首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A simple equation to describe sorption of anions by goethite would be useful as a means of characterizing batches of goethite and in studies of plant uptake of anions from the sorbed form. A suitable relationship between solution concentration (c) of phosphate or citrate and their sorption (S) by goethite at a constant pH or at different pH values is where b is a parameter, SMax is the maximum sorption, and a is a parameter at constant pH. In the middle range of sorption (from about 30% to about 70% of maximum sorption) this equation approximated to a Tempkin equation, but the full equation is more useful as it applied over the whole sorption range. The values of a varied with pH. This variation could be explained by changes in the electric potential of the adsorbing surfaces and in the degree of dissociation of the anions. The parameter a could therefore be replaced by a function of pH. The effects were consistent with formation of bidentate phosphate complexes and tridentate citrate complexes with the goethite surface.  相似文献   

2.
Equivalent salt solution series have been previously defined as solutions with combinations of sodium absorption ratio (SAR) and electrolyte concentration (Ec) producing the same extent of clay swelling in a given soil. The present study shows that there is a high (r2>0.96) positive correlation between log Ec and log SAR of equivalent salt solutions series, in the equation: where a1 and b1 are constants for each equivalent salt solution series for a given soil. Log a1 could also be represented as a linear function of b1 resulting in the equation: where a2 and b2 are constants for a given soil. Solving this equation using any given value of b1 yields the combinations of SAR and Ec which make up each equivalent salt solution series for a given soil. The relationship between log a1 and b2 for three soils from western United States, namely Waukena, Pachappa and Grangeville, was similar, with their combined data having a r2 value of 0.96. This indicated that a single set of equivalent salt solution series values could be used for these three soils which have different clay contents and clay mineralogy. Prediction of hydraulic conductivity decreases with Ec reduction at given values of SAR in red-brown and alluvial soils from southern Tasmania, using the equivalent salt solution series values for Waukena soil, showed similar patterns to measured values and also to those predicted using the equivalent salt solution values applicable to the respective Tasmanian soils. Thus, available data indicate that the same set of equivalent salt series could be applied to the five soils studied. If further testing shows that a single set of equivalent salt solutions values could be applied to all or large groups of soils, this would facilitate the application of the equivalent salt solution concept to predict salt solution flow in the field.  相似文献   

3.
THE MECHANICAL STRENGTH OF UNSATURATED POROUS GRANULAR MATERIAL   总被引:1,自引:0,他引:1  
The influence of pore-water suction on the strength of a porous material is that it contributes a compressive load which increases the shear strength. When the material is unsaturated, the normal load or effective stress is due, in part to the continuous water at measured suction in unemptied pores, and in part to isolated bodies in nominally emptied pores at suctions approximating to the suction at emptying. When the material is draining from saturation, the effective stress σ is where S is the fraction of saturation, α is the fraction of the initial water content drained at the maximum suction, Psd is the prevailing pore water suction, and Psd is a suction passed through in reaching pSd at which the reduction of S is dS. When the material is rewetting, the relationship becomes where psw is now the prevailing suction during wetting and f is a distribution function of the degree of saturation such that δS is the fractional saturation removed in the suction range δsd at sd and regained in the suction range δsw at sw. msd is the maximum suction attained. The effective stress is revealed experimentally by unconfined compression tests on samples with imposed pore water suctions, and the dependence on this suction confirms reasonably that which is predicted by the theoretical formulas.  相似文献   

4.
If an exchangeable ion in soil diffuses along a liquid and solid pathway, its diffusion coefficient may be expressed as where D, v, f, C are diffusion coefficient, volume fraction, impedance factor, and concentration terms and the suffixes l,S refer to liquid and solid. The self-diffusion coefficient of the ion is then where D′, Dt, and Ds, are self-diffusion coefficients. D and D′ will vary with concentration. In diffusion out of the soil to a zero sink, the appropriate average diffusion coefficient is, approximately, the self-diffusion coefficient in the undisturbed soil. Diffusion of one ion species is influenced by other ions diffusing in the system through the diffusion potential set up. When ions are diffusing to plant roots, the diffusion potential is likely to be small. A more likely, though more complicated, expression for D than the first equation above is derived by assuming the ion to follow solid and liquid pathways in series as well as in parallel.  相似文献   

