirus were used in Experiment 2. At 18 days of incubation, embryos were separated into four groups and inoculated with either diluent, MDV vaccine, reovirus-antibody complex vaccine, or a combination of reovirus-antibody complex and MDV vaccine. At 5 days of age, half the chickens in each group were challenged with MDV. At 7 wk old, all were euthanatized, weighed, and examined. At 7 days of age, remaining chickens in each group were challenged with reovirus. At 21 days old, chickens were euthanatized and weighed. No vaccine adversely affected hatchability or posthatch mortality in SPF or commercial chickens. There were no significant differences in protection against reovirus challenge when vaccines were used separately or in combination, and lesion scores were nearly identical in all vaccinated groups in both experiments. However, percentage of protection against reovirus was lower in Experiment 2, indicating an adverse effect of maternal immunity on efficacy of the reovirus vaccine. There were no significant differences in protection against MDV when the vaccines were used separately or combined. Severity of MDV lesions was nearly identical in all vaccinated groups in both experiments. However, the combination of vaccines gave numerically lower protection against MDV than MDV vaccine alone. Use of a larger number of birds, as in field conditions, may result in statistically lower protection for the vaccine combination. Large field trials are needed to determine the potential of the reovirus-antibody complex vaccine.  相似文献   

10.
11.
12.
Experiments determined the efficacy of live vaccines in specific-pathogen-free broilers against serologic subtypes of infectious bursal disease virus (IBDV). Challenge isolates were the Delmarva variant E, a standard serotype I (APHIS) and a variant isolate from Mississippi. The vaccines were a cloned standard (CS) vaccine (Clone Vac-D78), a cloned variant (CV) vaccine (Bursa Vac IV), and an uncloned standard (UCS) vaccine (Bursine II). The severity of microscopic lesions was correlated with bursal atrophy as measured by bursa-weight-to-body-weight ratios. All vaccines provided adequate protection against the APHIS challenge. The three vaccines averaged 77% protection against APHIS in the first experiment and 78% in the second. Protection against the variant E and Miss isolates was considerably less for all vaccines. The three vaccines produced an average 70% protection against the Miss isolate in the first experiment and 69% in the second experiment. Against the variant E virus, the three vaccines averaged 67% protection in the first experiment and 65% in the second. There were significant differences in protection for each vaccine against individual IBDV subtypes. Results showed that no vaccine provided good protection (at least 80%) against all three subtypes of IBDV.  相似文献   

13.
The evolution of very virulent (vv) infectious bursal disease virus (IBDV) has led to significant economic losses in many poultry-producing areas. Despite vigorous vaccination strategies, IBDV has been difficult to control. The protective efficacy of IBDV vaccines is traditionally evaluated in specific pathogen-free (SPF) chickens. But under field conditions, residual maternal antibody (mAb) levels may interfere with vaccine efficacy. In this study, commercial broilers with various levels of maternally derived antibodies were vaccinated with IBDV vaccines of different virulence (vaccines 1-3, intermediate; vaccine 4, intermediate plus). At an average maternal virus-neutralizing antibody (mAb) level of log2 10.8 (range 7.6-11.6) at day of vaccination, only the intermediate plus vaccine induced IBDV antibodies after 18 days, while the other intermediate vaccines did not. At average mAb levels of log2 6.7 (range 5.6-8.6) at day of vaccination, all vaccines induced circulating antibodies, although the onset of antibody production differed significantly between strains (P < 0.05). While the intermediate plus vaccine induced enzyme-linked immunosorbent assay antibody levels already at 14 days postvaccination (PV), the intermediate vaccines induced significant antibody levels 28 (vaccines 1, 2) and 35 (vaccine 3) days PV. The time of IBDV antibody induction correlated with the onset of bursa lesions. The severity of lesions was comparable between vaccines 1, 3, and 4 (lesion score 4), while vaccine 2 induce only mild lesions of score 1 in 23% of the tested birds. Despite the induction of antibodies, none of the tested vaccines fully protected against challenge with vvIBDV. All challenged birds had either significantly higher bursal lesion scores or a higher IBDV antigen load in the bursa or sometimes both in comparison with nonchallenged birds (P < 0.05). Our study demonstrates that the evaluation of IBDV-vaccine efficacy is difficult in commercial broilers. For the first time, it was shown that the onset of bursa lesions and recovery of IBDV-vaccinated broilers is delayed in the presence of mAb in comparison with SPF chickens but not suppressed as previously assumed. At the time of challenge, vaccinated birds may still have significant bursa lesions and may lack target cells for IBDV-challenge virus. To be able to evaluate vaccine efficacy in commercial broilers, parameters such as intrabursal IBDV-antigen load should also be considered in conjunction with bursa lesion scores.  相似文献   