5.
Changes of EUF‐extractable nitrogen (N) (nitrate, ammonium, organic N) in 20 arable bare soils, subsequently planted with ryegrass (Lolium multiflorum L.) and cutting three times were investigated in pot experiments. All 20 soils responded qualitatively in the same way. During the period of bare soil, there was a significant increase of EUF‐extractable nitrate (EUF NO ), while extractable ammonium (EUF NH ) remained on the same level and organic N (EUF Norg) decreased. This decrease, however, was not significant. From sowing until the first cutting of the grass, EUF‐NO concentration decreased to almost zero. This low EUF‐NO level was maintained throughout the subsequent experimental period (three cuttings of grass). During the growth of the first cutting, EUF Norg decreased while EUF NH remained constant, however, on a low level. EUF NH fell during the growth of the second and third cutting. In this period, however, the N supply of the grass was insufficient. EUF Norg decreased during the growth of the second cutting, but increased during the growth of the third cutting. This shows that the EUF‐Norg fraction represents a transient pool, which gains and loses N. EUF NO , EUF NH , and EUF Norg correlated with the N uptake of the grass. Strongest correlation for EUF NO was found for the first cutting (p < 0.001), and for EUF NH and EUF Norg for the second and third cutting (p < 0.001). Total soil N was not correlated with the N uptake of the grass. EUF Norg was only about 2% of the total N. This relatively small EUF‐Norg fraction, however, is relevant for the mineralization of organic soil N, and the N quantity indicated by EUF Norg is in the range of the N amount mineralized in arable soils within a growing season.  相似文献   

6.
The amounts of N2O released in freeze‐thaw events depend on site and freezing conditions and contribute considerably to the annual N2O emissions. However, quantitative information on the N transformation rates in freeze‐thaw events is scarce. Our objectives were (1) to quantify gross nitrification in a Luvisol during a freeze‐thaw event, (2) to analyze the dynamics of the emissions of N2O and N2, (3) to quantify the contribution of nitrification and denitrification to the emission of N2O, and (4) to determine whether the length of freezing and of thawing affects the C availability for the denitrification. 15NO was added to undisturbed soil columns, and the columns were subjected to 7 d of freezing and 5 d of thawing. N2O emissions were determined in 3 h intervals, and the concentrations of 15N2O and 15N2 were determined at different times during thawing. During the 12 d experiment, 5.67 mg NO ‐N (kg soil)–1 was produced, and 2.67 mg NO ‐N (kg soil)–1 was lost. By assuming as a first approximation that production and loss occurred exclusively during thawing, the average nitrate‐production rate, denitrification rate, and immobilization rate were 1.13, 0.05, and 0.48 mg NO ‐N (kg soil)–1 d–1, respectively. Immediately after the beginning of the thawing, denitrification contributed by 83% to the N2O production. The ratios of 15N2 to 15N2O during thawing were narrow and ranged from 1.5 to 0.6. For objective (4), homogenized soil samples were incubated under anaerobic conditions after different periods of freezing and thawing. The different periods did not affect the amounts of N2 and N2O produced in the incubation experiments. Further, addition of labile substrates gave either increases in the amounts of N2O and N2 produced or no changes which suggested that changes in nutrient availability due to freezing and thawing are only small.  相似文献   

7.
Soil compression is caused in agriculture by tillage implements, plant roots, treading by animals, and by wheels and tracks of vehicles. Increases in soil density resulting from compression usually reduce crop growth and yield. Compression and expansion of samples of five remoulded soils, each at several moisture contents, were investigated. Soil samples were subjected to isotropic stress of up to 3.5 MN m?2 in a pressure cell. Volume changes were measured by the volume of pore fluid effused or infused through one of the sample surfaces. Particle packing densities, D, were well described by the equation where D0 is the maximum limiting value of D, P is the applied isotropic stress, and B, C, K, L are adjustable parameters. One of the exponential terms in this equation describes deformation of soil crumbs and the other describes rearrangement of individual particles. Two sample sizes gave similar values for the equation parameters. A small increase in moisture content results in a large increase in soil compressibility. It is hypothesized that resistance to compression may be one of the principal influences in the mechanical restriction of root growth.  相似文献   

8.
9.
Nitrogen (N) is taken up by most plant species in the form of nitrate (NO ) or ammonium (NH ). The plant response to continuous ammonium nutrition is species‐dependent. In this study, the effects of the source of N nutrition (NO , NH , or the mixture of NO and NH ) on the response of clover (Trifolium subterraneum L. cv. 45C) plants to prolonged root hypoxia was studied. Under aerobic conditions, plant growth was strongly depressed by NH , compared to NO or mixed N nutrition, as indicated by the significant decrease in root and shoot‐dry‐matter production (DW), root and shoot water contents (WC), leaf chlorophyll concentration, and chlorophyll fluorescence parameters (F0, Fv/Fm). However, the N source had no effect on chlorophyll a–to–chlorophyll b ratio. Under hypoxic conditions, the negative effects of root hypoxia on plant‐growth parameters (DW and WC), leaf chlorophyll concentration, and chlorophyll fluorescence parameters were alleviated by NH rather than NO supply. Concomitantly, shoot DW–to–root DW ratio, and root and leaf NH concentrations were significantly decreased, whereas root and leaf carbohydrate concentrations, glutamine synthetase activities, and protein concentrations were remarkably increased. The present data reveal that the N source (NO or NH ) is a major factor affecting clover responses to hypoxic stress, with plants being more tolerant when NH is the N form used. The different sensitivity is discussed in terms of a competition for energy between nitrogen assimilation and plant growth.  相似文献   

10.
11.
Both earthworms and plant growth–promoting rhizobacteria (PGPR) are ubiquitous and important for promoting circulation of plant macronutrients. Two series of laboratory experiments were conducted to investigate the effects of earthworm casts and activities on the growth of PGPR, and the inoculation of earthworms and PGPR on the availability of N, P, and K in soils, respectively. During a short incubation period (0–34 h), the extracts of earthworm (Pheretima guillelmi)‐worked soil significantly (p < 0.05) increased the abundance of the three species of PGPR, including N‐fixing bacteria (NFB) (Azotobacter chroococcum HKN‐5), phosphate‐solubilizing bacteria (PSB) (Bacillus megaterium HKP‐1), and K‐solubilizing bacteria (KSB) (B. mucilaginous HKK‐1), in Luria‐Bertani (LB) broth. There were synergistic effects of dual inoculation of earthworms and PGPR on increasing the concentrations of NH$ _4^+ $ ‐N, (NO$ _3^- $ + NO$ _2^- $ )‐N, NaHCO3‐extractable P, and NH4OAc‐extractable K in the corresponding soils. Bioavailable N (the sum of NH$ _4^+ $ ‐N and [NO$ _3^- $ + NO$ _2^- $ ]‐N) in the dual inoculation was 4 to 24 times those inoculated with earthworms or NFB alone, respectively. The significantly higher concentrations of bioavailable N and P in the dual inoculation of earthworms and NFB or PSB may be due to the higher abundance of PGPR and/or higher activities of urease and acid phosphatase than those of single inoculation of NFB or PSB, respectively. Dual inoculation of earthworms and PGPR would be most effective in reducing the need for chemical fertilizers in agriculture.  相似文献   