14.
The effect of two infectious bursal disease virus (IBDV) vaccines (IBDV-immune complex [Icx] and IBDV-2512), administered in ovo, on the cell-mediated immunity of specific-pathogen-free (SPF) broilers was examined. A decrease (P < 0.05) in the T-cell mitogenic response occurred in birds vaccinated with both vaccines on days 9 and 21 post in ovo vaccination (PIOV), but an increase (P < 0.05) occurred on day 15 PIOV. The T cells from birds given the IBDV-2512 were less responsive. There were no significant differences in proportions of lymphocytes expressing CT4+CT8 and CT8+CT4- except on day 21 PIOV, where an increase (P < 0.05) in IBDV-2512-vaccinated birds and a decrease (P < 0.05) in percentage of CT4+CT8- in IBDV-Icx-vaccinated birds was observed. There was an increase (P < 0.05) in percentage of CT8+CT4- T cells on day 21 PIOV in both vaccinated groups. A decrease (P < 0.05) in B-cell percentage was observed on day 21 PIOV in birds given both vaccines. Results indicated that although humoral immunosuppression is associated with destruction of B cells (bursal atrophy), cell-mediated immunosuppression induced by these two IBDV vaccines in SPF birds was not associated with altered helper (CT4+CT8-) or cytotoxic (CT8+CT4-) subpopulations of T lymphocytes.  相似文献   

15.
Transgenic plants represent a safe, effective, and inexpensive way to produce vaccines. The immunogenicity of VP2 protein of an infectious bursal disease (IBD) virus variant E isolate expressed in transgenic Arabidopsis thaliana was compared with a commercial vaccine in specific-pathogen-free broiler chickens. The VP2 coding sequence was isolated and integrated into A. thaliana genome by Agrobacterium tumefaciens-mediated transformation. Soluble VP2 expressed in transgenic plants was used to immunize chickens. Chickens receiving oral immunization with plant-derived VP2 at 1 and 3 wk of age had an antibody response using enzyme-linked immunosorbent assay and 80% protection against challenge infection at 4 wk. Chickens primed with a commercial vaccine at 1 wk followed by an oral booster with VP2 expressed in plants at 3 wk of age showed 90% protection. Chickens immunized with a commercial vaccine at 1 and 3 wk showed 78% protection. Results supported the efficacy of plant-produced VP2 as a vaccine against IBD.  相似文献   

16.
A field study was performed to determine the efficacy of three commercially available vaccines against infectious bursal disease (IBD) in commercial broilers raised in a high IBD virus (IBDV) risk area. Live attenuated intermediate and intermediate plus vaccines were used in four flocks. Birds were vaccinated orally at the estimated vaccination time. Three broiler flocks were vaccinated subcutaneously with a turkey herpesvirus (HVT)-IBD vector vaccine at one day old. Evaluation of the efficacy of different vaccines was focused on humoral immune response, bursa/body weight (B/Bw) ratio, molecular detection of IBDV in ileocaecal tonsils and bursa of Fabricius, and production parameters. The serological results showed that although the uptake of all three vaccine strains was confirmed in the lymphoid organs, no significant antibody response to vaccination was detected in flocks vaccinated with intermediate and intermediate plus vaccines. A significant increase in antibody titres detected in flocks vaccinated with the vector vaccine indicated its ability to induce an immune response in birds with a high level of maternally derived antibodies. Observations obtained in this field trial did not confirm the expected reduction of the B/Bw ratio in flocks vaccinated with less attenuated vaccines. No significant differences were observed between birds vaccinated with the vector vaccine and those immunised with the intermediate plus vaccine. Very virulent IBDV was confirmed in the flock vaccinated with the intermediate vaccine. The infection induced reduced B/Bw and moderate mortality but did not affect the production parameters. Field infection was not detected in broilers vaccinated with the intermediate plus vaccine and the vector vaccine.  相似文献   