12.
Nitrate leaching depending on N fertilization and different crop rotations was studied at two sites with sandy soils in N Germany between 1995 and 2000. The leaching of NO was calculated by using a numerical soil‐water and N model and regularly measured Nmin values as input data. Also the variability of Nmin values on the sandy soils was determined along transects. They reveal the high variability of the Nmin values and show that it is not possible to confirm a significant Nmin difference between fertilizer treatments using the normal Nmin‐sampling intensity. Nitrate‐leaching calculations of five leaching periods showed that even strongly reduced N‐fertilizer applications did not result in a substantially lower NO leaching into the groundwater. Strong yield reductions of even more than 50%, however, were immediately measured. Mean NO concentrations in the groundwater recharge are >50 mg L–1 and are mainly due to mineralization from soil organic matter. Obviously, the adjustment of the N cycle in the soil to a new equilibrium and a reduced NO ‐leaching rate as a consequence of lower N inputs need a much longer time span. Catch crops are the most efficient way to reduce the NO concentrations in the groundwater recharge of sandy soils. Their success, however, strongly depends on the site‐specific development possibilities of the catch crop. Even with all possible measures implemented, it will be almost impossible to reach NO concentrations <50 mg L–1 in sandy soils. The only way to realize this goal on a regional scale could be by increasing areas with lower nitrate concentrations in the groundwater recharge like grassland and forests.  相似文献   

13.
Soil moisture affects the degradation of organic fertilizers in soils considerably, but less is known about the importance of rainfall pattern on the turnover of C and N. The objective of this study was to determine the effects of different rainfall patterns on C and N dynamics in soil amended with either biogas slurry (BS) or composted cattle manure (CM). Undisturbed soil cores without (control) or with BS or CM, which were incorporated at a rate of 100 kg N ha–1, were incubated for 140 d at 13.5°C. Irrigation treatments were (1) continuous irrigation (cont_irr; 3 mm d–1); (2) partial drying and stronger irrigation (part_dry; no irrigation for 3 weeks, 1 week with 13.5 mm d–1), and (3) periodic heavy rainfall (hvy_rain; 24 mm d–1 every 3 weeks for 1 d and 2 mm d–1 for the other days). The average irrigation was 3 mm d–1 in each treatment. Cumulative emissions of CO2 and N2O from soils amended with BS were 92.8 g CO2‐C m–2 and 162.4 mg N2O‐N m–2, respectively, whereas emissions from soils amended with CM were 87.8 g CO2‐C m–2 and only 38.9 mg N2O‐N m–2. While both organic fertilizers significantly increased CO2 production compared to the control, N2O emissions were only significantly increased in the BS‐amended soil. Under the conditions of the experiment, the rainfall pattern affected the temporal production of CO2 and N2O, but not the cumulative emissions. Cumulative NO leaching was highest in the BS‐amended soils (9.2 g NO ‐N m–2) followed by the CM‐amended soil (6.1 g NO ‐N m–2) and lowest in the control (4.7 g NO ‐N m–2). Nitrate leaching was also independent of the rainfall pattern. Our study shows that rainfall pattern may not affect CO2 and N2O emissions and NO leaching markedly provided that the soil does not completely dry out.  相似文献   

14.
An incubation and a pot experiment were conducted to evaluate the dissolution and agronomic effectiveness of a less reactive phosphate rock, Busumbu soft ore (BPR), in an Oxisol in Kenya. Resin (anion and anion + cation)‐extractable P and sequentially extracted P with 0.5 M NaHCO3, 0.1 M NaOH, and 1 M HCl were analyzed. Dissolution was determined from the increase in anion resin (AER)–, NaHCO3‐, and NaOH‐extractable P in soil amended with PR compared with the control soil. Where P was applied, resin P significantly increased above the no‐P treatment. Busumbu‐PR solubility was low and did not increase significantly in 16 weeks. Anion + cation (ACER)‐extractable P was generally greater than AER‐P. The difference was greater for PR than for triple superphosphate (TSP). The ACER extraction may be a better estimate of plant P availability, particularly when poorly soluble P sources are used. Addition of P fertilizers alone or in combination with Tithonia diversifolia (TSP, BPR, TSP + Tithonia, and BPR + Tithonia) increased the concentration of labile inorganic P pools (NaHCO3‐ and NaOH‐Pi). Cumulative evolved CO2 was significantly correlated with cumulative N mineralized from Tithonia (r, 0.51, p < 0.05). Decrease in pH caused NH ‐N accumulation while NO ‐N remained low where Tithonia was incorporated at all sampling times. However, when pH was increased, NH ‐N declined with a corresponding rise in NO ‐N. Tithonia significantly depressed soil exchangeable acidity relative to control with time. A significant increase (p < 0.05) was observed for P uptake but not dry‐mass production in maize where BPR was applied. The variations in yield and P uptake due to source and rates of application were statistically significant. At any given P rate, highest yields were obtained with Tithonia alone. Combination of Busumbu PR with TSP or Tithonia did not enhance the effectiveness of the PR. The poor dissolution and plant P uptake of BPR may be related to the high Fe content in the PR material.  相似文献   

15.
Charcoal‐based amendments have a potential use in controlling NH3 volatilization from urea fertilization, owing to a high cation‐exchange capacity (CEC) that enhances the retention of NH . An incubation study was conducted to evaluate the potential of oxidized charcoal (OCh) for controlling soil transformations of urea‐N, in comparison to urease inhibition by N‐(n‐butyl) thiophosphoric triamide (NBPT). Four soils, ranging widely in texture and CEC, were incubated aerobically for 0, 1, 3, 7, and 14 d after application of 15N‐labeled urea with or without OCh (150 g kg?1 fertilizer) or NBPT (0.5 g kg?1 fertilizer), and analyses were performed to determine residual urea and 15N recovery as volatilized NH3, mineral N (as exchangeable NH , NO , and NO ), and immobilized organic N. The OCh amendment reduced NH3 volatilization by up to 12% but had no effect on urea hydrolysis, NH and NO concentrations, NO accumulation, or immobilization. In contrast, the use of NBPT to inhibit urea hydrolysis was markedly effective for moderating the accumulation of NH , which reduced immobilization and also controlled NH3 toxicity to nitrifying microorganisms that otherwise caused the accumulation of NO instead of NO . Oxidized charcoal is not a viable alternative to NBPT for increasing the efficiency of urea fertilization.  相似文献   

16.
The objective of this laboratory study with six loess soils (three Eutric CambisoIs and three Haplic Phaeozems) incubated under flooded conditions was to examine the effect of a wide range of NO doses under anaerobic conditions on soil redox potential and N2O emission or absorption. Due to the fact that loess soils are usually well‐drained and are expected to be absorbers during prevailing part of the season, the study aimed at determination of the conditions decisive for the transition from emission to absorption process. On the basis of the response to soil nitrate level, the two groups of soils were distinguished with high and low denitrification capacity. The soil denitrification activity showed Michaelis‐Menten kinetics with respect to soil nitrate content with KM in the range 50–100 mg NO ‐N kg–1. Percentage of nitrates converted to N2O increased linearly with nitrate concentration in the range from 25 to 100 mg NO ‐N kg–1 up to 43% and decreased linearly at higher concentrations reaching practically zero at concentrations about 600 mg NO ‐N kg–1. No denitrification was observed below 25 mg NO ‐N kg–1. Nitrous oxide absorption in soil occurred only at nitrate concentrations to 100 mg NO ‐N kg–1 and in this concentration range was proportional to the denitrification rate. Nitrous oxide was formed at redox potentials below +200 mV and started to disappear at negative Eh values.  相似文献   