17.
Pathogenicity of a fowl adenovirus (FAV), JM1/1 strain of serotype 1 derived from gizzard erosions of a broiler chicken, was examined to specific pathogen-free (SPF) chickens pre-treated with infectious bursal disease viruses (IBDVs) or cyclophosphamide (CY). Virulent IBDVs, classical type, were inoculated orally at 3 days of age of SPF chickens. CY was treated subcutaneously for 3 days after hatch. FAV was given orally at 30 days of age. At 40 days of age, all chickens were bled and autopsied for serology and gross observation. Gizzard lesions were ranked by the scores depending on their severities. IBDV- or CY-treated chickens showed significantly higher gizzard lesion scores than non treated birds. There were no gross lesions in any other organs except for bursal atrophy. Serologically, antibody production against FAV was highly suppressed by IBDV infection or CY treatment.  相似文献   

18.
Cui Z  Sun S  Wang J 《Avian diseases》2006,50(2):191-195
In this study, a Chinese field strain of subgroup J avian leukosis virus (ALV-J), NX0101, was studied for its immunosuppressive effects in both commercial broilers and SPF white Leghorn chickens infected at 1 day of age. Our data demonstrated that NX0101 induced much more significant body and immune organ weight loss in the infected commercial broiler chickens in an earlier age than that in the SPF white Leghorn chickens. At the same time antibody responses to vaccinations of Newcastle disease virus (NDV) and infectious bursa disease virus (IBDV) in the NX0101-infected chickens were also evaluated and compared between the commercial broiler chickens and the SPF white Leghorn chickens. Compared with the control group of chickens, the hemagglutination inhibition (HI) antibody response to NDV vaccines was significantly reduced in the NX0101-infected commercial broiler chickens from as early as 20 days after vaccination. However, no significant difference in HI antibody response was seen when HI titers reached their peaks in the NX0101-inoculated and control SPF white Leghorn chickens, except it declined significantly faster in infected birds. Neither of these two types of chickens showed significant decrease of antibody response to IBDV vaccination. Herein, we conclude that this NX0101 strain of ALV-J could selectively suppress humoral immune reactions to NDV, especially in broilers. But challenge experiments were not conducted and, therefore, it cannot be known if decreased antibody levels correlated with decreased protection against NDV in this case.  相似文献   

19.
20.
Two infectious bursal disease viruses (IBDVs 1174 and V1) were isolated from IBDV-vaccinated broiler flocks in California and Georgia. These flocks had a history of subclinical immunosuppression. These isolates are commonly used in IBDV progeny challenge studies at Auburn, AL, as well as vaccine manufacturer's vaccine efficacy studies, because they come from populated poultry-producing states, and are requested by poultry veterinarians from those states. Nested polymerase chain reaction (PCR) generated viral genome products for sequencing. A 491-bp segment from the VP2 gene, covering the hypervariable region, from each isolate was analyzed and compared with previously sequenced isolates. Sequence analysis showed that they were more closely related to the Delaware (Del) E antigenic variant than they are to the Animal Health Plant Inspection Service (APHIS) standard, both at the nucleotide level (96%, 97%) and at the amino acid level (94%, 97%). Both isolates had the glutamine to lysine shift in amino acid 249 which has been reported to be critical in binding the virus neutralizing Mab B69. Phenotypic studies showed that both isolates produced rapid atrophy of the bursae and weight loss, without the edematous bursal phase, in 2-wk-old commercial broilers having antibody against IBDV. A progeny challenge study showed both isolates produced more atrophy of the bursae (less percentage of protection) than the Del E isolate. Molecular and phenotypic data of these important IBDV isolates help in the improved detection and control of this continually changing and important viral pathogen of chickens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号