17.
Grazing animals highly influence the nutrient cycle by a direct return of 80% of the consumed N in form of dung and urine. In the autumn‐winter period, N uptake by the sward is low and rates of seepage water in sandy soils are high, hence high mineral‐N contents in soil and in seepage water as well as large losses of N2O are expected after cattle grazing in autumn. The objective of this study was the quanitfication of N loss deriving from urine and dung leaching and by N2O emission. Therefore the deposition of urine and dung patches was simulated in maximum rates excreted by cows by application of 15N‐labeled cow urine and dung (equivalent to 1030 kg N ha–1 and 1052 kg N ha–1, respectively) on a sandy pasture soil in N Germany. Leachate was collected in weekly intervals from free‐draining lysimeters, and 15N‐NO , 15N‐NH , and 15N‐DON (dissolved organic N) were monitored over 171 d. Furthermore, the 15N‐N2O emission rates and the dynamics of inorganic 15N in the upper soil layer were monitored in a field trial, adjacent to the lysimeters. After 10 d following the urine application, the urea was completely hydrolyzed, shown by a 100% recovery of urine‐N in the soil NH . The following decrease of 15N‐NH in the soil was higher than the increase of 15N‐NO , and some N loss was explained by leaching. Amounts of 51% and 2.5% of the applied 15N were found in leachate as inorganic N, 2.4% and 0.7% as DON derived from urine and dung, respectively. Release of N2O from urine and dung patches applied to the pasture was low, with losses of 0.05% and 0.33% of the applied 15N, respectively. Overall loss of dung‐derived N was very low, but as the bulk dung N remained in the soil, N loss after mineralization of the dung needs to be investigated.  相似文献   

18.
WATER MOVEMENT IN DRY SOILS   总被引:2,自引:0,他引:2  
Semi-infinite columns of dry soil closed at one end had the other exposed to a turbulent atmosphere at constant relative humidity (0.98) and a range of constant temperatures. After varied times the water content of the columns was measured gravimetrically, in 1 cm layers, from which the total quantity taken up Q and the distribution of water content Ø with time t and distance x were found. Assuming that the Boltzmann transform, λ=xt?t can be applied to the standard diffusion equation, two soil parameters are derived. A test of the assumption is that Ø should be uniquely dependent on λ, and then the diffusivity is calculable from where Øt is the initial uniform water content. The second parameter—the sorptivity, S= Qt—and is not independent of Øt or the value maintained at x= 0. Results show that in a clay soil, between pF 5.8 and pF 4.2, water moves predominantly as vapour: in a non-swelling silicate mineral (sepiolite) there is significant liquid movement between pF 5.1 and pF 4.2. Long-continued use of organic manure has little effect on either D or S; aggregate size has some effect, in opposite senses for a sand and a clay; a mulch or a still atmosphere affects S but not D; evaporation suppressants decrease S; ignition decreases S and greatly alters D; and degradation of structure causes small changes in D.  相似文献   

19.
We have determined electrical conductivity (Ee) and total dissolved salts (S) in saturation extracts from 39 soil samples from the Baza basin (Province of Granada, south-east Spain). Ee ranged from 2.8 to 110dS m?3, and S from 2 to 444 8 dm?3. The relationship between S and Ee was not linear. When the saturation extracts were diluted with progressively larger quantities of distilled water and their electrical conductivity calculated (Eec) with the equation where Ed and Ew are the conductivity of the diluted extract and the distilled water and f is the dilution factor, the relationship between S and Eec tended to become linear. The highest linear correlation coefficient relating S (mg dm?3) and Eec (dS m?1) was reached when Eec, values were calculated for dilutions with a conductivity (Ed) between 0.1 and 0.3 dS m?1 (E*ec). The regression equation was S= 490 E*ec with r2= 0.999. This relationship can be used in all saturation extracts, regardless of the concentration and type of ions present.  相似文献   

20.
For forty-one soils (pH > 5.0) from southern England and eastern Australia, the Langmuir equation was an excellent model for describing P adsorption from solutions < 10-3M P, if it was assumed that adsorption occurs on two types of surface of contrasting bonding energies. For most of these soils, which were relatively undersaturated with P, this equation may be written as: where x = adsorption, k = adsorption/desorption equilibrium constant, xm= monolayer adsorption capacity, and c = equilibrium solution concentration. The relative magnitude of the parameters for each surface were approximately: xm= 0.3 xm=0.3 and k′= 100 k. More than 90 per cent of the native adsorbed P occurs on the high-energy surface in most soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号